大学物理公式总结
- 格式:doc
- 大小:316.00 KB
- 文档页数:10
引言在大学物理学习的过程中,公式总结是非常重要的。
公式的掌握和运用对于解决物理问题至关重要。
本文将对大学物理学中常见的公式进行总结,帮助读者更好地理解和应用这些公式。
概述一、运动学公式1.位移公式:s=v0t+(1/2)at^22.速度公式:v=v0+at3.加速度公式:a=(vv0)/t4.时间公式:t=(vv0)/a5.加速度与位移公式:s=v0t+(1/2)a(t^2)二、牛顿力学公式1.牛顿第一定律:F=ma2.牛顿第二定律:F=dp/dt=m(dv/dt)3.动量公式:p=mv4.力与位移公式:W=Fdcosθ5.原动力学公式:F=ma=m(dv/dt)三、能量和功的公式1.功公式:W=Fdcosθ2.重力势能公式:PE=mgh3.动能公式:KE=(1/2)mv^24.动能定理:ΔKE=W_net5.功率公式:P=W/t四、电动力学公式1.电流公式:I=Q/t2.电压公式:V=W/Q3.电阻公式:R=V/I4.电功率公式:P=IV=I^2R5.电容公式:C=Q/V五、光学公式1.光速公式:c=λf2.光的折射公式:n1sinθ1=n2sinθ23.焦距公式:1/f=1/v+1/u4.薄透镜成像公式:(1/f)=(1/v)+(1/u)5.杨氏双缝干涉公式:dsinθ=mλ总结通过本文对大学物理学中常见公式的总结,我们可以看到这些公式在解决问题中起到至关重要的作用。
运动学公式帮助我们了解物体的运动,牛顿力学公式帮助我们理解物体受力的原理,能量和功的公式帮助我们理解能量的转化和传递,电动力学公式帮助我们理解电路中的电流、电压和电阻的关系,光学公式帮助我们理解光的传播和成像的原理。
在学习这些公式时,我们需要深入理解它们的物理意义,并能够熟练地运用到实际问题中。
只有通过不断的练习和实践,才能真正掌握这些公式。
希望本文对读者学习大学物理学中的公式有所帮助,能够更好地应用于解决实际问题。
引言概述:大学物理是一门研究物质的基本原理和规律的学科,是自然科学中最基础、最广泛且最重要的学科之一。
在学习大学物理过程中,理解和掌握物理公式是至关重要的。
本文将对大学物理中一些重要的公式进行总结和阐述,帮助读者更好地理解和应用这些公式。
正文内容:1.力学1.1牛顿第一定律1.1.1物体在匀速直线运动中的惯性1.1.2例子及应用1.2牛顿第二定律1.2.1力和加速度的关系1.2.2例子及应用1.3牛顿第三定律1.3.1相互作用力和作用力的大小和方向1.3.2例子及应用1.4动能定理1.4.1动能的定义和计算1.5万有引力定律1.5.1质点间引力的大小和方向1.5.2例子及应用2.热学2.1热力学第一定律2.1.1内能的变化与热量和功的关系2.1.2例子及应用2.2热力学第二定律2.2.1热机效率和热流的方向2.2.2例子及应用2.3热扩散定律2.3.1温度梯度和热传导的关系2.3.2例子及应用2.4理想气体状态方程2.4.1理想气体的变化状态和方程2.4.2例子及应用2.5熵的增加原理2.5.1熵的定义和增加原理3.电学3.1库伦定律3.1.1静电力和电荷的关系3.1.2例子及应用3.2电场强度3.2.1电场和电荷的关系3.2.2例子及应用3.3电势能与电势3.3.1电势能和电势的定义3.3.2例子及应用3.4电流和电阻3.4.1电流和电阻的关系3.4.2例子及应用3.5电磁感应3.5.1法拉第电磁感应定律和楞次定律3.5.2例子及应用4.光学4.1光的折射和反射4.1.1折射定律和反射定律4.1.2例子及应用4.2光的波动性和粒子性4.2.1光的干涉和衍射现象4.2.2例子及应用4.3光的色散和偏振4.3.1光的色散和偏振现象4.3.2例子及应用4.4光的透射和吸收4.4.1光的透射和吸收定律4.4.2例子及应用4.5光的干涉和衍射4.5.1光的干涉和衍射现象4.5.2例子及应用5.量子力学5.1波粒二象性5.1.1波动方程和粒子的能量5.1.2例子及应用5.2不确定性原理5.2.1不确定性原理和粒子的位置和动量5.2.2例子及应用5.3斯特恩格拉赫实验5.3.1双缝干涉和波粒二象性的实验验证5.3.2例子及应用5.4薛定谔方程5.4.1薛定谔方程和波函数的解释5.4.2例子及应用5.5电子结构5.5.1电子能级和原子结构的描述5.5.2例子及应用总结:大学物理中的公式总结了物质世界中各种现象和规律的数学表达方式。
