1物体做匀速圆周运动的条件是
- 格式:doc
- 大小:98.50 KB
- 文档页数:5
物体做匀速圆周运动的条件
圆周运动是指物体在一定的轨道上绕着固定的中心点做圆环运动,如果物体沿运动轨道每段路程所耗费的时间相等,那么这种运动就是匀速圆周运动。
它的运动速度是固定的,不会受任何外力的影响而改变,任何时刻物体的运动路径都是椭圆轨道,如果是沿着一个定点旋转,就是圆形轨道。
二、做匀速圆周运动的条件
(1)物体处于飞行时,一般不受外力的作用,如重力加速度、空气阻力等;
(2)物体处于运动时,其运动轨道必须与重力加速度垂直;
(3)物体的质量必须与物体的半径和速度成比例,以保证它的运动轨迹是一个稳定的椭圆轨道;
(4)运动的物体的初始速度必须是匀速的;
(5)物体的质量在运动过程中不变,也不考虑物理碰撞
三、匀速圆周运动的特点
(1)匀速圆周运动是一种椭圆形的轨迹,当物体沿着一定路程时,物体的位移距离与它所耗费的时间是由一定规律所控制,而不受外在条件的影响;
(2)物体在每段路程所消耗的时间是相等的,只要物体的运动轨迹是椭圆,就会出现匀速圆周运动;
(3)物体的速度是一个定值,不会变化,即使物体在某段路程速度发生变化,但速度的绝对值是一致的。
四、匀速圆周运动的应用
匀速圆周运动在物理学、力学和天文学中有着重要的地位,它主要用于研究和精确测量有关围绕圆椭圆轨道运行的物体的轨道参数,不仅可以用于研究行星、卫星和其他宇宙物体,还可以用于研究航行运动、空间航行或人造卫星等宇宙运动。
五、结论
匀速圆周运动是一种特殊的运动模式,它的运行轨迹是一条稳定的椭圆轨道,它的运行速度是固定的,而且不受任何外力的影响而发生变化,因此,它有着非常重要的应用,在研究行星、卫星、宇宙物体和宇宙运动等方面都有着重要的作用。
一、匀速圆周运动的基本概念:1、匀速圆周运动的定义质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动叫做匀速圆周运动。
2、描述匀速圆周运动快慢的物理量(1)线速度v①物理意义:描述质点沿圆周运动的快慢。
②定义:质点做圆周运动通过的弧长s和所用时间t的比值叫做线速度。
③大小:,单位:④方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向。
由于质点做匀速圆周运动时的速度方向不断发生变化,所以匀速圆周运动是一种变速运动。
(2)角速度①物理意义:描述质点转过圆心角的快慢。
②定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间的比值,就是质点运动的角速度。
③大小:单位:。
④匀速圆周运动是角速度不变的圆周运动。
(3)周期T和频率f①物理意义:周期和频率都是描述物体做圆周运动快慢的物理量。
②定义:做圆周运动的物体运动一周所用的时间叫做周期。
用T表示,单位:s。
做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数叫做频率。
用f表示,单位:Hz。
在国际单位制中是,在一些实际问题中常用的是每分钟多少转,用n表示,转速的单位为转每秒,即。
3、线速度、角速度、周期之间的关系(1)线速度和角速度间的关系如果物体沿半径为r的圆周做匀速圆周运动,在时间t 内通过的弧长是s,半径转过的角度是,由数学知识知,于是有,即。
上式表明:①当半径相同时,线速度大的角速度也大,角速度大的线速度也大,且成正比。
如图(a)所示。
②当角速度相同时,半径大的线速度大,且成正比。
如图(b)所示。
③当线速度相同时,半径大的角速度小,半径小的角速度大,且成反比。
如图(c)、(d)所示。
(2)线速度与周期的关系由于做匀速圆周运动的物体,在一个周期内通过的弧长为,所以有。
上式表明,只有当半径相同时,周期小的线速度大;当半径不同时,周期小的线速度不一定大,所以周期与线速度描述的快慢是不一样的。
(3)角速度与周期的关系由于做匀速圆周运动的物体,在一个周期内半径转过的角度为,则有。
匀速圆周运动规律一、匀速圆周运动的基本概念1. 定义- 物体沿着圆周运动,并且线速度大小处处相等的运动叫做匀速圆周运动。
