U-Pb同位素年代学(含作业)
- 格式:ppt
- 大小:647.50 KB
- 文档页数:78
U-Pb同位素测年方法及应用综述U-Pb同位素测年方法是一种重要的地球科学测年方法,它是基于铀和钍系放射性衰变序列的原理,利用锆石等矿物中的铀和钍元素与其衰变产物的比值来确定矿物的年龄。
本文将对U-Pb同位素测年方法及其应用进行综述。
铀和钍元素的衰变系列分别为:U-238到Pb-206,U-235到Pb-207和Th-232到Pb-208。
这些元素的衰变产物中的铅同位素是非常稳定的,因此可以用来测定矿物的年龄。
通常使用的是含有铀和钍的晶体矿物,如锆石、独居石和黑云母等。
在这些矿物中,铀和钍元素的比值通常很小,但是它们的衰变产物——铅元素的量却很大,因此可以测定矿物中的铀和钍元素浓度、铅元素浓度和铀、钍元素与其衰变产物铅元素的比例,以确定矿物的年龄。
1. 从样品中提取含有铀和钍元素的晶体矿物;2. 测定矿物中铀、钍和铅元素的浓度;4. 利用铀和钍元素与其衰变产物铅元素之间的关系,计算出矿物的年龄。
U-Pb同位素测年方法广泛应用于地球科学中的各个领域,包括地质学、古生物学、构造地质学、矿床学等。
地质学中,U-Pb同位素测年方法是研究岩石和矿物年龄的重要方法。
它可以用来确定岩浆岩、变质岩和沉积岩的形成年龄,以及变质、岩浆作用的时代和历史,从而揭示地球的演化。
此外,U-Pb同位素测年方法也可以用于研究地球化学过程,比如地球的演化和作用,岩石圈和地幔的构成等。
古生物学中,U-Pb同位素测年方法可以用于确定化石的年龄,特别是对于古生物学研究中的发掘和分类很有帮助。
古生物学家可以根据化石的年龄对不同时期的生物群落做出更准确的判断。
例如,古生物学家可以基于U-Pb同位素测年方法确定某一古生物时期的地质年龄,从而推断该时期的生物分布和生态环境。
构造地质学中,U-Pb同位素测年方法可以用于确定岩石的形成和变形的时间,为地壳和板块构造演化提供重要的证据。
它不仅可以确定岩石和构造事件的年代,还可以研究不同形态的岩石和构造作用的组合和关系。
同位素稀释-热电离质谱U-Pb 测年方法简介
同位素稀释-热电离质谱(简称ID-TIMS)法是对锆石、斜锆石、金红石、独居石、磷灰石和锡石等含铀矿物进行U-Pb同位素年龄测定的经典方法。
自二十世纪八十年代以来,天津地质矿产研究所同位素实验室李惠民研究员从澳大利亚国立大学引进这一方法,成功建立了单颗粒锆石U-Pb年龄的ID-TIMS分析方法。
近年来,这一方法陆续被应用于斜锆石、金红石、独居石、磷灰石和锡石等含铀矿物的U-Pb同位素年龄测定。
其方法要点是:用化学方法(通常用氢氟酸、盐酸和硝酸等化学试剂)将待测矿物在适当的温压条件下溶解。
溶解前通常需加入定量的205Pb-235U混合稀释剂或208Pb-235U混合稀释剂。
矿物溶解后,需用离子交换柱将U和Pb分别从样品溶液中分离出来,然后在TRITON热电离质谱上进行U和Pb同位素测定,经计算得到矿物的U-Pb同位素年龄。
利用ID-TIMS法进行含铀矿物U-Pb同位素年龄测定的优点是单次测定的精度较高,可测定的矿物年龄范围较广(从中新生代到太古代),而且不需要相应的标准矿物作校正,避免了寻找和制备标准矿物的困难。
因此,ID-TIMS法被称为矿物U-Pb同位素年龄测定的“标准方法”。
这一经典方法在精确测定关键地层时代和定标具有重要的科学意义,目前国内只有本实验室具备这样的实验条件,国内地质学家应用这一技术准确测定了我国许多重要地质体的U-Pb同位素年龄,为我国地学基础理论研究和区域地质调查工作提供了扎实的基础资料,为精确厘定变质作用、沉积作用、成岩成矿作用时代提供了较好的技术支持。
