2016届高考数学复习 第八章 第五节 空间垂直的判定与性质 理(全国通用)
- 格式:doc
- 大小:293.50 KB
- 文档页数:7
第5讲直线、平面垂直的判定及其性质一、选择题1.设l,m是两条不同的直线,α是一个平面,则下列命题正确的是( ).A.若l⊥m,m⊂α,则l⊥α B.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m答案 B2.已知α、β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m⊥β”的( ).A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件解析由面面垂直的判定定理,知m⊥β⇒α⊥β.答案 B3.已知P为△ABC所在平面外的一点,则点P在此三角形所在平面上的射影是△ABC垂心的充分必要条件是().A.P A=PB=PCB.P A⊥BC,PB⊥ACC.点P到△ABC三边所在直线的距离相等D.平面P AB、平面PBC、平面P AC与△ABC所在的平面所成的角相等解析条件A为外心的充分必要条件,条件C、D为内心的必要条件,故选B.答案 B4. 如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在().A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析由BC1⊥AC,又BA⊥AC,则AC⊥平面ABC1,因此平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H在直线AB上.答案 A5.设α,β为不重合的平面,m,n为不重合的直线,则下列命题正确的是().A.若α⊥β,α∩β=n,m⊥n,则m⊥αB.若m⊂α,n⊂β,m⊥n,则n⊥αC.若n⊥α,n⊥β,m⊥β,则m⊥αD.若m∥α,n∥β,m⊥n,则α⊥β解析与α、β两垂直相交平面的交线垂直的直线m,可与α平行或相交,故A错;对B,存在n∥α情况,故B错;对D,存在α∥β情况,故D错.由n⊥α,n⊥β,可知α∥β,又m⊥β,所以m⊥α,故C正确,选C.答案 C6.如图(a),在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个四面体,使B、C、D三点重合,重合后的点记为H,如图(b)所示,那么,在四面体A-EFH中必有().A.AH⊥△EFH所在平面B.AG⊥△EFH所在平面C.HF⊥△AEF所在平面D.HG⊥△AEF所在平面解析折成的四面体有AH⊥EH,AH⊥FH,∴AH⊥面HEF.答案 A二、填空题7. 如图,拿一张矩形的纸对折后略微展开,竖立在桌面上,折痕与桌面的位置关系是________.解析折痕与矩形在桌面内的两条相交直线垂直,因此折痕与桌面垂直.答案垂直8.已知直线l⊥平面α,直线m⊂平面β.给出下列命题:①α∥β⇒l⊥m;②α⊥β⇒l∥m;③l∥m⇒α⊥β;④l⊥m⇒α∥β.其中正确命题的序号是________.解析由面面平行的性质和线面垂直的定义可知①正确;因为l⊥α,α⊥β⇒l ∥β或l⊂β,所以l,m平行、相交、异面都有可能,故②错误;由线面垂直的定义和面面垂直的判定定理可知③正确;因为l⊥α,l⊥m⇒m⊂α或m∥α,又m⊂β,所以α,β可能平行或相交,故④错误.答案①③9.已知P为△ABC所在平面外一点,且PA、PB、PC两两垂直,则下列命题:①PA⊥BC;②PB⊥AC;③PC⊥AB;④AB⊥BC.其中正确的个数是________.解析如图所示.∵PA⊥PC、PA⊥PB,PC∩PB=P,∴PA⊥平面PBC.又∵BC⊂平面PBC,∴PA⊥BC.同理PB⊥AC、PC⊥AB.但AB不一定垂直于BC.答案3个10. 如图,P A⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E、F分别是点A在PB、PC上的正投影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正确结论的序号是________.解析由题意知P A⊥平面ABC,∴P A⊥BC.又AC⊥BC,P A∩AC=A,∴BC⊥平面P AC.∴BC⊥AF.