基本初等函数经典总结
- 格式:doc
- 大小:996.50 KB
- 文档页数:8
基本初等函数知识点归纳1.常值函数:常值函数是指在定义域上的值始终相同的函数。
常见的常值函数有恒等于0的零函数和恒等于1的单位函数。
常值函数的图像是一条与x轴平行的直线。
2.幂函数:幂函数是指形如y=x^n的函数,其中n是一个实数。
当n 为正偶数时,函数的图像在原点右侧递增;当n为正奇数时,图像在全定义域递增;当n为负数时,图像在全定义域递减。
特殊地,当n为0时,函数为常值函数13.指数函数:指数函数是形如y=a^x的函数,其中a为正实数且a≠1、指数函数的图像可以是递增或递减的曲线,具体取决于底数a的大小关系。
当a>1时,函数递增;当0<a<1时,函数递减。
指数函数特点是它们的图像都经过点(0,1)。
4. 对数函数:对数函数是指形如y = log_a(x)的函数,其中a为正实数且a ≠ 1、对数函数是指数函数的反函数,因此它们的图像是关于y = x对称的。
对数函数的图像在定义域上递增,对数函数的唯一一个特殊点是(1,0)。
5. 三角函数:三角函数包括正弦函数sin(x)、余弦函数cos(x)、正切函数tan(x)、余切函数cot(x)、正割函数sec(x)和余割函数csc(x)。
这些函数在三角学中起着重要的作用,并且它们的图像都是周期性的。
正弦函数和余弦函数的图像是一条在[-1,1]之间往复的波浪线,而正切函数和余切函数的图像是一条通过原点的无数个波浪线。
6. 反三角函数:反三角函数是三角函数的反函数。
反三角函数包括反正弦函数asin(x)、反余弦函数acos(x)、反正切函数atan(x)等。
它们的定义域和值域与所对应的三角函数的范围正好相反。
反三角函数的图像和所对应的三角函数的图像关于y = x对称。
以上是基本初等函数的主要内容,它们是数学中最常见的函数,不仅在实际问题中有着广泛的应用,而且还在高中数学的教学中起到了重要的作用。
通过对这些函数的学习与理解,可以更好地掌握数学知识,提高数学解题的能力。
基本初等函数知识点总结基本初等函数是数学中常见的一类函数,包括多项式函数、指数函数、对数函数、三角函数和反三角函数等。
它们在数学和实际问题中具有广泛的应用,因此掌握基本初等函数的性质和特点对于学习和理解数学非常重要。
下面将对基本初等函数的知识点进行总结。
一、多项式函数多项式函数是由常数乘以各个整数幂的变量构成的函数。
它的一般形式为:$$f(x) = a_nx^n + a_{n-1}x^{n-1} + \dots + a_1x+a_0$$其中,$a_n, a_{n-1},\dots,a_1,a_0$为常数,$n$为正整数,$a_n \neq 0$。
多项式函数的特点包括:定义域为实数集,值域为实数集,可导且导函数为次数比原来次数低一的多项式函数。
二、指数函数指数函数的一般形式为:$$f(x) = a^x$$其中,$a$为正实数且不等于1。
指数函数的特点包括:定义域为实数集,值域为正实数集,可导且导函数为$a^x\ln a$。
三、对数函数对数函数的一般形式为:$$f(x) = \log_a x$$其中,$a$为正实数且不等于1,$x$为正实数。
对数函数的特点包括:定义域为正实数集,值域为实数集,可导且导函数为$\frac{1}{x\ln a}$。
四、三角函数三角函数包括正弦函数、余弦函数、正切函数等。
它们的一般形式为:$$\sin x, \cos x, \tan x$$其中,$x$为实数。
三角函数的特点包括:定义域为实数集,值域为闭区间[-1, 1],具有周期性,可导且导函数是相关三角函数的倍数。
五、反三角函数反三角函数包括反正弦函数、反余弦函数、反正切函数等。
它们的一般形式为:$$\arcsin x, \arccos x, \arctan x$$其中,$x$在相应的定义域内。
反三角函数的特点包括:定义域为闭区间[-1, 1],值域为实数集,可导且导函数是相关函数的倒数。
基本初等函数的性质还包括:1. 奇偶性对于函数$f(x)$,如果对于定义域内的任意$x$,有$f(-x)=-f(x)$,则称函数为奇函数;如果对于定义域内的任意$x$,有$f(-x)=f(x)$,则称函数为偶函数。