需要注意的是,这里的“匀速”指的是速率不变,而速度方向是时刻改变的,所以匀速圆周运动是变速运动。
2. 相关物理量- 线速度(v)- 定义:线速度是矢量,它是描述质点沿圆周运动快慢的物理量。
大小等于质点通过的弧长Δ s与所用时间Δ t的比值,即v = (Δ s)/(Δ t)。
- 方向:在圆周上某点的线速度方向为该点的切线方向。
- 角速度(ω)- 定义:角速度也是矢量,它描述的是物体绕圆心转动的快慢。
大小等于连接物体和圆心的半径转过的角度Δθ(用弧度制表示)与所用时间Δ t的比值,即ω=(Δθ)/(Δ t)。
- 单位:弧度/秒(rad/s)。
- 周期(T)- 定义:做匀速圆周运动的物体,运动一周所用的时间叫做周期。
- 关系:T=(2π r)/(v)(r为圆周运动的半径),同时T = (2π)/(ω)。
- 频率(f)- 定义:单位时间内完成圆周运动的圈数。
- 关系:f=(1)/(T),单位是赫兹(Hz)。
- 转速(n)- 定义:转速是指做匀速圆周运动的物体单位时间内转过的圈数。
在数值上n = f(当n的单位为转/秒时)。
- 线速度与角速度的关系:v = rω(r为圆周运动的半径)。
二、匀速圆周运动的向心力1. 向心力的概念- 向心力是按效果命名的力,它的作用是产生向心加速度,改变物体的速度方向,使物体做圆周运动。
- 向心力的方向始终指向圆心。
2. 向心力的大小- 根据牛顿第二定律F = ma,结合向心加速度a=frac{v^2}{r}=rω^2,可得向心力的大小F = mfrac{v^2}{r}=mrω^2(m为做圆周运动物体的质量,r为圆周运动的半径)。
3. 向心力的来源- 向心力可以由一个力提供,也可以由几个力的合力提供,还可以由某个力的分力提供。
例如,在圆锥摆中,小球做匀速圆周运动的向心力是由重力和绳子拉力的合力提供的;在汽车过拱形桥顶端时,向心力是由重力和桥面对汽车的支持力的合力提供的。
做匀速圆周运动的条件(范文5篇)以下是网友分享的关于做匀速圆周运动的条件的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
《做匀速圆周运动的条件范文一》匀速圆周运动的条件引入:物体做曲线运动的条件:切向力改变速度大小,法向力改变速度方向。
条件:(1)初速度v0;(2)F v 合1、向心力(1)向心力的定义:在圆周运动中,物体受到的合力在沿着半径方向上的分量叫做向心力。
(2)向心力的作用:是改变线速度的方向,产生向心加速度的原因。
(3)向心力的大小:向心力的大小等于物体的质量和向心加速度的乘积;确定的物体在半径一定的情况下,向心力的大小正比于线速度的平方,也正比于角速度的平方;线速度一定时,向心力反比于圆周运动的半径;角速度一定时,向心力正比于圆周运动的半径。
如果是匀速圆周运动则有:。
(4)向心力的方向:与速度方向垂直,沿半径指向圆心。
(5)关于向心力的说明:①向心力是按效果命名的,它不是某种性质的力;②匀速圆周运动中的向心力始终垂直于物体运动的速度方向,所以它只能改变物体的速度方向,不能改变速度的大小;③无论是匀速圆周运动还是变速圆周运动,向心力总是变力,但是在匀速圆周运动中向心力的大小是不变的,仅方向不断变化。
2、向心力的来源(1)向心力不是一种特殊的力。
重力(万有引力)、弹力、摩擦力等每一种力以及这些力的合力或分力都可以作为向心力。
(2)匀速圆周运动的实例及对应的向心力的来源(如表所示):知识点三:匀速圆周运动与变速圆周运动的区别1、从向心力看匀速圆周运动和变速圆周运动(1)匀速圆周运动的向心力大小不变,由物体所受到的合外力完全提供,换言之也就是说物体受到的合外力完全充当向心力的角色。
例如月球围绕地球做匀速圆周运动,它受到的地球对它的引力就是合外力,这个合外力正好沿着半径指向地心,完全用来提供月球围绕地球做匀速圆周运动的向心力。
(2)在变速圆周运动中,向心力只是物体受到的合外力的沿着半径方向的一个分量。
做匀速圆周运动的条件
做匀速圆周运动的条件有以下两个:1、具有初速度(初速度不为零),2,始终受到大小不变,方向垂直于速度方向,且在速度方向同一侧的合外力。
匀速圆周运动的定义
质点沿圆周运动,如果在任意相等的时间里通过的圆弧长度都相等,这种运动就叫做“匀速圆周运动”,也被称为“匀速率圆周运动”。