锆石U-Pb同位素定年的原理、方法及应用高少华;赵红格;鱼磊;刘钊;王海然【摘要】通过查阅大量中外文献,结合作者实验经过,对锆石的地球化学特征和内部结构,锆石U-Pb同位素定年的原理、定年方法的优缺点及地质应用等问题进行了讨论.结果表明,岩浆锆石与变质锆石在地化和内部结构方面具有不同的特征;定年的原理是利用U-Pb衰变方程得到206 pb/238U、207 pb/235U和207pb/206Pb 3个独立年龄;定年方法各有优缺点,应用时应根据从样品中分选出的锆石数量、粒度、内部结构、定年精度等因素,灵活选择;锆石U-Pb年龄常用于沉积盆地物源分析、岩体的年代约束及成矿年代学与韧性剪切带定年中,应用时要结合地质背景,对定年结果进行合理解释.【期刊名称】《江西科学》【年(卷),期】2013(031)003【总页数】7页(P363-368,408)【关键词】锆石;U-Pb同位素;原理;定年方法;地质应用【作者】高少华;赵红格;鱼磊;刘钊;王海然【作者单位】西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069;西北大学地质学系,陕西西安710069【正文语种】中文【中图分类】P597+.31.1 锆石的地球化学特征锆石的氧化物中ω(ZrO2)占67.2%、ω (SiO2)占32.8%,ω(HfO2)占0.5%~2.0%,P、Th、U、Y、REE以微量组分出现。
锆石的常量元素、微量元素在不同类型的岩石中具有一定规律[3,8],岩浆锆石具有晶体核部到边缘或环带内侧到外侧ZrO2/HfO2减小,而HfO2、UO2+ThO2增大;变质锆石与之相反[9]。
成因不同的锆石具有不同Th、U含量及Th/U比值[10]:岩浆锆石Th、U含量较高、Th/U比值较大(一般>0.4);变质锆石Th、U含量低、Th/U比值小(一般<0.1)[11,12]。
工作笔记——锆石定年工作笔记—锆石定年2014年4月4日,于中国地质科学院地质所,经与多接受等离子质谱实验室联系,老师安排我做两天LA-MC-ICP-MS锆石U- P b 定年实验。
一、工作内容整个锆石定年过程大致包括锆石分选、样品制靶、锆石U-P b 测年、分析测试数据。
我们的实验工作主要为锆石U-P b测年,包括装靶/换靶→定位→吹气→打点→调数据→吹气→打点。
仪器运行几乎是全自动控制,我们的主要任务就是选好要测试的锆石颗粒以及每颗锆石要测试的年龄位置。
此次实验样品采自塔里木盆地前寒武纪基底的碎屑岩、变质岩、岩浆岩,测试时使用锆石标样GJ1、SRM610/620和91500作为参考物质。
二、工作流程方法(一)锆石分选锆石采集之前要对采样区的岩石出露情况、风化、剥蚀程度,岩浆活动的期次、成分,变质作用的程度、期次以及岩石成因机制等进行比较全面的了解。
锆石的主要成分是硅酸锆,由于岩石酸性不同,不同类型岩石一般采集重量不同。
偏酸性的岩类一般含锆石相对多一些,而偏基性岩类含锆石则相对较少。
对于花岗岩、流纹岩等偏酸性岩石,采集3~4kg重的样品就行;对于闪长岩、安山岩等中性岩石,通常采集7~10kg;而对辉长岩、玄武岩等偏基性岩石,一般采集40~50kg。
对采集样品进行机械粉碎(以不破坏锆石晶体形态为标准)、淘洗、重力分选或磁选、双目镜下把锆石分选开来。
(二)样品制靶在双目显微镜下挑选锆石颗粒粘到双面胶上,加注环氧树脂,待固化后,将靶内锆石打磨至原尺寸一半大小。
样品靶抛光后在显微镜下拍摄锆石反射光和折射光照片,在等离子质谱实验室拍摄阴极发光(CL)照片。