基本初等函数知识总结含义:常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数统称为基本初等函数1.常数函数(y=C)(1)定义域: D(f)=(-∞,+∞)(2)值域: Z(f)=C(3) 性质: 它的图像是一条平行于x轴并通过点(0,C)在y轴上截距为C的直线(4 )图像:(5)周期性:常值函数是一个周期函数. 因对于任何x∈(-∞,+∞)和实数T,f(x+T)=f(x)=T,但并无最小正周期【注】常值函数不含自变量且不存在反函数2.幂函数(1)定义:形如y=x^a(a为常数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数.(2)性质:在(0,+∞)内总有意义①当α>0时函数图像过点(0,0)和(1,1),在(0,+∞)内单调增加且无界②当α<0时函数图像过点(1,1),在(0,+∞)内单调减少且无界(3)图像:3.指数函数y=a^x(a>0且a≠1)(1)定义域:x∈R(2)值域:(0,+∞)(3)性质:①单调性:1.当0<a<1时,在(-∞,+∞)内单调减少 2.当a >1时,在(-∞,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(4)图像:①由指数函数y=a^x与直线x=1相交于点(1,a)可知:在y轴右侧,图像从下到上相应的底数由小变大。
②由指数函数y=a^x与直线x=-1相交于点(-1,1/a)可知:在y轴左侧,图像从下到上相应的底数由大变小。
③指数函数的底数与图像间的关系可概括的记忆为:在y轴右边“底大图高”;在y轴左边“底大图低” 如图:(5)运算法则:①②③④4.对数函数y=logax(a>0 且a≠1)(1)定义:如果a^x=N(a>0,且a ≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数一般地,函数y=logax(a>0,且a ≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数(2)定义域:(0,+∞),即x>0(3)值域:R(4)性质:①单调性:1.当0<a<1时,在(0,+∞)内单调减少 2.当a >1时,在(0,+∞)内单调增加②奇偶性:非奇非偶函数③周期性:非周期函数④有界性:无界函数(5)图像:【注】①负数和零没有对数②1的对数是零③底数的对数等于1(6)常用法则/公式:5.三角函数⑴正弦函数y=sin x(1)定义:对边与斜边的比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ(K∈Z)时,Y 取最大值1 2.当X=2Kπ+3π/2(K∈Z时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:奇函数③对称性:对称中心是(Kπ,0),K ∈Z;对称轴是直线x=Kπ+π/2,K ∈Z④单调性:在[2Kπ-π/2,2Kπ+π/2],K∈Z上单调递增;在[2Kπ+π/2,2Kπ+3π/2],K∈Z上单调递减⑤有界性:有界函数(6)图像:(2)余弦函数y=cos x(1)定义:邻边与斜边之比(2)定义域:R(3)值域:【-1,1】(4)最值:1.当X=2Kπ +π /2(K∈Z)时,Y取最大值1 2.当X=2Kπ +π (K∈Z)时,Y取最小值-1(5)性质:①周期性:最小正周期都是2πT=2π②奇偶性:偶函数③对称性:对称中心是(Kπ+π/2,0),K∈Z;对称轴是直线x=Kπ,K∈Z④单调性:在[2Kπ,2Kπ+π],K∈Z上单调递减;在[2Kπ+π,2Kπ+2π],K∈Z上单调递增⑤有界性:有界函数(6)图像:(3)正切函数y=tan x(1)定义:对边与邻边之比(2)定义域:{x∣x≠Kπ+π/2,K∈Z}(3)值域:R(4)最值:无最大值和最小值(5)性质:①周期性:最小正周期都是πT=π②奇偶性:奇函数③对称性:对称中心是(Kπ/2,0),K∈Z④单调性:在[Kπ-π/2,Kπ+π/2],K∈Z上单调递增⑤有界性:无界函数(6)图像:(4)余切函数y=cot x(1)定义:在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切。
基本初等函数知识点一、函数的定义和性质函数是一种特殊的关系,它将一个集合中的每个元素对应到另一个集合中的唯一元素。
函数通常用f(x)表示,其中x是自变量,f(x)是因变量。
函数有以下性质:1. 定义域和值域:函数的定义域是所有可输入的自变量的集合,值域是所有对应的因变量的集合。
2. 奇偶性:一个函数可以是奇函数或偶函数,奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。
3. 单调性:函数可以是单调递增或单调递减的。
单调递增函数满足当x1小于x2时,f(x1)小于f(x2);单调递减函数则相反。
二、常见的基本初等函数1. 幂函数:指数函数是形如y=x^n的函数,其中n是一个实数。
根据n的不同取值,幂函数可以分为多种情况,如正幂函数、负幂函数、倒数函数等。