引言概述:物理公式是大学物理课程中不可或缺的一部分,它们是描述自然现象的数学表达式。
本文将介绍一些大学常用的物理公式,包括力学、热力学、电磁学和光学公式等。
这些公式不仅在学习物理理论和解题中起到重要的作用,而且在工程、科学研究和实际应用中也具有广泛的应用价值。
正文内容:一、力学公式1.1运动学公式1.1.1位移公式s=ut+(1/2)at^21.1.2速度公式v=u+at1.1.3加速度公式a=(vu)/t1.2动力学公式1.2.1牛顿第二定律F=ma1.2.2动能公式Ek=(1/2)mv^21.2.3动量公式p=mv1.3静力学公式1.3.1弹性力公式F=kx1.3.2引力公式F=G(m1m2)/r^21.3.3摩擦力公式Ff=μFn二、热力学公式2.1热传导公式2.1.1热传导方程q=kΔT/L2.1.2热导率公式k=(QL)/(AΔT)2.2热膨胀公式2.2.1线膨胀公式ΔL=αL0ΔT2.2.2体膨胀公式ΔV=βV0ΔT2.3热力学循环公式2.3.1热转化效率公式η=(W_net/Q_h)100%2.3.2卡诺循环效率公式η_C=(T_hT_c)/T_h三、电磁学公式3.1电场公式3.1.1电场强度公式E=F/q3.1.2电势差公式V=W/q3.2磁场公式3.2.1磁场强度公式B=F/(qv)3.2.2磁场感应公式ε=BLv3.3法拉第电磁感应公式3.3.1法拉第电磁感应定律ε=dΦ/dt3.3.2洛伦兹力公式F=q(E+vxB)四、光学公式4.1光速公式4.1.1光速定义c=λf4.1.2光速在介质中的速度v=c/n4.2折射公式4.2.1斯涅尔定律n1sin(θ1)=n2sin(θ2)4.2.2光线传播路径差公式Δx=d(n1)(cot(θ2)cot(θ1))4.3球面镜公式4.3.1球面镜公式1/f=(n1)(1/R11/R2)五、总结本文介绍了大学常用的物理公式,涵盖了力学、热力学、电磁学和光学等方面。
大学物理公式总结大学物理是一门重要的自然科学学科,是理工科学生必修的一门课程。
掌握物理公式是学习和理解物理学概念的基础,也是解决物理问题的关键。
本文将对大学物理中常用的一些重要公式进行总结,并给出简要的解释和应用示例。
1. 运动学公式1.1 速度公式v = Δx / Δt其中v表示物体的速度,Δx表示物体在Δt时间内所经过的位移。
1.2 加速度公式a = Δv / Δt其中a表示物体的加速度,Δv表示物体在Δt时间内所改变的速度。
1.3 牛顿第一定律F = ma其中F表示作用在物体上的力,m表示物体的质量,a表示物体的加速度。
1.4 牛顿第二定律F = mΔv / Δt其中F表示作用在物体上的力,m表示物体的质量,Δv表示物体在Δt时间内所改变的速度。
1.5 速度-时间关系v = u + at其中v表示物体的末速度,u表示物体的初始速度,a表示物体的加速度,t表示时间。
2. 力学公式2.1 动能公式K = 1/2 mv^2其中K表示物体的动能,m表示物体的质量,v表示物体的速度。
2.2 势能公式U = mgh其中U表示物体的势能,m表示物体的质量,g表示重力加速度,h表示物体的高度。
2.3 弹性势能公式U = 1/2 kx^2其中U表示物体的弹性势能,k表示弹簧的弹性系数,x表示弹簧的伸长量。
2.4 万有引力公式F = Gm1m2 / r^2其中F表示物体之间的引力,G为万有引力常数,m1和m2表示两个物体的质量,r表示两个物体之间的距离。