(三)锆石U-P b测年实验根据锆石CL照片、反射光和折射光照片选择锆石测试位置,利用激光器对锆石进行剥蚀。
每个实验样靶一般粘有6~8个样品,每个样品可以根据情况测试不同数量的样点,而样点多时一般分成几组进行打点。
样点分组时,每组前后都有四个标样,即两个GJ1、一个SRM610/620和一个91500,其中SRM620不能出现在总体样点的首位位置且只出现一次。
07-10年地球化学真题及答案---名词解释1、克拉克值:元素在地壳中的丰度(平均含量)称为克拉克值。
2、地壳的丰度:指元素在宇宙体或较大的地质体中整体(母体)的含量。
3、类质同像:某些物质在一定的外界条件下结晶时,晶体中的部分构造位置随机的被晶体中的其他质点(原子、离子、配离子、分子)所占据,结果只引起晶格常数的微小改变,晶体的构造类型、化学键类型等保持不变,这一现象称为类质同像。
4、同质多象:同一化学成分的物质,在不同的外界条件(温度、压力、介质)下,可以结晶成两种或两种以上的不同构造的晶体,构成结晶形态和物理性质不同的矿物,这种现象称同质多像。
5、常量元素:即主量元素,其是一个相对概念,通常将自然体系中含量高于0.1%的元素称为常量元素。
它们与氧结合形成的氧化物(或氧的化合物),是构成三大类岩石的主体,因此又常被称为造岩元素。
6、微量元素:微量(minor)或痕迹(trace)元素是一个相对概念,通常将自然体系中含量低于0.1%的元素称为微量元素。
7、不相容元素:在岩浆结晶作用过程中,那些不容易以类质同象的形式进入固相(造岩矿物)的微量元素,称为相容元素。
总分配系数D i<1的元素称为不相容元素,在熔体中富集。
8、相容元素:在岩浆结晶作用过程中,那些容易以类质同象的形式进入固相(造岩矿物)的微量元素,称为相容元素。
总分配系数D i>1的元素称为相容元素,在熔体中贫化。
9、分配系数:在温度、压力一定条件下,微量元素i(溶质)在两相平衡分配时其浓度比为一常数(K D), K D称为分配系数。
10、同位素:核内质子数相同而中子数不同的同一类原子。
11、稳定同位素:原子核稳定,其本身不会自发进行放射性衰变或核裂变的同位素。
12、同位素分馏:同位素以不同比例分配于不同物质或物相的现象。
13、分馏系数:达到同位素交换平衡时,共存相间同位素相对丰度比值为一常数,称分馏系数。
14、SMOW:标准平均大洋水,是氢和氧同位素的世界统一标准。
U-Pb同位素测年方法及应用综述引言同位素测年是地球科学中非常重要的一种测年手段,能够精确地确定地质事件的发生时间。
U-Pb同位素测年方法是一种常用的测年方法之一,可以用于研究地质年代、研究岩石成因及地壳演化等方面。
本文将对U-Pb同位素测年方法进行综述,介绍其原理和应用,并对其在地质研究中的意义进行探讨。
一、U-Pb同位素测年方法的原理U-Pb同位素测年方法是利用铀-铅同位素体系进行测年的一种方法。
铀在自然界中存在两种稳定同位素:铀238和铀235,它们都会通过放射性衰变逐渐转变成铅同位素。
铀238的衰变系列包括13个同位素,最终转变成稳定的铅206,而铀235的衰变系列包括7个同位素,最终转变成稳定的铅207。
这两种衰变系列中的每一个同位素的衰变速率都是已知的,因此可以利用这一特性来测定岩石的年龄。
U-Pb同位素测年方法主要包括两种技术:同位素比值法和同位素成分法。
同位素比值法是通过测量同位素的比值来确定岩石的年龄,而同位素成分法则是通过测量样品中铀和铅的含量来确定年龄。
这两种方法都需要使用质谱仪等仪器进行测量,以获得高精度的测年结果。
二、U-Pb同位素测年方法的应用U-Pb同位素测年方法可以应用于各种不同类型的岩石,包括火成岩、变质岩和沉积岩。
