22
2.4.7全生命周期优化设计
进行全生命周期优化是一个需要多学科 知识的融合的复杂决策过程。数值分析、 工程预测、虚拟仿真以及试样和模型试 验等是优化设计常用的方法。 模块化、标准化、集成化等使得产品的 全局优化可以变为粗线条的子结构化。
23
2.4.8全生命周期设计的前沿 问题
(1) 知识库、数据库和知识共享 面向全生命周期的设计必须建立在现代 最先进的知识平台之上。建立面向全生 命周期各阶段设计的知识库、数据库并 通过各种方式共享知识是实现全生命周 期设计的重要基础。同时, 如何通过网 络实现知识共享是现代机械设计面临的 紧迫问题。
20
2)安全保障设计
在设备的设计安全使用寿命期间, 设备 的运行安全是由一定的可靠性要求来描 述的。一方面一定的可靠性下仍然存在 破坏的可能, 另一方面可靠性的提高是 以更保守的设计安全使用寿命为代价的。
21
3)事故- 安全设计
在设备的设计安全使用寿命期间, 设备 的运行安全是由一定的可靠性要求来描 述的。一方面一定的可靠性下仍然存在 破坏的可能, 另一方面可靠性的提高是 以更保守的设计安全使用寿命为代价的
24
(2) 计算模拟和仿真技术 对初始设计进行制造和装配工艺的仿真、 动力学仿真、运行过程仿真等是发现设 计问题, 改进设计方案从而实现设计优 的最经济省时的有效途径。采用计算机 虚拟试验替代实物试验是机械设计发展 的必然向。对全生命周期机械行为和社 会环境影响进行计算模拟和仿真能力实 际上是实现全生命周期设计的技术保障。
19
2.4.6面向全生命周期安全的设计
1)安全可监测性设计 机械结构的疲劳断裂破坏是机械失效最 主要的方式。疲劳破坏的危险性表现在 达到疲劳寿命时无明显先兆(显著变形 或显著的动力学性能变化) 结构就会突 然断裂解体。 目前工程界对一些重要设备采用对运行 全过程进行实时监测并对信号进行各种 分析处理以便诊断出早期故障。