3. 热学公式3.1 热传导公式Q = kA(ΔT / d)其中Q表示热量传导的速率,k表示该物质的导热系数,A表示传热的面积,ΔT表示温度差,d表示传热距离。
3.2 热能公式Q = mcΔθ其中Q表示物体的热量,m表示物体的质量,c表示物体的比热容,Δθ表示物体的温度变化。
3.3 热功定理W = ΔQ其中W表示系统对外做的功,ΔQ表示系统所吸收或排放的热量。
一、力学1.1 运动学at2位移:x=x0+v0t+12速度:v=v0+at加速度:a=ΔvΔt角速度:ω=ΔθΔt圆周运动的线速度与角速度关系:v=ωr周期:T=2πrv频率:f=1T1.2 动力学牛顿第二定律:F=ma功:W=Fxmv2动能:E k=12势能:E p=mgℎ机械能:E=E k+E p功率:P=Fv冲量:I=Ft动量:p=mv动量守恒定律:p1+p2=p1′+p2′碰撞的恢复系数:e=v′relv rel1.3 刚体运动转动惯量:I=ml2角动量:L=IωIω2转动动能:E k=12二、电磁学2.1 静电学电场强度:E=Fq 电势差:U=Ed高斯定律:∮E⃗S ⋅dA=Q encε0电容:C=QU电势:V=KQr2.2 稳恒电流场欧姆定律:I=UR电阻:R=LσS电阻率:σ=1R⋅S焦耳定律:Q=I2Rt2.3 磁场磁感应强度:B=μ0I2πr安培环路定律:∮B⃗L⋅dl=μ0I enc磁通量:Φ=B⋅A磁通量量子:Φ0=2πℏe磁场对运动电荷的作用力:F=qvB 洛伦兹力:F=q(v×B⃗ )磁矩:μ=I⋅A2.4 电磁感应法拉第电磁感应定律:ε=−dΦdt楞次定律:L dIdt+M⋅B⃗ ×I=F自感:L=N⋅μ0⋅Al互感:M=N⋅μ0⋅Al三、热学3.1 热力学基本定律热力学第零定律:绝对零度不可达到热力学第一定律:dU=TdS−PdV 热力学第二定律:熵增原理克劳修斯定律:dS=qT开尔文-普朗克关系式:E=ℎν3.2 热传导傅里叶定律:J=−kL ⋅dT dx热导率:k=QLm⋅ΔT斯特藩-玻尔兹曼定律:P=σAT43.3 理想气体状态方程四、波动与光学4.1 波动波动方程:y=Asin(kx−ωt+ϕ)波速:v=波长周期相位:ϕ=2πx波长群速度:v g=dωdk衍射公式:sinθ=12波长障碍物尺寸干涉公式:y=2sin(ωt+ϕ0)cos(ωt+ϕ0)=sin(2ωt+2ϕ0)4.2 光学反射定律:入射角等于反射角折射定律:n1sinθ1=n2sinθ2光速:c=2πRT光的波动说:E=ℎν光电效应方程:E k=ℎν−W0旋光性:Δϕ=2α⋅Δλ五、量子力学5.1 基本公式Ψ=ĤΨ薛定谔方程:iℏððt海森堡不确定性原理:ΔxΔp≥ℏ2泡利不相容原理:一个原子中最多有两个电子具有相同的量子态n2能级公式:E n=−m2l25.2 量子态叠加与测量量子态叠加:Ψ=αΨ1+βΨ2测量公式:P(λ)=|⟨λ|Ψ⟩|21.在学习大学物理时,要注重理论知识与实际应用相结合,通过解决实际问题来加深对物理概念的理解。
大学物理公式汇总目录1力学31.1运动学 (3)1.2牛顿运动定律 (3)1.3动量和冲量 (3)1.4力的合成与分解 (4)1.5摩擦力 (4)1.6重力 (4)1.7弹力 (4)2功和能52.1功 (5)2.2功率 (5)2.3动能 (5)2.4重力势能 (5)2.5弹性势能 (5)2.6机械能守恒定律 (5)3转动动力学63.1角速度和角加速度 (6)3.2转动惯量 (6)3.3转动动能 (6)3.4转动定律 (6)3.5角动量 (6)3.6角动量守恒定律 (6)4流体力学74.1流体静力学 (7)4.2流体动力学 (7)5热力学75.1理想气体状态方程 (7)5.2热力学第一定律 (7)5.3热力学第二定律 (7)5.4卡诺循环 (8)6电磁学86.1静电场 (8)6.2恒定电流 (8)6.3磁场 (8)6.4电磁感应 (9)7光学9 8现代物理基础98.1狭义相对论 (9)8.2量子力学 (10)9原子物理与核物理109.1原子模型 (10)9.2核反应 (10)1力学1.1运动学位移、速度和加速度v=dxdt(1.1)速度v是位移x对时间t的导数。