通过对不同类型岩石中的铀-铅同位素进行测量,可以确定它们的形成时间,从而推断地质过程的发生时间和演化历史。
1. 火成岩的年代测定火成岩是地球表面最常见的岩石类型之一,它的形成与地球内部的岩浆运动密切相关。
利用U-Pb同位素测年方法可以精确地确定火成岩的形成时间,从而揭示地壳演化和板块构造的历史。
三、U-Pb同位素测年方法的意义和前景U-Pb同位素测年方法在地质学、矿产学和环境地质学等领域都具有重要的应用价值,可以帮助科学家们解决地球演化和地质资源开发等方面的重大科学问题。
随着测年技术的不断改进和仪器设备的不断更新,U-Pb同位素测年方法的精度和应用范围还将不断扩大,为地质研究提供更多的有力支持。
U-Pb同位素测年方法及应用综述作者:梁丽萍高苑苑来源:《青年生活》2019年第19期摘要:U-Pb同位素定年技术是应用最广的重要经典同位素定年技术之一,具有其他许多同位素测年技术无法相比的优点。
本文介绍了U-Pb同位素体系测年的基本原理和样品要求,并整理了U-Pb法同位素定年常用矿物用有锆石、斜锆石、金红石、磷灰石、锡石。
最后对U-Pb同位素测年方法进行了整体介绍。
关键词:U-Pb;测年一基本原理和前提1.1基本原理同位素地质年龄测定依据元素放射性衰变的原理。
放射性是指原子核自发地放射各种射线(粒子)的现象。
在磁场中研究放射性的性质时,发现射线是由α、β、γ等3种射线组成的。
α射线是高速运动的粒子流,粒子由2个质子和2个中子组成,实际上就是He原子核。
β射线是高速运动的电子流。
γ射线是波长很短的电磁波。
能自发地放射各种射线的同位素称为放射性同位素。
放射性同位素放射出α或β射线而发生核转变的过程称放射性衰变,衰变前的放射性同位素为母体,衰变过程中产生的新同位素叫子体。
若放射性母体经过一次衰变就转变为另一种稳定的子体,称为单衰变。
1.2前提由于各同位素体系的放射性同位素具有不同的衰变速率(或半衰期不同)和不同的地球化学特征,这使得每个同位素体系定年都具有独特优点和适用范围。
但是,作为同位素体系定年的基本前提和限制条件是相同的,即:(1)用来测定地质年齡的放射性同位素有适宜的半衰期T1。
与测定的对象年龄相比,不宜过大,也不宜过小,且半衰期和衰变常数能被准确测定。
(2)能够准确测定母体同位素组成和每个同位素的相对丰度。
无论是在自然界的矿物、岩石中,还是在人工合成物中,这个相对丰度应该是固定不变的,即是一个常数。
(3)母体同位素衰变的最终产物必须是稳定同位素,用当前的仪器设备和技术水平能准确测定出母子体含量及同位素组成。
(4)岩石及矿物自形成后处于封闭体系,没有母子体的加入或丢失。
(5)在岩石或矿物形成过程中和形成以后,同位素体系从开放体系过渡到封闭体系,所经历的时间相对于封闭体系所维持的时间是短暂的,从部分封闭到完全封闭所经历的时间可忽略不计。
U-Pb同位素测年方法及应用综述地球科学中的同位素测年方法是一种可以研究地球历史的重要手段,U-Pb同位素测年方法就是其中之一。
U-Pb同位素测年方法是通过测量铀和铅的同位素比值来确定岩石和矿物的形成年代。
铀是一种放射性元素,它的衰变产物铅具有稳定的同位素,而且它们在地球内部的存在量是相对稳定的。
铀和铅的同位素比值可以被用来确定岩石和矿物的形成年代。
1. 地质事件的定年U-Pb同位素测年方法在研究地质事件的定年上有着广泛的应用。
通过测定地球上的不同岩石和矿物的形成年代,可以推断地球历史上的各种地质事件的发生时间。
可以通过U-Pb同位素测年方法来确定地球上不同地层的形成年代,从而推断地球历史上各个地层的时代和时代顺序。