因为物体作圆周运动时速率不变,但速度方向随时都会发生变化。
所以匀速圆周运动的线速度是每时每刻都在发生变化的。
计算公式
1、v(线速度)=ΔS/Δt=2πr/T=ωr=2πrn(S代表弧长,t代表时间,r代表半径,n代表转速)
2、ω(角速度)=Δθ/Δt=2π/T=2πn(θ表示角度或者弧度)
3、T(周期)=2πr/v=2π/ω=1/n
4、n(转速)=1/T=v/2πr=ω/2π
5、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2n^2
6、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2
7、vmin=√gr(过最高点时的条件)
8、、fmin(过最高点时的对杆的压力)=mg-√gr(有杆支撑)
9、fmax(过最低点时的对杆的拉力)=mg+√gr(有杆)。
匀速圆周运动概念匀速圆周运动是物理学中一个非常重要的概念,它是描述物体在一个固定半径的圆周路径上运动的方式。
本文将从匀速圆周运动的定义、特征、公式推导、应用等方面进行探讨。
一、匀速圆周运动的定义匀速圆周运动,指物体在一个半径不变的圆周路径上做匀速直线运动的运动方式。
在匀速圆周运动中,物体的速度大小不变,但由于其方向不断改变,速度向量的方向也不断变化。
因此,匀速圆周运动的运动轨迹是一个圆周。
二、匀速圆周运动的特征1.速度大小不变:在匀速圆周运动中,物体的速度大小不变,即物体每单位时间所通过的弧长相等。
2.速度方向不断变化:由于物体在圆周路径上运动,其速度方向不断改变,速度向量的方向也相应地发生变化。
3.加速度方向始终指向圆心:在匀速圆周运动中,物体的加速度方向始终指向圆心,而其大小则与物体的速度大小和圆的半径有关。
三、匀速圆周运动的公式推导在匀速圆周运动中,物体在单位时间内通过的弧长等于圆周的长度,即:s = 2πr其中,s表示物体在单位时间内通过的弧长,r表示圆的半径,π表示圆周率。
由于物体在圆周路径上运动,其速度方向不断改变,因此需要引入向心加速度的概念。
向心加速度的大小为:a = v/r其中,a表示向心加速度,v表示物体的速度大小,r表示圆的半径。
根据牛顿第二定律,物体所受的合力等于其质量乘以加速度,即:F = ma将向心加速度代入上式,得到:F = mv/r根据牛顿万有引力定律,两个物体之间的引力大小与它们的质量和距离的平方成反比,即:F = GmM/r其中,G表示万有引力常数,m和M分别表示两个物体的质量,r表示它们之间的距离。
将上式中的F代入前面的式子,得到:mv/r = GmM/r化简后得到:v = GM/r将圆周的长度代入上式,得到:v = 2πr/T其中,T表示物体运动一周所需的时间。
将上式中的v代入前面的式子,得到:4πr/T = GM/r化简后得到:T = 4πr/GM这就是匀速圆周运动的公式。
圆周运动的规律及其应用,圆周运动的描述(考纲要求Ⅰ)1.匀速圆周运动(1)定义:做圆周运动的物体,若在相等的时间内通过的圆弧长相等,就是匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变加速运动.(3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.2.描述圆周运动的物理量描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:判断正误,正确的划“√”,错误的划“×”.(1)匀速圆周运动是速度不变的曲线运动.()(2)做匀速圆周运动的物体向心加速度与半径成反比.()(3)做匀速圆周运动的物体角速度与转速成正比.()(4)比较物体沿圆周运动的快慢看线速度,比较物体绕圆心转动的快慢看周期、角速度.( ),匀速圆周运动的向心力 (考纲要求 Ⅱ)1.作用效果:向心力产生向心加速度,只改变速度的方向,不改变速度的大小.2.大小:F =m v 2r =mω2r =m 4π2T 2r =mωv =4π2mf 2r .3.方向:始终沿半径方向指向圆心,时刻在改变,即向心力是一个变力. 4.来源向心力可以由一个力提供,也可以由几个力的合力提供,还可以由一个力的分力提供.,离心现象1.