高中数学教学案例设计
- 格式:docx
- 大小:122.57 KB
- 文档页数:9
第1篇一、背景随着新课程改革的不断深入,高中数学教学面临着诸多挑战。
如何在有限的教学时间内,提高学生的数学素养,培养学生的数学思维能力,激发学生的学习兴趣,成为高中数学教师关注的焦点。
本案例以人教版高中数学必修一第一章《集合与函数概念》为例,探讨如何在实践中实现这一目标。
二、教学目标1. 知识目标:理解集合的概念、性质及运算,掌握函数的概念、性质及表示方法。
2. 能力目标:培养学生的数学抽象能力、逻辑推理能力、数学建模能力、数学运算能力。
3. 情感目标:激发学生的学习兴趣,培养学生的数学素养,树立学生的自信心。
三、教学重难点1. 教学重点:集合的概念、性质及运算,函数的概念、性质及表示方法。
2. 教学难点:集合运算的实际应用,函数性质的灵活运用。
四、教学过程(一)导入1. 创设情境:教师展示生活中常见的现象,如:班级人数、水果种类等,引导学生思考这些现象是否可以用数学语言描述。
2. 提出问题:如何用数学语言描述这些现象?如何表示这些现象之间的关系?(二)新课讲授1. 集合的概念:教师通过举例引导学生理解集合的概念,如:自然数集合、实数集合等。
2. 集合的性质:教师通过讲解集合的运算,如:并集、交集、补集等,引导学生掌握集合的性质。
3. 函数的概念:教师通过讲解函数的定义、性质及表示方法,引导学生理解函数的概念。
4. 函数的性质:教师通过举例说明函数的单调性、奇偶性等性质,引导学生掌握函数性质的灵活运用。
(三)课堂练习1. 集合运算练习:教师给出一些集合运算的题目,如:求两个集合的并集、交集、补集等,让学生独立完成。
2. 函数性质练习:教师给出一些函数性质的题目,如:判断函数的单调性、奇偶性等,让学生独立完成。
(四)课堂小结1. 教师总结本节课的主要内容,强调重点、难点。
2. 学生回顾本节课所学知识,提出疑问。
(五)课后作业1. 完成课后练习题,巩固所学知识。
2. 预习下一节课内容,为下一节课做好准备。
高中数学优秀教学案例范文第1篇一、教学目标知识与技能:理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:1、提高学生的推理能力;2、培养学生应用意识。
二、教学重点、难点:教学重点:任意角概念的理解;区间角的集合的书写。
教学难点:终边相同角的集合的表示;区间角的集合的书写。
三、教学过程(一)导入新课1、回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课1、角的有关概念:①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;⑵零角的终边与始边重合,如果α是零角α =0°;⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?2、象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?高中数学优秀教学案例范文第2篇教学目的:掌握圆的标准方程,并能解决与之有关的问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⑴圆心(3,-2)半径为5⑵圆心(0,3)半径为3⒉指出下列圆的圆心和半径⑴(x-2)2+(y+3)2=3⑵x2+y2=2⑶x2+y2-6x+4y+12=0⒊判断3x-4y-10=0和x2+y2=4的位置关系⒋圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法) 练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。
高中数学教学案例一等奖【案例名称】:利用实例引导高中生掌握数学知识【案例背景】:高中数学教学一直是教育界和学生关注的焦点之一。
作为数学教师,我们要深入学生实际生活,利用生活中的实例引导学生掌握数学知识,提高数学学习的效果。
本案例通过具体的教学实例,展示如何在高中数学教学中发挥实例引导的作用,激发学生学习数学的兴趣和热情。
【案例内容】:一、案例简介在高中数学课堂上,老师可以利用丰富的实例来帮助学生理解和应用数学知识。
本案例选取了数学应用领域中的几何和代数知识,通过具体实例引导学生学习,在实际问题中应用数学知识,提高学生的数学思维能力和解决问题的能力。
二、案例一:几何知识的实例引导在教学几何知识时,通过实例引导学生了解几何知识在生活中的应用和意义。
以解决实际问题为例,让学生利用几何知识计算建筑物的高度、测量物体的面积和体积等。