∵AF⊥PC,BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,AF⊥BC.又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF.∴PB⊥EF.故①②③正确.答案①②③三、解答题11.已知斜三棱柱ABC-A1B1C1的底面是直角三角形,∠C=90°,点B1在底面上射影D落在BC上.(1)求证:AC⊥平面BB1C1C;(2)若AB 1⊥BC 1,且∠B 1BC =60°,求证:A 1C ∥平面AB 1D .解析 (1)∵B 1D ⊥平面ABC ,AC ⊂平面ABC ,∴B 1D ⊥AC .又∵BC ⊥AC ,B 1D ∩BC =D ,∴AC ⊥平面BB 1C 1C .(2) ⎭⎬⎫AB 1⊥BC 1AC ⊥BC 1AB 1与AC 相交≠⇒⎭⎬⎫BC 1⊥平面AB 1C B 1C ⊂平面AB 1C ⇒BC 1⊥B 1C , ∴四边形BB 1C 1C 为菱形,∵∠B 1BC =60°,B 1D ⊥BC 于D ,∴D 为BC 的中点.连接A 1B ,与AB 1交于点E ,在三角形A 1BC 中,DE ∥A 1C ,∴A 1C ∥平面AB 1D .12. 如图所示,在直四棱柱ABCD -A 1B 1C 1D 1中,DB=BC ,DB ⊥AC ,点M 是棱BB 1上一点.(1)求证:B 1D 1∥平面A 1BD ;(2)求证:MD ⊥AC ;(3)试确定点M 的位置,使得平面DMC 1⊥平面CC 1D 1D .(1)证明 由直四棱柱,得BB 1∥DD 1,又∵BB 1=DD 1,∴BB 1D 1D 是平行四边形,∴B 1D 1∥BD .而BD ⊂平面A 1BD ,B 1D 1⊄平面A 1BD ,∴B 1D 1∥平面A 1BD .(2)证明 ∵BB 1⊥平面ABCD ,AC ⊂平面ABCD ,∴BB 1⊥AC .又∵BD ⊥AC ,且BD ∩BB 1=B ,∴AC ⊥平面BB 1D .而MD ⊂平面BB 1D ,∴MD ⊥AC .(3)解 当点M 为棱BB 1的中点时,平面DMC 1⊥平面CC 1D 1D .取DC 的中点N ,D 1C 1的中点N 1,连接NN 1交DC 1于O ,连接OM ,如图所示.∵N 是DC 的中点,BD =BC ,∴BN ⊥DC .又∵DC 是平面ABCD 与平面DCC 1D 1的交线,而平面ABCD ⊥平面DCC 1D 1,∴BN ⊥平面DCC 1D 1.又可证得O 是NN 1的中点,∴BM ∥ON 且BM =ON ,即BMON 是平行四边形.∴BN ∥OM .∴OM ⊥平面CC 1D 1D .∵OM ⊂平面DMC 1,∴平面DMC 1⊥平面CC 1D 1D .13.如图是某直三棱柱(侧棱与底面垂直)被削去上底后的直观图与三视图中的侧视图、俯视图,在直观图中,M 是BD 的中点,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)若N 是BC 的中点,证明:AN ∥平面CME ;(2)证明:平面BDE ⊥平面BCD .(3)求三棱锥D -BCE 的体积.(1)证明 连接MN ,则MN ∥CD ,AE ∥CD ,又MN =AE =12CD ,∴四边形ANME 为平行四边形,∴AN ∥EM .∵AN ⊄平面CME ,EM ⊂平面CME ,∴AN ∥平面CME .(2)证明 ∵AC =AB ,N 是BC 的中点,AN ⊥BC ,又平面ABC ⊥平面BCD ,∴AN ⊥平面BCD .由(1),知AN ∥EM ,∴EM ⊥平面BCD .又EM ⊂平面BDE ,∴平面BDE ⊥平面BCD .(3)解 V D -BCE =V E -BCD =13S △BCD ·|EM |=13×22×42×2=83.14. 如图,在多面体ABC -A 1B 1C 1中,AA 1⊥平面ABC ,AA 1綉BB 1,AB =AC =AA 1=22BC ,B 1C 1綉12BC .(1)求证:A 1B 1⊥平面AA 1C ;(2)若D 是BC 的中点,求证:B 1D ∥平面A 1C 1C .(3)若BC =2,求几何体ABC -A 1B 1C 1的体积.(1)证明 ∵AB =AC =22BC ,AB 2+AC 2=BC 2,∴AB ⊥AC ,又AA 1⊥平面ABC ,AB ⊂平面ABC , ∴AA 1⊥AB ,AA 1∩AC =A ,∴AB ⊥平面AA 1C ,又∵AA 1綉BB 1,∴四边形ABB 1A 1为平行四边形. ∴A 1B 1∥AB ,∴A 1B 1⊥平面AA 1C .(2)证明 ∵B 1C 1綉12BC ,且D 是BC 的中点,∴CD 綉C 1B 1,∴四边形C 1CDB 1为平行四边形, ∴B 1D ∥C 1C ,B 1D ⊄平面A 1C 1C 且C 1C ⊂平面A 1C 1C , ∴B 1D ∥平面A 1C 1C .(3)解 连接AD ,DC 1,V =V 三棱柱A 1B 1C 1-ABD +V 四棱锥C -AA 1C 1D =12×1×1×2+13×(2×1)×1=526.。
