名师导学2018届高三数学理二轮复习课件:专题2第4讲三角恒等变换 精品
- 格式:ppt
- 大小:2.74 MB
- 文档页数:56
专题二 三角函数、平面向量 第二讲 三角恒等变换与解三角形高考导航利用各种三角函数进行求值与化简,其中降幂公式、辅助角公式是考查的重点.2.利用正、余弦定理进行边和角、面积的计算,三角形形状的判定以及有关范围的计算,常与三角恒等变换综合考查.1.(2016·全国卷Ⅱ)若cos ⎝ ⎛⎭⎪⎫π4-α=35,则sin2α=( ) A.725 B.15 C .-15 D .-725[解析] 解法一:∵cos ⎝⎛⎭⎪⎫π4-α=35,∴sin2α=cos ⎝ ⎛⎭⎪⎫π2-2α=cos2⎝ ⎛⎭⎪⎫π4-α =2cos 2⎝⎛⎭⎪⎫π4-α-1=2×⎝ ⎛⎭⎪⎫352-1=-725.故选D.解法二:∵cos ⎝ ⎛⎭⎪⎫π4-α=22(cos α+sin α)=35,∴cos α+sin α=325,∴1+sin2α=1825,∴sin2α=-725.故选D.[答案] D2.(2017·山东卷)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若△ABC 为锐角三角形,且满足sin B (1+2cos C )=2sin A cos C +cos A sin C ,则下列等式成立的是( )A .a =2bB .b =2aC .A =2BD .B =2A[解析] 解法一:因为sin B (1+2cos C )=2sin A cos C +cos A sin C ,所以sin B +2sin B cos C =sin A cos C +sin(A +C ),所以sin B +2sin B cos C =sin A cos C +sin B , 即cos C (2sin B -sin A )=0, 所以cos C =0或2sin B =sin A , 即C =90°或2b =a ,又△ABC 为锐角三角形,所以0°<C <90°,故2b =a .故选A. 解法二:由正弦定理和余弦定理得b ⎝ ⎛⎭⎪⎫1+a 2+b 2-c 2ab =2a ×a 2+b 2-c 22ab +c ×b 2+c 2-a 22bc , 所以2b 2⎝ ⎛⎭⎪⎫1+a 2+b 2-c 2ab =a 2+3b 2-c 2, 即2ba (a 2+b 2-c 2)=a 2+b 2-c 2,即(a 2+b 2-c 2)⎝ ⎛⎭⎪⎫2b a -1=0,所以a 2+b 2=c 2或2b =a ,又△ABC 为锐角三角形,所以a 2+b 2>c 2,故2b =a ,故选A. [答案] A3.(2017·浙江卷)已知△ABC ,AB =AC =4,BC =2.点D 为AB 延长线上一点,BD =2,连接CD ,则△BDC 的面积是________,cos ∠BDC =________.[解析] 由余弦定理得cos ∠ABC =42+22-422×4×2=14,∴cos ∠CBD =-14,sin ∠CBD =154,∴S △BDC =12BD ·BC ·sin ∠CBD =12×2×2×154=152. 又cos ∠ABC =cos2∠BDC =2cos 2∠BDC -1=14,0<∠BDC <π2, ∴cos ∠BDC =104. [答案]1521044.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. [解] (1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A . 由正弦定理得12sin C sin B =sin A3sin A . 故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12. 所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A ,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33. 故△ABC 的周长为3+33.考点一 三角恒等变换1.两角和与差的正弦、余弦、正切公式 (1)sin(α±β)=sin αcos β±cos αsin β. (2)cos(α±β)=cos αcos β∓sin αsin β. (3)tan(α±β)=tan α±tan β1∓tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)sin2α=2sin αcos α.(2)cos2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. (3)tan2α=2tan α1-tan 2α.3.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ)⎝ ⎛⎭⎪⎫其中tan φ=b a .[对点训练]1.(2017·贵阳监测)已知sin ⎝ ⎛⎭⎪⎫π6-α=13,则cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α的值是( )A.79B.13 C .-13 D .-79[解析] ∵sin ⎝ ⎛⎭⎪⎫π6-α=13,∴cos ⎝ ⎛⎭⎪⎫π3-2α=cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π6-α=1-2sin 2⎝ ⎛⎭⎪⎫π6-α=79,∴cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫π3+α=cos ⎝ ⎛⎭⎪⎫2π3+2α=cos ⎣⎢⎡⎦⎥⎤π-⎝ ⎛⎭⎪⎫π3-2α=-cos ⎝ ⎛⎭⎪⎫π3-2α=-79. [答案] D2.