通过实例引导,学生能够更深刻地理解几何知识的重要性,提高对几何知识的学习兴趣。
三、案例二:代数知识的实例引导在教学代数知识时,可以通过实际实例引导学生理解代数知识的应用。
通过日常生活中的消费问题,引导学生利用代数知识解决实际的购物问题;通过运动问题,引导学生利用代数知识建立模型,解决速度、时间、距离等问题。
通过实例引导,学生能够将抽象的代数知识与实际问题联系起来,提高对代数知识的理解和运用能力。
四、案例三:实例引导与课外实践相结合除了在课堂上进行实例引导,还可以组织学生进行课外实践和调查活动。
组织学生到周边环境中进行几何和代数知识的应用实践,让学生亲自感受数学知识在实际生活中的应用和意义。
通过实例引导与课外实践相结合,激发学生的学习兴趣,提高数学学习的效果。
五、案例总结实例引导是高中数学教学中非常有效的教学手段,能够帮助学生更深刻地理解数学知识的应用和意义,提高数学学习的效果。
通过在几何和代数知识的教学中使用实例引导,可以激发学生的学习兴趣,提高学生的数学思维能力和解决问题的能力。
高中数学教学设计案例【精彩9篇】高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。
教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。
二。
学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三。
教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。
(1)认真把握“标准”的教学要求。
(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。
(3)关注现代信息技术的运用。
(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。
平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。
这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2、以老师的精心备课与充满激情的教学,换取学生学习高效率。
3.将学校和教研组安排的有关工作落到实处。
高中数学教学设计案例篇二1.把握菱形的判定。
2.通过运用菱形知识解决具体问题,提高分析能力和观察能力。
3.通过教具的演示培养学生的学习爱好。
4.根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。
二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1.教学重点:菱形的判定方法。
2.教学难点:菱形判定方法的综合应用。
四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1.叙述菱形的定义与性质。
高中数学教学案例【精选4篇】高中数学教育案例篇一说来从事高中数学教学已经几年有余了,谈及自己的教学经历和教学方法,自己感想颇多,现在的我比较注意在教学的每个环节中全面考虑学生的认知因素,情感因素的彼此交融,彼此协调,从而使自己能够顺利完成教学的目标。
这一举措的实施,使我的教学的效果获得了全面的提升,并且我的课堂也朝气洋溢,充满活力,学生的学习兴趣也变得越来越浓厚。
记得在一次上课时,那时是在讲数列问题,是要求学生把握通过观察法求数列的通项公式,课堂上我出了几道题让学生练习,要求学生通过前几项的规律归纳总结出数列的通项公式,在巡视过程中发现这些题普遍做的不好,即使班上的好学生也冥思苦想,当时我感到很纳闷。
在课后,我做了仔细的思考和调查,发现学生遇到此类不懂的题目时就一筹莫展,真有点盲人摸象的感觉。
就连优等生也感到有些茫然。
但是学生到感到很有兴趣,都能很认真的在思考。
她们都以为此题看似简单解起来为什么却如此之难。
看到学生学习情感和立场,我由衷的感到开心。
我给学生提示:数学题,可以分为两大类,一类是应用数学规律题,一类是发明数学规律题。
应用数学规律题,指的是需要学生应用之前学习过的数学规律解释回答的题目。
发明数学规律题,指的是与学生之前学习的数学规律没有什么关系,需要学生先从已知的事物中找出规律,才能够解释回答的题目。
学生所做数学操练,绝大多数属于头类。
找数学规律的题目,题目有关一个或几个变化的量。
所谓找规律,多数情况下,是指变量的变化规律。
于是,捉住了变量,就等于捉住了解决不懂的题目的关键。