这对于研究地球历史的进程和地质事件的发展具有极其重要的意义。
2. 矿床的成因研究U-Pb同位素测年方法也可以用于研究矿床的成因。
矿床的成因研究是地球科学中的一个重要研究领域,它对于认识地球内部的构造和物质的分布有着重要的意义。
通过测定矿床中不同矿物和岩石的形成年代,可以推断矿床的形成时代和成因。
这对于矿产资源的勘探和开发具有重要的意义。
3. 地球历史的研究三、U-Pb同位素测年方法的发展现状近年来,随着科学技术的不断进步,U-Pb同位素测年方法在地球科学中的应用得到了不断的发展。
一方面,新的仪器和设备的不断推出使得U-Pb同位素测年方法的测定精度不断提高,可以对岩石和矿物的形成年代进行更加精确的测定。
新的理论和方法的不断提出也为U-Pb同位素测年方法的应用拓宽了新的领域。
U-Pb同位素测年方法的应用还在不断扩大。
除了在地质科学领域的广泛应用之外,它还在考古学、环境科学等领域引起了人们的兴趣。
在考古学中,可以通过U-Pb同位素测年方法来推断古代文明的起源和发展;在环境科学中,可以通过U-Pb同位素测年方法来研究地球环境的演化和变迁。
U-Pb同位素测年方法及应用综述1. 引言1.1 研究背景U-Pb同位素测年方法是一种广泛应用于地球科学领域的高精度地质年代学技术。
随着科学技术的不断进步和发展,U-Pb同位素测年方法在地质学、矿床学和考古学等领域中的应用越来越广泛。
其原理基于铀和铅同位素的自然放射性衰变过程,通过测定岩石中铀同位素和其衰变产物铅同位素的比值,从而确定岩石的年龄。
这种方法具有高精度、高分辨率和可广泛应用的优势,对于解决地质事件的时间序列和地质过程的演化具有重要意义。
在过去的几十年里,U-Pb同位素测年方法已经成为地球科学研究中不可或缺的重要工具,并且不断为我们揭示地球历史和演化的奥秘。
深入了解U-Pb同位素测年方法的原理和应用,对于推动地球科学研究取得更多重要突破具有重要意义。
1.2 研究意义U-Pb同位素测年方法在地质学、矿床学和考古学等领域中具有重要的应用价值。
通过对地质事件和矿床形成过程的准确年代测定,可以帮助科研人员更好地理解地质历史和资源分布规律。
在考古学领域中,U-Pb同位素测年方法可以提供关于古代文明和人类活动时间线的重要信息,帮助揭示人类社会的演化过程。
深入研究U-Pb同位素测年方法的原理、技术和应用,不仅有助于推动地质学、矿床学和考古学的科学研究,也对人类对于地球历史和自然资源的认识提供了重要支撑。
建立准确的年代框架,对于科学家们推进各领域研究、探索未知领域具有重要意义。
探讨U-Pb同位素测年方法的研究意义,有助于全面认识该方法在不同领域中的应用潜力和价值。
2. 正文2.1 U-Pb同位素测年方法原理U-Pb同位素测年方法是一种常用的放射性同位素测年方法,主要用于确定岩石、矿物或地质事件的年代。
它基于铀(U)238同位素的放射性衰变产物铅(Pb)206的比例来确定样品的年代。
原理上,U-Pb 同位素测年方法利用了铅同位素存在于天然铀矿石中的稳定性质,使其在地质时间尺度内成为一种可靠的地质时钟。
具体来说,铀238会经历一系列的衰变,最终稳定转化为铅206。
锆石U—Pb同位素定年的原理、方法及应用研究本文在研究中主要围绕锆石开展,在分析其化学特征的基础上,对U-Pb同位素定年的主要原理进行判断,提出定年的实际方法,并分析U-Pb同位素定年在韧性剪切带定年以及分析沉积盆地物源等方面的应用。
标签:U-Pb定年;锆石;方法;运用0 前言作为月岩、变质岩、岩浆岩以及沉积岩中的重要矿物,锆石在成分上涉及到较多微量元素、放射性元素。