a=dvdt=d2xdt2(1.2)加速度a是速度v对时间t的导数,等于位移x的二阶导数。
1.2牛顿运动定律牛顿第一定律(惯性定律)如果没有外力作用,物体将保持静止或匀速直线运动状态。
牛顿第二定律ìF=mìa(1.3)物体的加速度ìa与作用力ìF成正比,与物体的质量m成反比,加速度的方向与作用力的方向相同。
牛顿第三定律ìF作用=−ìF反作用(1.4)作用力和反作用力大小相等,方向相反。
1.3动量和冲量动量ìp=mìv(1.5)动量ìp是物体的质量m与速度ìv的乘积。
冲量ìJ=∫ìF dt(1.6)冲量ìJ是力ìF对时间t的积分。
第一章 质点运动学和牛顿运动定律1.1平均速度 v =t△△r1.2 瞬时速度 v=lim 0△t →△t △r =dt dr1. 3速度v=dtds==→→lim lim△t 0△t △t△r 1.6 平均加速度a =△t△v1.7瞬时加速度(加速度)a=lim 0△t →△t△v =dt dv1.8瞬时加速度a=dt dv =22dt rd1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+21at 21.14速度随坐标变化公式:v 2-v 02=2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动⎪⎩⎪⎨⎧===gy v at y gtv 22122 ⎪⎪⎩⎪⎪⎨⎧-=-=-=gy v v gt t v y gt v v 221202200 1.17 抛体运动速度分量⎩⎨⎧-==gt a v v av v yx sin cos 001.18 抛体运动距离分量⎪⎩⎪⎨⎧-•=•=20021sin cos gt t a v y t a v x1.19射程 X=g av 2sin 21.20射高Y=gav 22sin 201.21飞行时间y=xtga —ggx 21.22轨迹方程y=xtga —av gx 2202cos 2 1.23向心加速度 a=Rv 21.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n1.25 加速度数值 a=22n t a a +1.26 法向加速度和匀速圆周运动的向心加速度相同a n =Rv 21.27切向加速度只改变速度的大小a t =dtdv1.28 ωΦR dtd R dt ds v ===1.29角速度 dtφωd =1.30角加速度 22dt dtd d φωα== 1.31角加速度a 与线加速度a n 、a t 间的关系a n =222)(ωωR R R R v == a t =αωR dtd R dt dv ==牛顿第一定律:任何物体都保持静止或匀速直线运动状态,除非它受到作用力而被迫改变这种状态。
大学物理公式全集基本概念(定义和相关公式)位置矢量:r ,其在直角坐标系中:k z j y i x r++=;222z y x r ++=角位置:θ速度:dtr d V =平均速度:tr V ∆∆=速率:dtds V =(τV V =)角速度:dt d θω=角速度与速度的关系:V=rω加速度:dtV d a=或22dt r d a =平均加速度:tV a ∆∆=角加速度:dtd ωβ=在自然坐标系中n a a an+=ττ其中dtdV a =τ(=rβ),rV na 2=(=r2 ω)1.力:F =ma(或F =dtp d ) 力矩:F r M⨯=(大小:M=rFcos θ方向:右手螺旋法则)2.动量:V m p=,角动量:V m r L ⨯=(大小:L=rmvcos θ方向:右手螺旋法则)3.冲量:⎰=dt F I(=FΔt);功:⎰⋅=r d F A(气体对外做功:A=∫PdV )4.动能:mV 2/25.