通过我的提示,更加激发了她们的好奇心和求知欲,我让同学们汇集我们相关的习题和课外题,因为有些同学们想难为一下老师,也想准确展示一下自己。
于是刻意查询了许多资料,找了许多她们以为的难题,我也调整了我的教学计划,打算用一节课的时间解决这个不懂的题目,并为此做了充实的准备。
又一节课开始了,孩子们都很期待这节课,都挖空心思,彼此争论着,终于解释回答出来,她们脸上露出了开心的笑容。
高中数学教案实例【篇一:高中数学教学案例】课题 : 2.1.2指数函数及其性质一、教学设计思路:1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。
我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。
只是从一个角度看函数是片面的。
本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。
2、本节课我努力做到:①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;③通过课堂教学活动向学生渗透数学思想方法。
二、教案【篇二:高中数学课堂教学设计案例一则】高中数学课堂教学设计案例一则默认分类2009-10-11 07:29阅读69评论0字号:大中小新课程标准下的高中数学课堂教学设计案例一则一、课堂教学改革势在必行新课标的基本理念是:构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识。
高度概括地说,老师的教与学生的学就是自主、合作、创新。
所谓自主就是尊重学生学习过程中的自主性、独立性,即在学习的内容上、时间上、进度上,更多地给学生自主支配的机会,给学生自主判断、自主选择和自主承担的机会;合作就是学生之间与师生之间的互动合作,平等交流;创新就意味着不固步自封、不因循守旧、不墨守成规。
传统的教学方式一般以组织教学、讲授知识、巩固知识、运用知识和检查知识来展开,其基本做法是:以纪律教育来维持组织教学,以师讲生听来传授新知识,以背诵、抄写来巩固已学知识,以多做练习来运用新知识,以考试测验来检查学习效果。
高中数学教案(精选多篇)一、简介数学是一门基础学科,它涉及数量、空间、形状、变化、计算等多个方面。
在高中数学教育中,学生需要通过数学知识学习,发展逻辑思维能力和解决实际问题的能力。
本文将提供数学教案的精选案例,希望能够帮助高中数学教师提高教学质量。
二、案例1. 圆锥侧面积解析法教学案教学目标:掌握圆锥侧面积的求解方法;理解圆锥侧面积的意义。
教学重点:掌握解析法,熟练掌握圆锥侧面积的公式及其推导。
解析法的熟练运用。
教学过程:1. 提问:教师引导学生思考圆锥侧面积的含义,以及圆锥侧面积的求解方法。
2. 解析法的讲解:3. 示例展示:教师通过示例,让学生能够熟练运用解析法,解决具体问题。
4. 练习:教师提供练习题,让学生独立完成,以巩固所学知识。
5. 反思讨论:在课程结束时,教师与学生一起反思所学知识,分析掌握程度及不足之处。
同时,还要让学生提出建议和意见,以便更好地帮助他们掌握相关知识。
2. 三角函数教学案掌握三角函数概念及其基本性质;掌握三角函数的图像;了解三角函数的应用。
教师引导学生思考三角函数的概念及其基本性质,以及三角函数的图像。
教师讲解三角函数的基础知识及相关概念,并给出具体例子帮助学生理解。
教师介绍三角函数的图像,并通过示例展示不同函数的图像特征。
4. 应用介绍:教师介绍三角函数的应用,如直线的斜率、三角形的周长、单位圆上的点的坐标等。
5. 定理运用:教师介绍三角函数的定理,如余角公式、三角函数倍角公式、三角函数和角公式等,并通过示例来说明定理的应用。
3. 导数应用教学案熟练掌握导数应用;了解导数在实际问题中的应用。
熟悉导数的基础知识;了解函数极值的定义和性质。
教师通过解析法讲解导数的基本知识,帮助学生掌握导数的应用。
3. 函数极值讲解:教师讲解函数极值的定义和性质,并引导学生通过实例理解。
教师介绍导数在实际问题中的应用,如加速度、速率、距离等,通过实例来说明导数在实际应用中的作用。
三、总结高中数学教育中,通过丰富的案例教学,可以帮助学生更好地掌握知识,提高解决实际问题的能力。
高中数学教学设计案例作为一位杰出的老师,常常要根据教学需要编写教案,教案是保证教学获得成功、提高教学质量的基本条件。
那么大家知道正规的教案是怎么写的吗?下面是由作者给大家带来的高中数学教学设计案例7篇,让我们一起来看看!高中数学教学设计案例篇1教学目标:1。
通过生活中优化问题的学习,体会导数在解决实际问题中的作用,增进学生全面认识数学的科学价值、运用价值和文化价值。