而且该矿物本身具有较为稳定的物化性质,分布极为广泛,加上其自身封闭温度较高,不仅是矿物定年中的最佳选择,也能被应用于地质学中。
因此,本文对U-Pb同位素定年相关研究,具有十分重要的意义。
1 锆石化学特征及其U-Pb同位素定年原理关于锆石,其在不同类型岩石内所体现的微量元素、常量元素等较为不同,且锆石成因不同,其中的U、Th等含量也存在一定差异,且两种含量在比值上变化较为明显,如对于变质锆石U与Th含量的都较少,比值可保持在0.1以内,而岩浆锆石,U与Th含量较高,比值超出0.4。
需注意由于较多岩浆中涵盖的组分较为特殊,所以在锆石成因判断中并不能完全依靠Th/U比值。
假若从稀土元素看,锆石中有较多花岗岩、镁铁质岩等存在,具有较高的丰度。
而对于U-Pb 同位素进行定年,其实际原理主要表现在对母体进行测定的基础上,将其中因衰变而带来的子体同位素含量变化进行测定,结合放射性衰变定律,使同位素自形成起的年龄得以推算出来。
在测定过程中,由于有U、Th都存在于锆石中,而且贫普通Pb,本身具有较为明显的抗后期影响优势,此时便需对Th、U衰变为Pb的情况分析,完成整个定年过程。
需注意的是对于1000-1200Ma的年轻锆石,测试过程中可直接引入206Pb/238U,原因在于年轻锆石不存在较多放射成因铅,而在放射成因铅较多的锆石中,可采取的定年方式为207Pb/206Pb[1]。
2 U-Pb同位素定年的主要方法分析从现行定年中采用的方法看,常见的主要以LA-ICP-MS、SIM以及ID-TIMS 等方法,这些方法用于U-Pb同位素定年中有各自的优势与弊端。
u-pb定年标准一、引言U-Pb定年是地质学中常用的同位素定年方法之一,通过测定铀(U)和铅(Pb)同位素组成来推断样品形成年代。
本标准规定了U-Pb定年过程中所涉及的术语和定义、仪器设备、样品准备、实验步骤、数据记录和处理等相关要求。
二、术语和定义1.铀铅同位素铀(U)和铅(Pb)是地球化学元素周期表中的两个元素,它们在自然界中存在多种同位素变体。
2.U-Pb定年通过测定样品中铀(U)和铅(Pb)的同位素组成,推断样品形成年代的方法。
三、仪器设备1.放射性核素分析仪用于测定样品中的放射性核素含量,包括铀(U)和铅(Pb)。
2.电感耦合等离子体质谱仪(ICP-MS)用于分析样品中的元素成分,以及铀(U)和铅(Pb)的同位素组成。
3.高温炉用于灼烧样品,去除其中的有机物和易挥发元素。
4.天平精确到0.0001g,用于称量样品。
5.烘箱用于干燥样品和容器。
四、样品准备1.样品来源:本标准适用于地质学、地球化学等领域中需要进行U-Pb定年的样品,如岩石、矿物、化石等。
2.样品处理:样品需经过破碎、磨细、分样等处理,以确保测定结果的准确性。
3.容器选择:用于盛放样品的容器应选择不易溶于酸、不易吸附放射性元素的材质。
4.标签:样品标签应包括样品名称、来源、取样地点、取样时间等信息。
五、实验步骤1.灼烧:将样品置于高温炉中灼烧,去除其中的有机物和易挥发元素。
2.溶解:将灼烧后的样品置于溶解罐中,加入适量酸溶液,进行酸溶。
3.进样:将酸溶后的溶液进样至放射性核素分析仪中进行分析。
4.数据记录:记录铀(U)和铅(Pb)的放射性核素含量数据。
5.数据处理:根据实验数据,采用相关软件进行数据处理,推断样品形成年代。
六、数据记录和处理1.数据记录:详细记录实验过程中的各项数据,包括铀(U)和铅(Pb)的放射性核素含量、灼烧时间、溶解温度和酸溶液浓度等。
2.数据处理:根据实验数据,采用相关软件进行数据处理,计算出铀(U)和铅(Pb)的同位素组成,并根据同位素地质年龄计算公式推断样品形成年代。