势能:A 保= – ΔE p 不同相互作用力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下:机械能:E=E K +E P6.热量:CRT M Q μ=其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 7.压强:ωn tSISF P 32=∆==8.分子平均平动能:k T 23=ω;理想气体内能:RT s r t M E )2(2++=μ9.麦克斯韦速率分布函数:NdVdN V f =)((意义:在V 附近单位速度间隔内的分子数所占比率) 10.平均速率:πμRTNdNdV V Vf V V80)(==⎰⎰∞方均根速率:μRTV22=;最可几速率:μRTpV 3=11.熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数)mg(重力) → mgh-kx (弹性力) → kx 2/2F= r r Mm G ˆ2- (万有引力) →r Mm G - =E p r r Qq ˆ420πε(静电力) →r Qq 04πε12.电场强度:E =F /q 0 (对点电荷:rr q Eˆ420πε=) 13.电势:⎰∞⋅=aar d E U(对点电荷rq U04πε=);电势能:W a =qU a (A= –ΔW) 14. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 15. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。
大学物理公式大全大学物理公式大全(上)1. 运动学公式1.1 一维运动公式- 平均速度(v):v = Δx / Δt- 匀变速直线运动:v = v0 + at,x = v0t + (1/2)at^2,v^2 = v0^2 + 2aΔx- 重力加速度(g):g = 9.8 m/s^21.2 二维运动公式- 向心加速度(a):a = v^2 / r- 圆周运动速度(v):v = 2πr / T- 圆周运动周期(T):T = 2πr / v- 圆周运动角度(θ):θ = s / r2. 力学基本公式1.3 牛顿定律- 牛顿第一定律:物体静止或匀速直线运动时,合力 F = 0- 牛顿第二定律:物体的加速度与作用力成正比,反比于质量,F = ma- 牛顿第三定律:作用力与反作用力大小相等,方向相反,分别作用于两个物体1.4 摩擦力公式- 静摩擦力(fs):fs ≤μsN(µs为静摩擦因数,N为垂直于接触面的合力)- 动摩擦力(fd):fd = μdN(µd为动摩擦因数,N为垂直于接触面的合力)1.5 弹力公式- 弹簧定律:F = -kx(k为弹簧劲度系数,x为弹簧伸长量)3. 动量和能量1.6 动量公式- 动量(p):p = mv(m为质量,v为速度)- 冲击力(F):F = Δp/Δt1.7 动能公式- 动能(K):K = (1/2)mv^21.8 动能定理- 动能定理:W = ΔK = FΔx(W为外力所做的功,ΔK为动能变化量,F为力,Δx为力的位移)4. 旋转运动1.9 角度和弧度- 弧长(s)与半径(r)的关系:s = rθ(θ为角度)- 角度与弧度(rad)的转换关系:θ(rad) = θ(°) x (π/180)1.10 角速度公式- 角速度(ω):ω = ∆θ / ∆t1.11 角加速度公式- 角加速度(α):α = ∆ω / ∆t大学物理公式大全(下)5. 静电学1.12 库仑定律- 库仑定律(静电力):F = k |q1q2| / r^2(q1、q2为电荷,r为距离,k 为库仑常数)1.13 电场强度- 电场强度(E):E = F / q(F为电场力,q为测试电荷)1.14 电势能- 电势能(U):U = k |q1q2| / r(U为电势能,q1、q2为电荷,r为距离,k为库仑常数)6. 