2. 指数函数:指数函数是以指数为自变量的函数,常见的指数函数有以e为底的自然指数函数(y=e^x)和以10为底的常用对数函数(y=log(x))。
3. 对数函数:对数函数是指以某个正实数为底的函数,常见的对数函数有以e为底的自然对数函数(y=ln(x))和以10为底的常用对数函数。
4. 三角函数:三角函数是以角度或弧度为自变量的函数,常见的三角函数有正弦函数(y=sin(x))、余弦函数(y=cos(x))、正切函数(y=tan(x))等。
5. 反三角函数:反三角函数是三角函数的逆函数,常见的反三角函数有反正弦函数(y=arcsin(x))、反余弦函数(y=arccos(x))、反正切函数(y=arctan(x))等。
三、基本初等函数的图像和性质1. 幂函数的图像与性质:平方函数(y=x^2)的图像是一个开口上的抛物线,立方函数(y=x^3)的图像则是一个S形曲线。
幂函数的性质与指数n的奇偶性、正负有关。
2. 指数函数的图像与性质:自然指数函数(y=e^x)具有递增的特点,其图像是一条通过原点且向上增长的曲线。
常用对数函数(y=log(x))的图像则是一条斜率逐渐减小的曲线。
基本初等函数知识点总结1.常数函数:常数函数是指函数的值在定义域内都保持不变的函数。
表示为f(x)=c,其中c是常数。
常数函数的图像是一条平行于x轴的直线。
常数函数的性质是恒等性,即f(x)=f(x'),对于任意x和x'都成立。
2.平方函数:平方函数是指函数的值与自变量的平方成正比的函数。
表示为f(x)=x²。
平方函数的图像是一条开口向上的抛物线。
平方函数的性质是奇偶性,即f(-x)=f(x),对于任意实数x都成立。
3.立方函数:立方函数是指函数的值与自变量的立方成正比的函数。
表示为f(x)=x³。
立方函数的图像是一条通过原点且存在于所有象限的曲线。
立方函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)或f(x₁)>f(x₂)成立。
4.绝对值函数:绝对值函数是指函数的值与自变量的绝对值成正比的函数。
表示为f(x)=,x。
绝对值函数的图像是一条以原点为顶点且对称于y轴的V字形曲线。
绝对值函数的性质是非负性,即对于任意实数x,有f(x)≥0成立。
5.指数函数:指数函数是指函数的值与自变量的指数幂成正比的函数。
表示为f(x)=aˣ,其中a是一个正实数且a≠1、指数函数的图像是一条通过点(0,1)且与x轴和y轴都无交点的曲线。
指数函数的性质是增长性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。
6. 对数函数:对数函数是指函数的值与自变量的对数成正比的函数。
表示为f(x)=logₐ(x),其中a是一个正实数且a≠1、对数函数的图像是一条通过点(1, 0)且与x轴和y轴都无交点的曲线。
对数函数的性质是单调性,即在定义域内,当x₁<x₂时,有f(x₁)<f(x₂)成立。
7. 三角函数:三角函数包括正弦函数、余弦函数、正切函数等。
正弦函数表示为f(x)=sin(x),余弦函数表示为f(x)=cos(x),正切函数表示为f(x)=tan(x)。
第十二讲 基本初等函数一:教学目标1、掌握基本初等函数(指数函数、对数函数、幂函数)的基本性质;2、理解基本初等函数的性质;3、掌握基本初等函数的应用,特别是指数函数与对数函数二:教学重难点教学重点:基本初等函数基本性质的理解及应用; 教学难点:基本初等函数基本性质的应用三:知识呈现1.指数与指数函数1).指数运算法则:(1)rsr sa a a+=;(2)()sr rs aa =;(3)()rr rab a b =;(4)mn mna a =;(5)m nnmaa -=(6),||,nn a n a a n ⎧=⎨⎩奇偶2). 指数函数:形如(01)xy a a a =>≠且2.1)对数的运算:1、互化:N b N a a b log =⇔=2、恒等:N aNa =log3、换底: ab bc c a log log log =指数函数0<a<1a>1图 象表达式 x y a =定义域 R 值 域 (0,)+∞ 过定点 (0,1)单调性单调递减 单调递增推论1 ab b a log 1log =推论2 log log log a b a b c c •= 推论3 log log m na an b b m=)0(≠m 4、N M MN a a a log log log +=log log log aa a MM N N=- 5、M n M a n a log log ⋅= 2)对数函数:3.幂函数一般地,形如 ay x =(a R ∈)的函数叫做幂函数,其中a 是常数 1)性质:(1) 所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1, 1);对数函数0<a<1a>1图 象表达式 log a y x =定义域 (0,)+∞值 域 R过定点 (1,0)单调性单调递减单调递增(2) 如果α>0,则幂函数图象通过(0,0),并且在区间[0,+∞)上是增函数;(3) 如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 趋于+∞时,图象在x 轴上方无限逼近x 轴。