空间几何垂直的判定定理公式在我们学习数学的漫漫征途中,空间几何垂直这一板块就像是一座神秘的城堡,而垂直的判定定理公式则是打开城堡大门的神奇钥匙。
咱们先来说说线面垂直的判定定理。
如果一条直线与一个平面内的两条相交直线都垂直,那么这条直线就与这个平面垂直。
这就好比在操场上,有一根旗杆直直地立在地面上。
假设地面是一个平面,而在地面上有两条相交的跑道线,这根旗杆和这两条跑道线都相互垂直,那这旗杆肯定就和整个地面垂直啦!再看看面面垂直的判定定理,如果一个平面经过另一个平面的一条垂线,那么这两个平面相互垂直。
这就好像是两块相邻的木板,一块木板垂直地靠在另一块木板上,那这两块木板所在的平面自然就是垂直的关系。
还记得我之前教过的一个学生小明,他一开始对这些判定定理那叫一个头疼,总是搞混。
有一次做作业,碰到一个证明线面垂直的题目,他想都不想就乱写一通,结果当然是错得一塌糊涂。
我就问他:“小明啊,你想想那个操场上的旗杆,是不是得和两条相交的跑道线都垂直才能立稳呀?”小明眨眨眼,好像突然开窍了。
从那以后,他每次遇到这类问题,都会在脑海里想象那个画面,做题的准确率也越来越高。
其实啊,这些判定定理并不是什么高深莫测的东西。
咱们只要多联系实际,多做几道题,就能把它们掌握得牢牢的。
比如说,家里的墙角,是不是就是三条线两两垂直,从而形成了三个相互垂直的面?还有,建筑工地上的塔吊,那长长的吊臂和塔身是不是也存在着垂直的关系?在解决空间几何垂直问题的时候,咱们要善于从生活中寻找例子,把抽象的定理具体化。
这样一来,不仅能让我们更好地理解和记忆这些定理,还能提高我们解决问题的能力。
对于线线垂直的判定,也有一些小窍门。
如果一条直线垂直于一个平面,那么这条直线垂直于平面内的任意一条直线。
这就好比你手里拿着一根垂直于桌面的铅笔,那这根铅笔是不是和桌面上的所有直线都垂直呀?还有一种情况,如果两条平行线中的一条垂直于一条直线,那么另一条也垂直于这条直线。
第五节空间垂直的判定与性质A组专项基础测试三年模拟精选一、选择题1.(2015·豫南五市模拟)m、n为两条不重合的直线,α、β为两个不重合的平面,则下列命题中正确的是( )①若m、n都平行于平面α,则m、n一定不是相交直线;②若m、n都垂直于平面α,则m、n一定是平行直线;③已知α、β互相垂直,m、n互相垂直,若m⊥α,则n⊥β;④m、n在平面α内的射影互相垂直,则m、n互相垂直.A.②B.②③C.①③D.②④解析①③④错误,②正确,故选A.答案 A2.(2015·四川雅安模拟)下列说法错误的是( )A.两两相交且不过同一点的三条直线必在同一平面内B.过直线外一点有且只有一个平面与已知直线垂直C.如果共点的三条直线两两垂直,那么它们中每两条直线确定的平面也两两垂直D.如果两条直线和一个平面所成的角相等,则这两条直线一定平行解析如果两条直线和一个平面所成的角相等,这两条直线可以平行、相交、异面.故选D.答案 D3.(2014·江南十校)在如图所示的四个正方体中,能得出AB⊥CD的是( )解析A中,∵CD⊥平面AMB,∴CD⊥AB;B中,AB与CD成60°角,C中AB与CD成45°角,D中,AB与CD夹角的正切值为 2.答案 A4.(2014·山东东营一模)如图,在斜三棱柱ABCA1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )A.直线AB上B.直线BC上C.直线AC上D.△ABC内部解析由BC1⊥AC,BA⊥AC,得AC⊥平面ABC1,所以平面ABC⊥平面ABC1,因此C1在底面ABC上的射影H必在直线AB上.答案 A二、填空题5.(2013·河南师大附中二模)如图,已知六棱锥PABCDEF的底面是正六边形,PA⊥平面ABC,PA=2AB,则下列结论中:①PB⊥AE;②平面ABC⊥平面PBC;③直线BC∥平面PAE;④∠PDA=45°.