定义:做圆周运动的物体,在所受合外力突然消失或不足以提供圆周运动所需向心力的情况下,就做逐渐远离圆心的运动.2.本质:做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞出去的趋势.图4-3-13.受力特点当F =mrω2时,物体做匀速圆周运动; 当F =0时,物体沿切线方向飞出;当F <mrω2时,物体逐渐远离圆心,F 为实际提供的向心力,如图4-3-1所示.判断正误,正确的划“√”,错误的划“×”.(1)随圆盘一起匀速转动的物块受重力、支持力和向心力的作用.( )(2)做圆周运动的物体所受合外力突然消失,物体将沿圆周切线方向做匀速直线运动.( )(3)摩托车转弯时,如果超过一定速度,摩托车将发生滑动,这是因为摩托车受到沿半径方向向外的离心力作用.( )基 础 自 测1.(多选)下列关于匀速圆周运动的说法中,正确的是( ). A .线速度不变 B .角速度不变C .加速度为零D .周期不变2.(多选)质点做匀速圆周运动,则( ). A .在任何相等的时间里,质点的位移都相同 B .在任何相等的时间里,质点通过的路程都相等C .在任何相等的时间里,连接质点和圆心的半径转过的角度都相等D .在任何相等的时间里,质点运动的平均速度都相同 3.(单选)下列关于离心现象的说法正确的是( ). A .当物体所受的离心力大于向心力时产生离心现象B .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做背离圆心的圆周运动C .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将沿切线做直线运动D .做匀速圆周运动的物体,当它所受的一切力都突然消失后,物体将做曲线运动 4.(单选)汽车在公路上行驶一般不打滑,轮子转一周,汽车向前行驶的距离等于车轮的周长,某国产轿车的车轮半径约为30 cm ,当该型号轿车在高速公路上行驶时,驾驶员面前的速率计的指针指在“120 km/h ”上,可估算出该车车轮的转速约为( ). A .1 000 r/s B .1 000 r/minC .1 000 r/h D .2 000 r/s.5.(单选)甲、乙两质点均做匀速圆周运动,甲的质量与运动半径分别是乙的一半,当甲转动80转时,乙正好转过60转,则甲与乙所受的向心力大小之比为( ). A .1∶4 B .4∶1C .4∶9D .9∶4热点一 描述圆周运动的各物理量间的关系 1.圆周运动各物理量间的关系 2.对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 3.对a =v 2r =ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比.【典例1】(多选)如图4-3-2所示为皮带传动装置,右轮的半径为r ,a 是它边缘上的一点,左侧是一轮轴,大轮的半径是4r ,小轮的半径是2r ,b 点在小轮上,到小轮中心的距离为r ,c 点和d 点分别位于小轮和大轮的边缘上,若在传动过程中皮带不打滑,则( ). A .a 点和b 点的线速度大小相等 B .a 点和b 点的角速度大小相等 C .a 点和c 点的线速度大小相等 D .a 点和d 点的向心加速度大小相等 反思总结常见的三种传动方式及特点1.皮带传动:如图4-3-3甲、乙所示,皮带与两轮之间无相对滑动时,两轮边缘线速度大小相等,即v A =v B .图4-3-32.摩擦传动:如图4-3-4甲所示,两轮边缘接触,接触点无打滑现象时,两轮边缘线速度大小相等,即v A =v B .图4-3-43.同轴传动:如图4-3-4乙所示,两轮固定在一起绕同一转轴转动,两轮转动的角速度大小相等,即ωA =ωB .【跟踪短训】1.(2013·桂林模拟)(单选)如图4-3-5所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( ).A .线速度大小之比为3∶2∶2B .角速度之比为3∶3∶2C .转速之比为2∶3∶2图4-3-2图4-3-5D .向心加速度大小之比为9∶6∶4热点二 匀速圆周运动中的动力学问题)1.