电磁感应1.15 法拉第电磁感应定律- 法拉第电磁感应定律:ε = -dΦ / dt(ε为感应电动势,Φ为磁通量,t 为时间变化率的负值)1.16 洛伦兹力公式- 洛伦兹力(F):F = q(v x B)(q为电荷,v为电荷的速度,B为磁场的磁感应强度)7. 光学1.17 折射公式- 折射定律:n1sinθ1 = n2sinθ2(n1、n2为介质的折射率,θ1、θ2为入射角和折射角)1.18 薄透镜公式- 薄透镜公式:1/f = 1/do + 1/di(f为透镜焦距,do为物距,di为像距)1.19 光的干涉- 杨氏双缝干涉:dsinθ = mλ(d为缝宽,θ为干涉角,m为干涉级次,λ为波长)8. 热学1.20 热传导公式- 热传导定律:Q = kA (∆T / L)(Q为传热量,k为导热系数,A为截面积,∆T为温差,L为长度)1.21 热膨胀公式- 线膨胀公式:∆L = αL∆T(∆L为长度变化,α为线膨胀系数,L为初始长度,∆T为温差)以上是大学物理的一些基本公式,希望对你的学习有所帮助。
静电场重要公式一、库仑定律二、电场强度三、场强迭加原理点电荷场强点电荷系场强连续带电体场强四、静电场高斯定理五、几种典型电荷分布的电场强度均匀带电球面均匀带电球体均匀带电长直圆柱面均匀带电长直圆柱体无限大均匀带电平面六、静电场的环流定理七、电势八、电势迭加原理点电荷电势点电荷系电势连续带电体电势九、几种典型电场的电势均匀带电球面均匀带电直线十、导体静电平衡条件(1) 导体内电场强度为零;导体表面附近场强与表面垂直。
(2) 导体是一个等势体,表面是一个等势面。
推论一电荷只分布于导体表面推论二导体表面附近场强与表面电荷密度关系十一、静电屏蔽导体空腔能屏蔽空腔内、外电荷的相互影响。
即空腔外(包括外表面)的电荷在空腔内的场强为零,空腔内(包括内表面)的电荷在空腔外的场强为零。
十二、电容器的电容平行板电容器圆柱形电容器球形电容器孤立导体球十三、电容器的联接并联电容器串联电容器十四、电场的能量电容器的能量电场的能量密度电场的能量稳恒电流磁场重要公式一、磁场运动电荷的磁场毕奥——萨伐尔定律二、磁场高斯定理三、安培环路定理四、几种典型磁场有限长载流直导线的磁场无限长载流直导线的磁场圆电流轴线上的磁场圆电流中心的磁场长直载流螺线管内的磁场载流密绕螺绕环内的磁场 五、载流平面线圈的磁矩IBMm 和S 沿电流的右手螺旋方向六、洛伦兹力七、安培力公式八、载流平面线圈在均匀磁场中受到的合磁力载流平面线圈在均匀磁场中受到的磁力矩静电场公式汇总1库仑定律:真空中两个静止的点电荷之间相互作用的静电力F 的大小与它们的带电量q 1、q 2的乘积成正比,与它们之间的距离r 的二次方成反比,作用力的方向沿着两个点电荷的连线。
221041r q q F πε=基元电荷:e=1.602C 1910-⨯ ;0ε真空电容率=8.851210-⨯ ;41πε=8.99910⨯2 rr q q F ˆ412210πε=库仑定律的适量形式 3场强 0q F E =4 r r Q q F E 3004πε==r 为位矢 5 电场强度叠加原理(矢量和)6电偶极子(大小相等电荷相反)场强E 3041rPπε-= 电偶极距P=ql 7电荷连续分布的任意带电体⎰⎰==rr dq dE E ˆ4120πε均匀带点细直棒 8 θπελθcos 4cos 20l dxdE dE x ==9 θπελθsin 4sin 20ldxdE dE y == 10[]j sos a i a rE )(cos )sin (sin 40ββπελ-+-=11无限长直棒 j rE 02πελ=12 dSd E EΦ=在电场中任一点附近穿过场强方向的单位面积的电场线数 13电通量θcos EdS EdS d E ==Φ 14 dS E d E •=Φ 15 ⎰⎰•=Φ=ΦsE E dS E d16 ⎰•=Φs E dS E 封闭曲面高斯定理:在真空中的静电场内,通过任意封闭曲面的电通量等于该封闭曲面所包围的电荷的电量的代数和的01ε17⎰∑=•Sq dS E 