2。
通过实际问题的研究,增进学生分析问题、解决问题以及数学建模能力的提高。
教学重点:如何建立实际问题的目标函数是教学的重点与难点。
教学进程:一、问题情境问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?二、新课引入导数在实际生活中有着广泛的运用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。
1。
几何方面的运用(面积和体积等的最值)。
2。
物理方面的运用(功和功率等最值)。
3。
经济学方面的运用(利润方面最值)。
三、知识建构例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?说明1解运用题一样有四个要点步骤:设——列——解——答。
说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极值及端点值比较即可。
例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?说明1这种在定义域内仅有一个极值的函数称单峰函数。
说明2用导数法求单峰函数最值,可以对一样的求法加以简化,其步骤为:S1列:列出函数关系式。
S2求:求函数的导数。
S3述:说明函数在定义域内仅有一个极大(小)值,从而肯定为函数的最大(小)值,必要时作答。
⾼中数学教学设计案例 教学案例是真实⽽⼜典型且含有问题的事件。
数学运⽤教学案例是⼀种有⽤的教学⽅法。
下⾯就是店铺给⼤家整理的⾼中数学教学设计案例,希望对你有⽤! ⾼中数学教学设计案例篇1 ⼀、什么是教学案例 教学案例是真实⽽⼜典型且含有问题的事件。
简单地说,⼀个教学案例就是⼀个包含有疑难问题的实际情境的描述,是⼀个教学实践过程中的故事,描述的是教学过程中“意料之外,情理之中的事”。
这可以从以下⼏个层次来理解: 教学案例是事件:教学案例是对教学过程中的⼀个实际情境的描述。
它讲述的是⼀个故事,叙述的是这个教学故事的产⽣、发展的历程,它是对教学现象的动态性的把握。
教学案例是含有问题的事件:事件只是案例的基本素材,并不是所有的教学事件都可以成为案例。
能够成为案例的事件,必须包含有问题或疑难情境在内,并且也可能包含有解决问题的⽅法在内。
正因为这⼀点,案例才成为⼀种独特的研究成果的表现形式。
案例是真实⽽⼜典型的事件:案例必须是有典型意义的,它必须能给读者带来⼀定的启⽰和体会。
案例与故事之间的根本区别是:故事是可以杜撰的,⽽案例是不能杜撰和抄袭的,它所反映的是真是发⽣的事件,是教学事件的真实再现。
是对“当前”课堂中真实发⽣的实践情景的描述。
它不能⽤“摇摆椅⼦上杜撰的事实来替代”,也不能从抽象的、概括化的理论中演绎的事实来替代。
⼆、如何进⾏教学案例研究 教学案例是教师教学⾏为真实、典型的记录,也是教师教学理念和教学思想的真实体现。
因此它是教育教学研究的宝贵资源,也是教师之间交流的重要媒介。
进⾏教学案例的研究是教师不断反思、改进⾃⼰教学的⼀种⽅法,能促使教师更为深刻地认识到⾃⼰⼯作中的重点和难点。
这个过程就是教师⾃我教育和成长的过程。
那么如何进⾏教学案例研究呢?⼀般情况下,案例研究的程序基本有以下两个环节:案例研究的准备及实施、案例研究报告的撰写与反思。
(⼀)案例研究的准备与实施 1.研究主题的选择 案例研究都要有研究的重点和主题,这个主题常与教学改⾰的核⼼理念、常见的疑难问题和困惑事件相关,⼀般来说可以从教学的各个⽅⾯确定研究的主题,如从教师教学⾏为确定主题——教学材料的选择、教学中的提问、教学媒体的使⽤、教学评价语⾔、课堂教学调控⾏为等;也可以从学⽣的学习⽅式确定主题——探究性学习、问题解决学习、合作学习、实践性活动等。
高中数学教学案例设计12、任意角的三角函数(1)一、教学内容分析:高一年《普通高中课程标准教科书·数学(必修4)》(人教版A版)第12页1.2.1任意角的三角函数第一课时。
本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。
在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。
《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。
在本模块中,学生将通过实例学习三角函数及其基本性质,体会三角函数在解决具有变化规律的问题中的作用。
二、学生学习情况分析我们的课堂教学常用“高起点、大容量、快推进”的做法,忽略了知识的发生发展过程,以腾出更多的时间对学生加以反复的训练,无形增加了学生的负担,泯灭了学生学习的兴趣。