向心力的来源向心力是按力的作用效果命名的,可以是重力、弹力、摩擦力等各种力,也可以是几个力的合力或某个力的分力,因此在受力分析中要避免再另外添加一个向心力. 2.向心力的确定(1)确定圆周运动的轨道所在的平面,确定圆心的位置.(2)分析物体的受力情况,找出所有的力沿半径方向指向圆心的合力就是向心力. 【典例2】(2013·重庆卷,8)如图4-3-6所示,半径为R 的半球形陶罐,固定在可以绕竖直轴旋转的水平转台上,转台转轴与过陶罐球心O 的对称轴OO ′重合.转台以一定角速度ω匀速旋转,一质量为m 的小物块落入陶罐内,经过一段时间后,小物块随陶罐一起转动且相对罐壁静止,它和O 点的连线与OO ′之间的夹角θ为60°,重力加速度大小为g . (1)若ω=ω0,小物块受到的摩擦力恰好为零,求ω0;(2)若ω=(1±k )ω0,且0<k ≪1,求小物块受到的摩擦力大小和方向.【跟踪短训】2.(多选)铁路转弯处的弯道半径r 是根据地形决定的.弯道处要求外轨比内轨高,其内、外轨高度差h 的设计不仅与r 有关.还与火车在弯道上的行驶速度v 有关.下列说法正确的是( ).A .速率v 一定时,r 越小,要求h 越大B .速率v 一定时,r 越大,要求h 越大C .半径r 一定时,v 越小,要求h 越大D .半径r 一定时,v 越大,要求h 越大物理建模 6.竖直平面内圆周运动的“轻绳、轻杆”模型1.模型条件(1)物体在竖直平面内做变速圆周运动.(2)“轻绳模型”在轨道最高点无支撑,“轻杆模型”在轨道最高点有支撑. 2.模型特点图4-3-6该类问题常有临界问题,并伴有“最大”“最小”“刚好”等词语,现对两种模型分析比较如下:【典例3】(单选)如图4-3-7所示,2012年8月7日伦敦奥运会体操男子单杠决赛,荷兰选手宗德兰德荣获冠军.若他的质量为60 kg ,做“双臂大回环”,用双手抓住单杠,伸展身体,以单杠为轴做圆周运动.此过程中,运动员到达最低点时手臂受的总拉力至少约为(忽略空气阻力,g =10 m/s 2)( ). A .600 N B .2 400 N C .3 000 N D .3 600 N图4-3-7即学即练(单选)如图4-3-8所示,两段长均为L 的轻质线共同系住一个质量为m 的小球,另一端分别固定在等高的A 、B 两点,A 、B 两点间距也为L ,今使小球在竖直平面内做圆周运动,当小球到达最高点时速率为v ,两段线中张力恰好均为零,若小球到达最高点时速率为2v ,则此时每段线中张力大小为( ). A.3mg B .23mg C .3mg D .4mgA 对点训练——练熟基础知识题组一 匀速圆周运动的运动学问题1.(多选)在“天宫一号”的太空授课中,航天员王亚平做了一个有趣实验.在T 形支架上,用细绳拴着一颗明黄色的小钢球.设小球质量为m ,细绳长度为L .王亚平用手指沿切线方向轻推小球,小球在拉力作用下做匀速圆周运动.测得小球运动的周期为T ,由此可知A .小球运动的角速度ω=T /(2π) B .小球运动的线速度v =2πL /T C .小球运动的加速度a =2π2L /T 2 D .细绳中的拉力为F =4m π2L /T 22.(单选)2013年6月20日上午10时,中国载人航天史上的首堂太空授课开讲.航天员做了一个有趣实验:T 形支架上,用细绳拴着一颗明黄色的小钢球.航天员王亚平用手指沿切线方向轻推小球,可以看到小球在拉力作用下在某一平面内做圆周运动.从电视画面上可估算出细绳长度大约为32 cm ,小球2 s 转动一圈.由此可知王亚平使小球沿垂直细绳方向获得的速度为 ( ). A .0.1 m/s B .0.5 m/s C .1 m/sD .2 m/s题组二 匀速圆周运动的动力学问题3.(单选)如图4-3-9所示,是某课外研究小组设计的可以用来测量转盘转速的装置.该装置上方是一与转盘固定在一起有横向均匀刻度的标尺,带孔的小图4-3-8球穿在光滑细杆与一轻弹簧相连,弹簧的另一端固定在转动轴上,小球可沿杆自由滑动并随转盘在水平面内转动.当转盘不转动时,指针指在O 处,当转盘转动的角速度为ω1时,指针指在A 处,当转盘转动的角速度为ω2时,指针指在B 处,设弹簧均没有超过弹性限度.