01ε 若连续分布在带电体上=⎰Qdq 01ε19 ) ˆ4120R r r rQ E 〉=(πε 均匀带点球就像电荷都集中在球心 20 E=0 (r<R) 均匀带点球壳内部场强处处为零 21 02εσ=E 无限大均匀带点平面(场强大小与到带点平面的距离无关,垂直向外(正电荷)) 22)11(400ba ab r r Qq A -=πε 电场力所作的功 23 ⎰=•L dl E 0 静电场力沿闭合路径所做的功为零(静电场场强的环流恒等于零)24 电势差 ⎰•=-=bab a ab dl E U U U25 电势⎰•=无限远aa dl E U 注意电势零点26 )(b a ab ab U U q U q A -=•= 电场力所做的功 27 rrQ U ˆ40πε=带点量为Q 的点电荷的电场中的电势分布,很多电荷时代数叠加,注意为r 28 ∑==ni iia rq U 104πε电势的叠加原理29 ⎰=Qardq U 04πε 电荷连续分布的带电体的电势30 rrPU ˆ430πε=电偶极子电势分布,r 为位矢,P=ql 31 21220)(4x R Q U +=πε 半径为R 的均匀带电Q 圆环轴线上各点的电势分布32 W=qU 一个电荷静电势能,电量与电势的乘积 33 E E 00εσεσ==或 静电场中导体表面场强 34 UqC = 孤立导体的电容 35 U=RQ 04πε 孤立导体球36 R C 04πε= 孤立导体的电容 37 21U U qC -=两个极板的电容器电容38 dS U U qC 021ε=-=平行板电容器电容39 )ln(2120R R L U Q C πε==圆柱形电容器电容R2是大的 40 rUU ε=电介质对电场的影响41 00U U C C r ==ε 相对电容率42 dSdC C r r εεεε===00 ε= 0εεr 叫这种电介质的电容率(介电系数)(充满电解质后,电容器的电容增大为真空时电容的r ε倍。
)(平行板电容器)43 rE E ε0=在平行板电容器的两极板间充满各项同性均匀电解质后,两板间的电势差和场强都减小到板间为真空时的r ε144 E=E 0+E /电解质内的电场 (省去几个)45 2033r R DE r εερε==半径为R 的均匀带点球放在相对电容率r ε的油中,球外电场分布 46 2221212CU QU C Q W ===电容器储能稳恒电流的磁场公式总结1 dtdqI =电流强度(单位时间内通过导体任一横截面的电量) 2 电流密度 (安/米2) 4 ⎰⎰•==SSdS j jd I θcos 电流强度等于通过S 的电流密度的通量5 dtdqdS j S-=•⎰电流的连续性方程 6⎰•SdS j =0 电流密度j 不与与时间无关称稳恒电流,电场称稳恒电场。
7 ⎰+-•=dl EKξ 电源的电动势(自负极经电源内部到正极的方向为电动势的正方向)8 ⎰•=LKdl Eξ电动势的大小等于单位正电荷绕闭合回路移动一周时非静电力所做的功。
在电j dS dI j ˆ垂直=源外部E k =0时,6.8就成6.7了9 qvF B max=磁感应强度大小 毕奥-萨伐尔定律:电流元Idl 在空间某点P 产生的磁感应轻度dB 的大小与电流元Idl 的大小成正比,与电流元和电流元到P 电的位矢r 之间的夹角θ的正弦成正比,与电流元到P 点的距离r 的二次方成反比。
1020sin 4rIdl dB θπμ=πμ40为比例系数,A m T •⨯=-70104πμ为真空磁导率11⎰-==)cos (4sin 421020θθπμθπμcon R Ir Idl B 载流直导线的磁场(R 为点到导线的垂直距离)12 RIB πμ40=点恰好在导线的一端且导线很长的情况 13 RIB πμ20=导线很长,点正好在导线的中部 14 232220)(2χμ+=R IR B 圆形载流线圈轴线上的磁场分布 15 RIB 20μ=在圆形载流线圈的圆心处,即x=0时磁场分布16302x ISB πμ≈在很远处时 平面载流线圈的磁场也常用磁矩P m ,定义为线圈中的电流I 与线圈所包围的面积的乘积。