四:典型例题考点一:指数函数例1 已知2321(25)(25)x x a a a a -++>++,则x 的取值范围是___________. 分析:利用指数函数的单调性求解,注意底数的取值范围. 解:∵2225(1)441a a a ++=++>≥,∴函数2(25)x y a a =++在()-+,∞∞上是增函数, ∴31x x >-,解得14x >.∴x 的取值范围是14⎛⎫+ ⎪⎝⎭,∞. 评注:利用指数函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式,并判断底数与1的大小,对于含有参数的要注意对参数进行讨论.例2 函数221(01)x x y a a a a =+->≠且在区间[11]-,上有最大值14,则a 的值是_______. 分析:令x t a =可将问题转化成二次函数的最值问题,需注意换元后t 的取值范围. 解:令x t a =,则0t >,函数221x x y a a =+-可化为2(1)2y t =+-,其对称轴为1t =-. ∴当1a >时,∵[]11x ∈-,, ∴1x a a a≤≤,即1t a a ≤≤.∴当t a =时,2max (1)214y a =+-=. 解得3a =或5a =-(舍去); 当01a <<时,∵[]11x ∈-,, ∴1x a a a≤≤,即1a t a ≤≤,∴ 1t a =时,2max 11214y a ⎛⎫=+-= ⎪⎝⎭,解得13a =或15a =-(舍去),∴a 的值是3或13.评注:利用指数函数的单调性求最值时注意一些方法的运用,比如:换元法,整体代入等.例3 求函数y = 解:由题意可得2160x --≥,即261x -≤,∴20x -≤,故2x ≤. ∴函数()f x 的定义域是(]2-,∞.令26x t -=,则1y t =-,又∵2x ≤,∴20x -≤. ∴2061x -<≤,即01t <≤. ∴011t -<≤,即01y <≤. ∴函数的值域是[)01,. 评注:利用指数函数的单调性求值域时,要注意定义域对它的影响. 例4 求函数y =23231+-⎪⎭⎫ ⎝⎛x x 的单调区间.分析 这是复合函数求单调区间的问题可设y =u⎪⎭⎫ ⎝⎛31,u =x 2-3x+2,其中y =u⎪⎭⎫ ⎝⎛31为减函数∴u =x 2-3x+2的减区间就是原函数的增区间(即减减→增) u =x 2-3x+2的增区间就是原函数的减区间(即减、增→减)解:设y =u⎪⎭⎫ ⎝⎛31,u =x 2-3x+2,y 关于u 递减,当x ∈(-∞,23)时,u 为减函数, ∴y 关于x 为增函数;当x ∈[23,+∞)时,u 为增函数,y 关于x 为减函数.考点二:对数函数例5 求下列函数的定义域 (1)y=log 2(x 2-4x-5); (2)y=log x+1(16-4x )(3)y= .解:(1)令x2-4x-5>0,得(x-5)(x+1)>0, 故定义域为 {x |x <-1,或x >5}.(2)令 得故所求定义域为{x |-1<x <0,或0<x <2}.(3)令,得故所求定义域为{x|x<-1- ,或-1- <x<-3,或x≥2}.说明求与对数函数有关的定义域问题,首先要考虑,真数大于零.底数大于零不等于1,若处在分母的位置,还要考虑不能使分母为零.例6比较大小:(1)log0.71.3和log0.71.8.(2)(lg n)1.7和(lgn)2(n>1).(3)log23和log53.(4)log35和log64.解:(1)对数函数y=log0.7x在(0,+∞)内是减函数.因为1.3<1.8,所以log0.71.3>log0.71.8.(2)把lgn看作指数函数的底,本题归为比较两个指数函数的函数值的大小,故需对底数lgn讨论.若1>lgn>0,即1<n<10时,y=(lgn)x在R上是减函数,所以(lgn)1.2>(lgn)2;若lgn>1,即n>10时,y=(lgn)2在R上是增函数,所以(lgn)1.7>(lgn)2.(3)函数y=log2x和y=log5x当x>1时,y=log2x的图像在y=log5x图像上方.这里x=3,所以log23>log53.