则ω1与ω2的比值为( ). A.12B.12C.14D.134.(2013·扬州中学期中考试)(单选)如图4-3-10所示,在匀速转动的水平盘上,沿半径方向放着用细线相连的质量相等的两物体A 和B ,它们与盘间的动摩擦因数相同,当圆盘转速加快到两物体刚好没有发生滑动时,烧断细线,则两物体的运动情况将是( ). A .两物体均沿切线方向滑动B .两物体均沿半径方向滑动,远离圆心C .两物体仍随圆盘一起做匀速圆周运动,不会滑动D .物体A 仍随圆盘做匀速圆周运动,物体B 沿曲线运动,远离圆心5.(2013·江苏卷,2)(单选)如图4-3-11所示,“旋转秋千”中的两个座椅A 、B 质量相等,通过相同长度的缆绳悬挂在旋转圆盘上.不考虑空气阻力的影响,当旋转圆盘绕竖直的中心轴匀速转动时,下列说法正确的是( ).A .A 的速度比B 的大B .A 与B 的向心加速度大小相等C .悬挂A 、B 的缆绳与竖直方向的夹角相等D .悬挂A 的缆绳所受的拉力比悬挂B 的小题组三 离心现象6.(单选)世界一级方程式锦标赛新加坡大奖赛赛道单圈长5.067公里,共有23个弯道,如图4-3-12所示,赛车在水平路面上转弯时,常常在弯道上冲出跑道,则以下说法正确的是( ).A .是由于赛车行驶到弯道时,运动员未能及时转动 方向盘才造成赛车冲出跑道的B .是由于赛车行驶到弯道时,运动员没有及时加速才造成赛车冲出跑道的C .是由于赛车行驶到弯道时,运动员没有及时减速才造成赛车冲出跑道的图4-3-10图4-3-12图4-3-11D.由公式F=mω2r可知,弯道半径越大,越容易冲出跑道7.(多选)公路急转弯处通常是交通事故多发地带.如图4-3-13,某公路急转弯处是一圆弧,当汽车行驶的速率为v c时,汽车恰好没有向公路内外两侧滑动的趋势,则在该弯道处().A.路面外侧高内侧低B.车速只要低于v c,车辆便会向内侧滑动C.车速虽然高于v c,但只要不超出某一最高限度,车辆便不会向外侧滑动D.当路面结冰时,与未结冰时相比,v c的值变小题组四圆周运动的临界问题8.(2013·上海卷,6)(单选)秋千的吊绳有些磨损.在摆动过程中,吊绳最容易断裂的时候是秋千().A.在下摆过程中B.在上摆过程中C.摆到最高点时D.摆到最低点时9.(多选)如图4-3-14所示,半径为R的光滑圆形轨道竖直固定放置,小球m在圆形轨道内侧做圆周运动.对于半径R不同的圆形轨道,小球m通过轨道最高点时都恰好与轨道间没有相互作用力.下列说法中正确的有().A.半径R越大,小球通过轨道最高点时的速度越大B.半径R越大,小球通过轨道最高点时的速度越小C.半径R越大,小球通过轨道最低点时的角速度越大D.半径R越大,小球通过轨道最低点时的角速度越小10.(单选)在光滑水平面上,有一转轴垂直于此平面,交点O的上方h处固定一细绳,绳的另一端连接一质量为m的小球B,绳长l>h,小球可随转轴转动在光滑水平面上做匀速圆周运动,如图4-3-15所示.要使小球不离开水平面,转轴转速的最大值是().A.12πgh B.πghC.12πgl D.12πlg图4-3-13图4-3-15图4-3-1411.(多选)如图4-3-16所示,长为L 的轻杆一端固定质量为m 的小球,另一端固定转轴O ,现使小球在竖直平面内做圆周运动.P 为圆周轨道的最高点.若小球通过圆周轨道最低点时的速度大小为92gL ,则以下判断正确的是( ). A .小球不能到达P 点B .小球到达P 点时的速度小于gLC .小球能到达P 点,但在P 点不会受到轻杆的弹力D .小球能到达P 点,且在P 点受到轻杆向上的弹力B 深化训练——提高能力技巧12.(2013·常州市上学期期中考试)如图4-3-17所示,将一质量为m =0.1 kg 的小球自水平平台右端O 点以初速度v 0水平抛出,小球飞离平台后由A 点沿切线落入竖直光滑圆轨道ABC ,并沿轨道恰好通过最高点C ,圆轨道ABC 的形状为半径R =2.5 m 的圆截去了左上角127°的圆弧,BC 为其竖直直径,(sin 53°=0.8,cos 53°=0.6,重力加速度g 取10 m/s 2)求: (1)小球经过C 点的速度大小;(2)小球运动到轨道最低点B 时小球对轨道的压力大小; (3)v0的数值.图4-3-16图4-3-17。