我们虽然刻意地去改变教学的方式,但仍太多旧时的痕迹,若为了新课程而新课程又会使得美景变成了幻影,失去新课程自然与清纯之味。
所以如何进行《普通高中数学课程标准(实验)》(以下简称课程标准)的教学设计就很值得思考探索。
如何让学生把对初中锐角三角函数的定义及解直角三角形的知识迁移到学习任意角的三角函数的定义中?《普通高中数学课程标准(实验)解读》中在三角函数的教学中,教师应该关注以下两点:第一、根据学生的生活经验,创设丰富的情境,例如单调弹簧振子,圆上一点的运动,以及音乐、波浪、潮汐、四季变化等实例,使学生感受周期现象的广泛存在,认识周期现象的变化规律,体会三角函数是刻画周期现象的重要模型以及三角函数模型的意义。
第二、注重三角函数模型的运用即运用三角函数模型刻画和描述周期变化的现象(周期振荡现象),解决一些实际问题,这也是《课程标准》在三角函内容处理上的一个突出特点。
根据《课程标准》的指导思想,任意角的三角函数的教学应该帮助学生解决好两个问题:其一:能从实际问题中识别并建立起三角函数的模型;其二:借助单位圆理解任意角三角函数的定义并认识其定义域、函数值的符号。
三、设计理念:本节课通过多媒体信息技术展示摩天轮旋转及生成的图像,让学生感受到数学来源于生活,数学应用于生活,激发同学们学习的乐趣。
并通过问题的探究,体验“数学是过程的思想”,改变课程实施过程于强调接受学习,死记硬背,机械训练的现状,倡导学生主动参与,乐于探究,勤于动手,培养学生学生收集和处理信息的能力,获得新知识的能力,分析与解决问题的能力以及交流合作的能力。
四、教学目标:1.借助摩天轮的情景问题很好地融合初中对三角函数的定义,也能很好入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义;2.从任意角的三角函数的定义认识其定义域、函数值的符号;3.能初步应用定义分析和解决与三角函数值有关的一些简单问题。
五、教学重点和难点:1.教学重点:任意角三角函数的定义.P2.教学难点:正弦、余弦、正切函数的定义域.O A图1具体设计如下:六、教学过程第一部分——情景引入问题1:如图是一个摩天轮,假设它的中心离地面的高度为o h ,它的直径为2R ,逆时针方向匀速转动,转动一周需要360秒,若现在你坐在座舱中,从初始位置OA 出发(如图1所示),过了30秒后,你离地面的高度h 为多少?过了45秒呢?过了t 秒呢?【设计意图】:高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解。
这个数学模型很好融合初中对三角函数的定交,也能放在直角坐标系中,很好地将锐角三角函数的定义向任意角三角函数过渡,揭示函数的本质。
第二部分——复习回顾锐角三角函数让学生自主思考如何解决问题:“过了30秒后,你离地面的高度为多少?”【分析】:作图如图2很容易知道:从起始位置OA 运动30秒后到达P 点位置,由题意知030=∠AOP ,作PH 垂直地面交OA 于M ,又知MH =o h ,所以本问题转变成求PH 再次转变为求PM 。
要求PM 就是回到初中所学的解直角三角形的问题即锐角的三角函数。
问题2:锐角α的正弦函数如何定义?【学生自主探究】:学生很容易得到R MP OP MP ||||||sin ==α⇒αsin ||R MP =⇒αsin ||0R h PH +=H图2⇒h αsin 0R h +=所以学生很自然得到“过了30秒后,过了45秒,你离地面的高度h 为多少?”00130sin R h h +=00245sin R h h += 【教师总结】:0t 在锐角的范围中,00sin t R h h +=第三部分——引入新课问题3:请问t 的范围呢?随着时间的推移,你离地面的高度h 为多少?能不能猜想00sin t R h h += 【分析】:若想做到这一点,就得把锐角的正弦推广到任意角的正弦。
今天我们就要来学习任意角的三函数角函数。
问题4:如图建立直角坐标系,设点),(P P y x P ,能你用直角坐标系中角的终边上的点的坐标来表示锐角α的正弦函数的定义吗?能否也定义其它函数(余弦、正切)? 【学生自主探究】:||||sin OP MP =αRy P = Rx OP OM P ==||||cos α,P P x y OM MP ==||||tan α 问题5:改变终边上的点的位置,这三个比值会改变吗?为什么?【分析】:先由学生回答问题,教师再引导学生选几个点,计算比值,获得具体认识,并由相似三角形的性质证明。
【设计意图】:让学生深刻理解体会三角函数值不会随着终边上的点的位置的改变而改变,只与角有关系。