其中正确的有________(把所有正确的序号都填上).解析由PA⊥平面ABC,AE⊂平面ABC,得PA⊥AE,又由正六边形的性质得⊥,∩AB=A,得AE⊥平面PAB,又PB⊂平面PAB,∴AE⊥PB,①正确;又平面PAD⊥平面ABC,∴平面ABC⊥平面PBC不成立,②错;由正六边形的性质得BC∥AD,又AD⊂平面PAD,∴BC∥平面PAD,∴直线BC∥平面PAE也不成立,③错;④在Rt△PAD中,PA=AD=2AB,∴∠PDA=45°,∴④正确.答案①④一年创新演练6.已知m,n是两条不同的直线,α,β是两个不同的平面,命题p:若m∥n,m∥β,则n∥β,命题q:“m⊥β,n⊥β,n⊥α”是“m⊥α”成立的充分条件,则下列结论正确的是( )A.p∧(綈q)是真命题B.(綈p)∨q是真命题C.(綈p)∧q是假命题D.p∨q是假命题解析对于命题p,若m∥n,m∥β,则n可能在平面β内,故命题p为假命题;对于命题q,若m⊥β,n⊥β,n⊥α,则有m⊥α,故命题q是真命题,故綈p为真命题,綈q 为假命题,故(綈p)∨q是真命题,选B.答案 B7.如图所示,直线PA垂直于⊙O所在的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点,现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长,其中正确的是( )A.①②B.①②③C.①D.②③解析对于①,∵PA⊥平面ABC,∴PA⊥BC.∵AB为⊙O的直径,∴BC⊥AC,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.答案 BB组专项提升测试三年模拟精选一、选择题8.(2014·青岛模拟) 如图所示,b,c在平面α内,a∩c=B,b∩c=A,且a⊥b,a⊥c,b⊥c,若C∈a,D∈b,E在线段AB上(C,D,E均异于A,B),则△ACD是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形解析∵a⊥b,b⊥c,a∩c=B,∴b⊥面ABC,∴AD⊥AC,故△ACD为直角三角形.答案 B二、填空题9.(2015·绵阳模拟)在正三棱锥PABC中,D,E分别是AB,BC的中点,有下列三个论断:①AC⊥PB;②AC∥平面PDE;③AB⊥平面PDE.其中正确论断的序号为________.解析如图,∵PABC为正三棱锥,∴PB⊥AC.又∵DE∥AC,DE⊂平面PDE,AC⊄平面PDE,∴AC∥平面PDE.故①②正确.答案①②10.(2014·安徽省名校联考)给出命题:①在空间中,垂直于同一平面的两个平面平行;②设l,m是不同的直线,α是一个平面,若l⊥α,l∥m,则m⊥α;③已知α,β表示两个不同平面,m 为平面α内的一条直线,“α⊥β”是“m ⊥β”的充要条件;④在三棱锥S ABC 中,SA ⊥BC ,SB ⊥AC ,则S 在平面ABC 内的射影是△ABC 的垂心; ⑤a ,b 是两条异面直线,P 为空间一点,过P 总可以作一个平面与a ,b 之一垂直,与另一条平行.其中,正确的命题是________(只填序号).解析 ①错误,垂直于同一个平面的两个平面也可能相交;③错误,“α⊥β”是“m ⊥β”的必要不充分条件;⑤错误,只有当异面直线a ,b 垂直时才可以作出满足要求的平面;易知②④正确.答案 ②④三、解答题11.(2015·山东菏泽二模)如图,将边长为2的正六边形ABCDEF 沿对角线BE 翻折,连接AC 、FD ,形成如图所示的多面体,且AC = 6.(1)证明:平面ABEF ⊥平面BCDE ;(2)求三棱锥E -ABC 的体积.(1)证明 正六边形ABCDEF 中,连接AC 、BE ,交点为G ,易知AC ⊥BE ,且AG =CG =3,在多面体中,由AC =6,知AG 2+CG 2=AC 2,故AG ⊥GC ,又GC ∩BE =G ,GC ,BE ⊂平面BCDE ,故AG ⊥平面BCDE,又AG ⊂平面ABEF ,所以平面ABEF ⊥平面BCDE .(2)解 连接AE 、CE ,则AG 为三棱锥A -BCE 的高,GC 为△BCE 的高.在正六边形ABCDEF 中,BE =2AF =4,故S △BCE =12×4×3=23, 所以V E -ABC =V A -BCE =13×23×3=2.12.