物体做匀速圆周运动的条件物理学的一个重要的概念是“运动”。
运动是指物体在时间和空间内发生的位置变化,可以分为直线运动和曲线运动等。
匀速圆周运动就是属于曲线运动的一种,也常常被称为回转运动或轨道运动。
匀速圆周运动是指物体沿着某一圆的轨道运动,且速度不变,一般也可以理解为一种圆周振荡的运动。
要求物体做匀速圆周运动,就必须满足以下几个条件:一是外力的条件。
匀速圆周运动的本质是受外力作用而形成的:外力的大小和方向应恒定,外力的合力要垂直于运动方向,且是恒定的,外力的作用方向应侧向于运动方向,且大小也是恒定的,这样,物体才会沿着圆周一直运动,且速度不变。
二是物体质量的条件。
匀速圆周运动需要物体有质量,质量决定推力大小,但是,质量不能决定运动轨迹否定。
三是物体形状的条件。
物体的形状也是影响它做匀速圆周运动的因素之一,一般来说,质心离圆心较近的物体经受的外力会比质心离圆心较远的物体更容易受到控制,它们更容易做匀速圆周运动。
四是物体位置的条件。
物体的位置是影响它做匀速圆周运动的一项重要的因素,往往需要物体的位置与外力的作用方向有一定的方向关系,使外力和质心有一定的夹角,这样,才能形成圆周运动,保证匀速圆周运动。
五是物体物性的条件,物体物性指的是物体的摩擦力、磁性等。
物体做匀速圆周运动时,受外力的作用,内部所受的摩擦力一定不能大于外力的大小,才能保证运动的稳定性。
总之,要求物体做匀速圆周运动,就必须满足以上五个条件:受外力作用,质心要恒定,质量要恒定,物体形状要恒定,位置与外力有一定的方向关系,物体物性也要满足一定的条件。
只有这样,物体才能保持匀速圆周运动,从而实现回转运动或轨道运动。
物体做匀速圆周运动的条件是什么物体做匀速圆周运动的条件包括以下几个方面:
1. 向心力提供中心向力:在匀速圆周运动中,物体受到一个向心力,这个向心力是由于物体受到中心向力(通常是引力、弹力等)的作用。
向心力的方向总是指向圆心,使得物体沿着圆周做匀速运动。
2. 合外力为零:在匀速圆周运动中,合外力(在切线方向上的力)为零。
物体虽然受到向心力,但在切线方向上没有净的外力,因此物体沿切线方向不会有加速度。
3. 力矩平衡:物体在匀速圆周运动中,虽然合外力为零,但可能有一个合外力矩,使得物体维持稳定的圆周运动。
这个合外力矩通常与向心力成正比。
4. 角动量守恒:在匀速圆周运动中,角动量守恒是一个重要的条件。
物体沿着圆周运动时,角动量守恒表明在没有外部扭矩的情况下,物体的角动量保持不变。
5. 速度方向始终垂直于半径:在匀速圆周运动中,物体的速度方向始终垂直于与圆心相连的半径。
这是因为向心力的方向总是指向圆心,导致速度与半径的方向垂直。
这些条件描述了物体在匀速圆周运动中的基本特征,保证了物体能够保持稳定的圆周运动。
这类运动是一种特殊的运动形式,需要满足上述条件以维持匀速圆周运动。
1/ 1。
一、选择题
1.物体做匀速圆周运动的条件是(D)
A.物体有一定的初速度,且受到一个始终和初速度垂直的恒力作用
B.物体有一定的初速度,且受到一个大小不变,方向变化的力的作用
C.物体有一定的初速度,且受到一个方向始终指向圆心的力的作用
D.物体有一定的初速度,且受到一个大小不变方向始终跟速度垂直的力的作用
2.关于向心力,以下说法中不正确的是(ABD)
A.是除物体所受重力、弹力以及摩擦力以外的一种新的力
B.向心力就是做圆周运动的物体所受的合力
C.向心力是线速度变化的原因
D.只要物体受到向心力的作用,物体就做匀速圆周运动
[点拨:理解向心力的定义、作用效果,弄清向心力的来源和物体做匀速圆周运动的条件,然后与选项加以比较可作出判断。
答案:ABD]
3.关于力和运动,下列说法中正确的是 ( A )
A.物体在恒力作用下可能做曲线运动[如平抛运动]
B.物体在变力作用下不可能做直线运动[可以,只要合力与运动的方向在同一直线上]
C.物体在恒力作用下不可能做曲线运动
D.物体在变力作用下不可能保持速率不变[可能,如匀速圆周运动]
4.关于向心力的说法中正确的是(ACD)
A. 物体受到向心力的作用才可能做圆周运动
B. 向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出