通过摩天轮的演示,让学生感受到第一象限角的正弦可以跟锐角正弦的定义一样。
问题6:大家根据第一象限角的正弦函数的定义,能否也给出第二象限角的定义呢?【学生自主探究】:学生通过上面已知知识得到||||sin OP MP =αR y P = 学生定义好第二象限角后,让学生自己算出摩天轮座舱在第150秒时,离地面的高度h ?通过摩天轮知道:=+=00150sin R h h 00130sin R h h += 由此得到:21150sin 0=【设计意图】:通过这个,让学生检验||||sin OP MP =αR y P =在第二象限角是否正确?问题7:||||sin OP MP =α在第三象限角或第四象限能成立吗? 【设计意图】:让学生通过模型,检验定义是否正确,从中让学生自己发现正、负符号的偏差。
x(可以让学生取210=t ,从而,210sin 00R h h +=得到0210sin =21-,发现这与||||sin OP MP =α不相符,实际上是||||sin OP MP -=α) 【教师总结】:我们通过个模型知道如何在某些范围内如何计算自已此时离地面的高度,用数学模型00sin t R h h +=来表示,当摩天轮转动,角度的概念也不知不觉地推广到任意角,对于任意角的正弦不能只是依赖于角所在的直角三角形中的对边的长度比斜边长度了,我更应该用点P 的横坐标来代替||MP 或||MP -,那么这样就能够很好表示出正弦的函数任意角的定义。
第三部分——给出任意角三角函数的定义如图3,已知点),(y x P 为角α终边上的点,点P 到顶点O 的距离为R ,则Ry =αsin (R ∈α) Rx =αcos (R ∈α) x y =αtan (ππαk +≠2) 【分析】:让学生通过刚才的模型进一步体验任意角三角函数的定义要点:点、点的坐标、点到顶点的距离。
问题8:当摩天轮的半径R =1时,三角函数的定义会发生怎样的变化。
【学生自主探究】:y =αsin ,x =αcos ,xy =αtan 。
教师引导学生进行对比,学生通过对比发现取到原点的距离为1的点可以使表达式简化。
教师进一步给出单位圆的定义给出下列表格,让学生自己补充完整。
三角函数 定义一:1||=OP 定义二:R OP =|| 定义域αsin y Ry R ∈α αcos xR x R ∈α αtan x y x y ππαk +≠2 及时归纳总结有利学生对所学知识的巩固和掌握。
第三部分——例题讲解例1.(课本P14例2)已知角α终边经过点)4,3(0--P ,求角α的正弦、余弦和正切值。
【分析】:让学生现学现卖,得用上面的定义二就可以得到答案。
例2.(课本P14例1)求35π的正弦、余弦和正切值。
【学生自主探究】:让学生自己思考并独立完成。
然后与课本的解答相对比一下,发现本题的难点。
【教师讲解】:本题题意很简单,但是如何入手却是难点,关键是对本节课的三角函数定义的要点有没有领会清楚(任意角三角函数的定义要点:点、点的坐标、点到顶点的距离),因此本题的重点之处是如何利用单位圆找到这个点P ,如图4可以知道3π=∠POM ,又点P 在第四象限,得到)23,21(-P ,这样就可以很容易得到本题答案。
不妨让学生取4||==OP R ,能否也得到点P 的坐标,得到的三角函数值是否与单位圆的一样。
这样可以让学生更深刻体验三角函数的定义。
第四部分——巩固练习练习1.例2变式求67π的正弦、余弦和正切值。
练习2.问题9:通过观察摩天轮的旋转,三角函数的角的终边所在象限不同,请说说三角函数在各个象限内的三角函数值的符号?独立完成课本P15的“探究”。
【设计意图】:练习1、练习2的设计与例2、例3衔接,主要目的是帮助学生巩固三角函数的本质特征,引导学生从定义出发利用坐标平面内的点的坐标特征自主探究三角函数的有关问题的思想方法。
并在特殊情形中体会数形结合的思想方法。
第五部分——小结与作业学生自我总结作业:P23习题1.2A 组 1,2,3七、教学反思上述教学设计及具体教学实施过程我认为有以下几点意义:1. 教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。
背景创设是学生熟悉的摩天轮,认知过程符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。
2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。
3.通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。