(2014·广东佛山模拟)如图,在多面体ABC A 1B 1C 1中,四边形ABB 1A 1是正方形,AC =AB =1,A 1C =A 1B ,B 1C 1∥BC ,B 1C 1=12BC .(1)求证:平面A 1AC ⊥平面ABC ;(2)求证:AB 1∥平面A 1C 1C .证明 (1)∵四边形ABB 1A 1为正方形,∴A 1A =AB =AC =1,A 1A ⊥AB .∴A 1B = 2.∵A 1C =A 1B ,∴A 1C =2,∴AC 2+AA 21=A 1C 2,∴∠A 1AC =90°,∴A 1A ⊥AC .∵AB ∩AC =A ,∴A 1A ⊥平面ABC .又∵A 1A ⊂平面A 1AC ,∴平面A 1AC ⊥平面ABC .(2)取BC 的中点E ,连接AE ,C 1E ,B 1E .∵B 1C 1∥BC ,B 1C 1=12BC ,∴B 1C 1∥EC ,B 1C 1=EC ,∴四边形CEB 1C 1为平行四边形.∴B 1E ∥C 1C .∵C 1C ⊂平面A 1C 1C ,B 1E ⊄平面A 1C 1C ,∴B 1E ∥平面A 1C 1C .∵B 1C 1∥BC ,B 1C 1=12BC ,∴B 1C 1∥BE ,B 1C 1=BE ,∴四边形BB 1C 1E 为平行四边形,∴B 1B ∥C 1E ,且B 1B =C 1E .又∵四边形ABB 1A 1是正方形,∴A 1A ∥C 1E ,且A 1A =C 1E ,∴四边形AEC 1A 1为平行四边形,∴AE ∥A 1C 1.∵A 1C 1⊂平面A 1C 1C ,AE ⊄平面A 1C 1C ,∴AE ∥平面A 1C 1C .∵AE ∩B 1E =E ,∴平面B 1AE ∥平面A 1C 1C .∵AB 1⊂平面B 1AE ,∴AB 1∥平面A 1C 1C .一年创新演练13.如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .证明 (1)设AC 与BD 交于点G ,因为EF ∥AG ,且EF =1,AG =12AC =1. 所以四边形AGEF 为平行四边形,所以AF ∥EG .因为EG ⊂平面BDE ,AF ⊄平面BDE ,所以AF ∥平面BDE .(2)如图,连接FG .因为EF ∥CG ,EF =CG =1,且CE =1,所以四边形CEFG 为菱形. 所以CF ⊥EG .因为四边形ABCD 为正方形,所以BD ⊥AC .又因为平面ACEF ⊥平面ABCD ,且平面ACEF ∩平面ABCD =AC ,BD ⊂平面ABCD ,所以BD ⊥平面ACEF .又CF ⊂平面ACEF ,所以CF ⊥BD .又BD ∩EG =G .所以CF ⊥平面BDE .14.如图,在直三棱柱ABC A1B 1C 1中,AB =BC =2AA 1,∠ABC =90°,D 是BC 的中点.(1)求证:A 1B ∥平面ADC 1;(2)试问线段A 1B 1上是否存在点E ,使AE 与DC 1成60°角?若存在,确定E 点位置;若不存在,说明理由.(1)证明 连接A 1C ,交AC 1于点O ,连接OD .由ABC -A 1B 1C 1是直角三棱柱,得四边形ACC 1A 1为矩形,O 为A 1C 的中点.又D 为BC 的中点,所以OD 为△A 1BC 的中位线, 所以A 1B ∥OD ,因为OD ⊂平面ADC 1,A 1B ⊄平面ADC 1,所以A 1B ∥平面ADC 1.(2)解 由ABC A 1B 1C 1是直三棱柱,且∠ABC =90°,得BA ,BC ,BB 1两两垂直.以BC ,BA ,BB 1所在直线分别为x ,y ,z 轴,建立如图所示的空间直角坐标系B xyz .设BA =2,则B (0,0,0),C (2,0,0),A (0,2,0),C 1(2,0,1),D (1,0,0), 假设存在满足条件的点E .因为点E 在线段A 1B 1上,A 1(0,2,1),B 1(0,0,1), 故可设E (0,λ,1),其中0≤λ≤2.所以AE →=(0,λ-2,1),DC 1→=(1,0,1).因为AE 与DC 1成60°角,所以|cos 〈AE →,DC 1→〉|=|AE →·DC 1→||AE →|·|DC 1→|=12.即|1(λ-2)2+1·2|=12,解得λ=1或λ=3(舍去). 所以当点E 为线段A 1B 1的中点时,AE 与DC 1成60°角.。