磁矩的方向与线圈的平面的法线方向相同。
17 ISn P m = n 表示法线正方向的单位矢量。
18 NISn P m = 线圈有N 匝 19 3024xP B mπμ=圆形与非圆形平面载流线圈的磁场(离线圈较远时才适用) 20R I B απϕμ40=扇形导线圆心处的磁场强度 RL=ϕ为圆弧所对的圆心角(弧度) 21nqvS QI ==t△ 运动电荷的电流强度 22 20ˆ4r rqv B ⨯=πμ 运动电荷单个电荷在距离r 处产生的磁场23 dS B ds B d •==Φθcos 磁感应强度,简称磁通量(单位韦伯Wb ) 24 ⎰•=ΦSm dS B 通过任一曲面S 的总磁通量25⎰=•SdS B 0 通过闭合曲面的总磁通量等于零26 I dl B L 0μ=•⎰ 磁感应强度B 沿任意闭合路径L 的积分27⎰∑=•LIdl B 内μ在稳恒电流的磁场中,磁感应强度沿任意闭合路径的环路积分,等于这个闭合路径所包围的电流的代数和与真空磁导率0μ的乘积(安培环路定理或磁场环路定理)28 I lNnI B 00μμ==螺线管内的磁场 29 rIB πμ20=无限长载流直圆柱面的磁场(长直圆柱面外磁场分布与整个柱面电流集中到中心轴线同)30 rNIB πμ20=环形导管上绕N 匝的线圈(大圈与小圈之间有磁场,之外之内没有) 31 θsin BIdl dF =安培定律:放在磁场中某点处的电流元Idl ,将受到磁场力dF ,当电流元Idl与所在处的磁感应强度B 成任意角度θ时,作用力的大小为:32 B Idl dF ⨯= B 是电流元Idl 所在处的磁感应强度。
33 ⎰⨯=LB Idl F34 θsin IBL F = 方向垂直与导线和磁场方向组成的平面,右手螺旋确定 35 aI I f πμ22102=平行无限长直载流导线间的相互作用,电流方向相同作用力为引力,大小相等,方向相反作用力相斥。
a 为两导线之间的距离。
36 I I I ==21时的情况37 θθsin sin B P ISB M m •== 平面载流线圈力矩38 B P M m ⨯=aI f πμ220= 力矩:如果有N 匝时就乘以N39 θsin qvB F = (离子受磁场力的大小)(垂直与速度方向,只改变方向不改变速度大小) 40 B qv F ⨯= (F 的方向即垂直于v 又垂直于B ,当q 为正时的情况) 41 )(B v E q F ⨯+= 洛伦兹力,空间既有电场又有磁场 42 Bm q vqB mv R )(==带点离子速度与B 垂直的情况做匀速圆周运动 43 qBmv R T ππ22==周期 44 qBmv R θsin =带点离子v 与B 成角θ时的情况。
做螺旋线运动45 qBmv h θπcos 2=螺距46 dBIR U HH =霍尔效应。
导体板放在磁场中通入电流在导体板两侧会产生电势差 47 vBl U H = l 为导体板的宽度 48 dBI nq U H 1=霍尔系数nq R H 1=由此得到6.48公式49 0B Br =μ 相对磁导率(加入磁介质后磁场会发生改变)大于1顺磁质小于1抗磁质远大于1铁磁质50 '0B B B +=说明顺磁质使磁场加强 51 '0B B B -=抗磁质使原磁场减弱52)(0S LI NI dl B +=•⎰μ有磁介质时的安培环路定理 I S 为介质表面的电流53 NI I NI S μ=+ rμμμ0=称为磁介质的磁导率54∑⎰=•内I dl BLμ55 H B μ= H 成为磁场强度矢量 56⎰∑=•LIdl H 内磁场强度矢量H 沿任一闭合路径的线积分,等于该闭合路径所包围的传导电流的代数和,与磁化电流及闭合路径之外的传导电流无关(有磁介质时的安培环路定理)57 nI H =无限长直螺线管磁场强度58 nI nI H B r μμμμ0===无限长直螺线管管内磁感应强度大小。