(4)log35和log64的底数和真数都不相同,须找出中间量“搭桥”,再利用对数函数的单调性即可求解.因为log35>log33=1=log66>log64,所以log35>log64.评析要注意正确利用对数函数的性质,尤其是第(3)小题,可直接利用例2中的说明得到结论.例7已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值,及y 取最大值时,x的值.分析要求函数y=[f(x)]2+f(x2)的最大值,要做两件事,一是要求其表达式;二是要求出它的定义域,然后求值域.解:∵f(x)=2+log3x,∴y=[f(x)]2+f(x2)=(2+log3x)2+2+log3x2=(2+log 3x )2+2+2log 3x =log 23x+6log 3x+6 =(log 3x+3)2-3.∵函数f (x )的定义域为[1,9],∴要使函数y=[f (x )]2+f (x 2)有定义,就须⎩⎨⎧≤≤≤≤91912x x ,∴1≤x≤3. ∴0≤log 3x≤1 ∴6≤y=(log 3x+3)2-3≤13∴当x=3时,函数y=[f (x )]2+f (x 2)取最大值13.说明 本例正确求解的关键是:函数y=[f (x )]2+f (x 2)定义域的正确确定.如果我们误认为[1,9]是它的定义域.则将求得错误的最大值22.其实我们还能求出函数y=[f (x )]2+f (x 2)的值域为[6,13]. 例8 求函数y=log 0.5(-x 2+2x+8)的单调区间.分析 由于对函数的底是一个小于1的正数,故原函数与函数u=-x 2+2x+8(-2<x <4)的单调性相反.解.∵-x 2+2x+8>0, ∴ -2<x <4,∴ 原函数的定义域为(-2,4).又∵ 函数u=-x 2+2x+8=-(x-1)2+9在(-2,1]上为增函数,在[1,4)上为减函数, ∴函数y=log 0.5(-x 2+2x+8)在(-2,1]上为减函数,在[1,4)上为增函数. 评析 判断函数的单调性必须先求出函数的定义域,单调区间应是定义域的子集.考点三:幂函数 例9.比较大小:(1)11221.5,1.7 (2)33( 1.2),( 1.25)--(3)1125.25,5.26,5.26---(4)30.530.5,3,log 0.5解:(1)∵12y x =在[0,)+∞上是增函数,1.5 1.7<,∴11221.5 1.7<(2)∵3y x =在R 上是增函数, 1.2 1.25->-,∴33( 1.2)( 1.25)->-(3)∵1y x -=在(0,)+∞上是减函数,5.25 5.26<,∴115.25 5.26-->;∵ 5.26xy =是增函数,12->-,∴125.265.26-->;综上,1125.255.26 5.26--->>(4)∵300.51<<,0.531>,3log 0.50<,∴30.53log 0.50.53<<例10.已知幂函数223m m y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,且关于原点对称,求m 的值. 解:∵幂函数223mm y x --=(m Z ∈)的图象与x 轴、y 轴都无交点,∴2230m m --≤,∴13m -≤≤;∵m Z ∈,∴2(23)m m Z --∈,又函数图象关于原点对称, ∴223m m --是奇数,∴0m =或2m =.例11、求函数y =52x +2x 51+4(x ≥-32)值域.解析:设t =x 51,∵x ≥-32,∴t ≥-2,则y =t 2+2t +4=(t +1)2+3. 当t =-1时,y min =3.∴函数y =52x +2x 51+4(x ≥-32)的值域为[3,+∞). 点评:这是复合函数求值域的问题,应用换元法.五:课后练习1、若a >1在同一坐标系中,函数y=ax-和y=logx a的图像可能是( )A B C D 2.求值40625.0+416-(π)0-3833=3. 下列函数在(),0-∞上为减函数的是( )A.13y x = B.2y x = C.3y x = D.2y x -= 答案:B4.已知x=21,y=31,求y x y x -+-yx y x +-的值5.若a 21<a 21-,则a 的取值范围是( )A .a ≥1B .a >0C .1>a >0D .1≥a ≥0 解析:运用指数函数的性质,选C . 答案:C6.下列式子中正确的是( )A log a)(y x -=log ax-log ayByax a log log =log x a -log yaC yax a log log =log yx a D log ax-log ay= log yx a。