C. 向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力
D. 向心力只改变物体运动的方向,不改变物体运动的快慢 [解析:向心力在受力分析时不画,B 错。
答案:ACD ]
5 .关于角速度和线速度,下列说法正确的是 ( BC )
A.半径一定,角速度与线速度成反比[错,r
v =
ω] B.半径一定,角速度与线速度成正比 C.线速度一定,角速度与半径成正比[对,r v ω=]
D.角速度一定,线速度与半径成反比
6.关于质点做匀速圆周运动的下列说法中,正确的是( D )
A .由a = 可知,a 与r 成反比[前提是v 保持不变]
B .由a=ω2r 可知,a 与r 成正比[前提是
w 保持不变] C .由v =ωr 可知,ω与r 成反比 [前提是v 保持不变]
D .由ω=2πn 可知,ω与n 成正比
7.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且R A =R C =2R B ,则三质点的向心加速度之比a A :a B :a C 等于 ( A )
A.4:2:1
B.2:1:2
C.1:2:4
D.4:1:4 [解析:A和B同轴,所以B A
ωω=,R a R R B A 2,2ω==又 ,2:41:2:==∴B A a a
B和C是皮带轮沿,所以
B
C v v =1:2:,,22
=∴==C B B C a a R
v a R R 又 ,
]
8.如图所示,用细线吊着一个质量为m的小球,使小球在水平面内做圆锥摆运动,关于小球受力,正确的是(B)
A.受重力、拉力、向心力B.受重力、拉力
C.受重力D.以上说法都不正确
9.火车转弯做圆周运动,如果外轨和内轨一样高,火车能匀速通过弯道做圆周运动,下列说法中正确的是(A)
A .火车通过弯道向心力的来源是外轨的水平弹力,所以外轨容易磨损
B .火车通过弯道向心力的来源是内轨的水平弹力,所以内轨容易磨损
C .火车通过弯道向心力的来源是火车的重力,所以内外轨道均不磨损
D .以上三种说法都是错误的
匀速转动,筒内壁上紧挨着一个物体与筒一起运10.一圆筒绕其中心轴OO
1
动相对筒无滑动,如图所示,物体所受向心力是(C)
A.物体的重力B.筒壁对物体的静摩擦力
C.筒壁对物体的弹力D.物体所受重力与弹力的合力
11如图1所示,一个内壁光滑的圆锥的轴线垂直于水平面,圆锥固定不动,两个质量相同的小球A、B紧贴着内壁分别在图中所示的水平面内做匀速圆周运动。
则(AB )
图1
A. 球A的线速度必大于球B的线速度
B. 球A的角速度必小于球B的角速度
C. 球A的运动周期必小于球B的运动周期
D. 球A对筒壁的压力必大于球B对筒壁的压力
[解析:两球的受力情况完全相同,如图2所示,向心力F=mg cotθ=m =mω2r 因为r A>r B,故v A>v B,ωA<ωB。
图2
答案:AB]
12如图3所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动。
若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是(D)
A.物体所受弹力增大,摩擦力也增大
B.物体所受弹力增大,摩擦力减小
C.物体所受弹力减小,摩擦力减小
D.物体所受弹力增大,摩擦力不变
图3
[解析:物体在竖直方向上受重力G 与摩擦力F ,是一对平衡力,在向心力方向上受弹力F N 。
根据向心力公式,可知F N =mω2
r ,当ω增大时,F N 增大,所以应选D 。
答案:D ]
二、计算题
13、如图6所示,一质量为0.5kg 的小球,用0.4m 长的细线拴住在竖直面内作圆周运动,求:
(1)当小球在圆上最高点速度为4m/s 时,细线的拉力是多少? 拉力是多少?
(g=10m/s 2)
[解析:小球做圆周运动所需的向心力由重力和绳子的拉力的合力提供, (1)在最高点时,重力和绳子拉力都向下,所以拉合向F =mg =FF +
又R
v =m F2
向
所以N mg R
v m F 152
=-=拉
(2)在最低点时,重力向下,绳子拉力向上,所以mg =F =F
F -'''拉合
向]
所以N mg R
v m F 45''2
=+=拉]。