(2017·福建省福州市高三综合质量检测)已知m =tan (α+β+γ)tan (α-β+γ),若sin2(α+γ)=3sin2β,则m =( )A.12B.34C.32 D .2[解析] 设A =α+β+γ,B =α-β+γ,则2(α+γ)=A +B,2β=A -B ,因为sin2(α+γ)=3sin2β,所以sin(A +B )=3sin(A -B ),即sin A cos B +cos A sin B =3(sin A cos B -cos A sin B ),即2cos A ·sin B =sin A cos B ,所以tan A =2tan B ,所以m =tan Atan B =2,故选D.[答案] D3.若sin2α=55,sin(β-α)=1010,且α∈⎣⎢⎡⎦⎥⎤π4,π,β∈⎣⎢⎡⎦⎥⎤π,3π2,则α+β的值是________.[解析] 因为α∈⎣⎢⎡⎦⎥⎤π4,π,故2α∈⎣⎢⎡⎦⎥⎤π2,2π,又sin2α=55,故2α∈⎣⎢⎡⎦⎥⎤π2,π,α∈⎣⎢⎡⎦⎥⎤π4,π2,∴cos2α=-255,β∈⎣⎢⎡⎦⎥⎤π,3π2,故β-α∈⎣⎢⎡⎦⎥⎤π2,5π4,于是cos(β-α)=-31010,∴cos(α+β)=cos [2α+(β-α)]=cos2αcos(β-α)-sin2αsin(β-α)=-255×⎝⎛⎭⎪⎫-31010-55× 1010=22,且α+β∈⎣⎢⎡⎦⎥⎤5π4,2π,故α+β=7π4. [答案] 7π4(1)三角恒等变换的三原则①一看“角”,这是最重要的一环,通过看角之间的差别与联系,把角进行合理拆分,从而正确使用公式,如1题.②二看“函数名称”,看函数名称之间的差异,从而确定使用的公式,常见的有“切化弦”.③三看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.(2)解决条件求值应关注的三点①分析已知角和未知角之间的关系,正确地用已知角来表示未知角.②正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示.③求解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小,如3题.考点二 解三角形1.正弦定理a sin A =b sin B =csin C =2R (2R 为△ABC 外接圆的直径). 变形:a =2R sin A ,b =2R sin B ,c =2R sin C . sin A =a 2R ,sin B =b 2R ,sin C =c2R . a ∶b ∶c =sin A ∶sin B ∶sin C . 2.余弦定理a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B , c 2=a 2+b 2-2ab cos C .推论:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac , cos C =a 2+b 2-c 22ab .变形:b 2+c 2-a 2=2bc cos A ,a 2+c 2-b 2=2ac cos B ,a 2+b 2-c 2=2ab cos C .3.面积公式S △ABC =12bc sin A =12ac sin B =12ab sin C .角度1:利用正弦、余弦定理判断三角形的形状[解析] ∵2b cos C -2c cos B =a ,∴2sin B cos C -2sin C cos B =sin A =sin(B +C ),即sin B cos C =3cos B sin C ,∴tan B =3tan C ,又B =2C ,∴2tan C 1-tan 2C =3tan C ,得tan C =33,C =π6,B =2C =π3,A =π2,故△ABC 为直角三角形.[答案] B 角度2:在三角形中利用正、余弦定理进行边角计算[解析] 由b sin B -a sin A =12a sin C 及正弦定理得b 2-a 2=12ac ,又c =2a ,所以b =2a ,∵cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 24a 2=34,∴sin B =1-⎝ ⎛⎭⎪⎫342=74.故选A. [答案] A 角度3:结合正、余弦定理进行面积的计算[思维流程] (1)代换A +C 为π-B →化简关系式→求出cos B (2)求sin B →结合面积公式求出ac →借助余弦定理求出b[解] (1)由题设及A +B +C =π得sin B =8sin 2B2,故sin B =4(1-cos B ).上式两边平方,整理得17cos 2B -32cos B +15=0,解得cos B =1(舍去),cos B =1517.(2)由cos B =1517得sin B =817, 故S △ABC =12ac sin B =417ac . 又S △ABC =2,则ac =172.由余弦定理及a +c =6得b 2=a 2+c 2-2ac cos B =(a +c )2-2ac (1+cos B )=36-2×172×⎝ ⎛⎭⎪⎫1+1517=4. 所以b =2.正、余弦定理的适用条件(1)“已知两角和一边”或“已知两边和其中一边的对角”应采用正弦定理.(2)“已知两边和这两边的夹角”或“已知三角形的三边”应采用余弦定理.【特别提醒】 应用定理要注意“三统一”,即“统一角、统一函数、统一结构”.[对点训练]1.[角度1](2017·洛阳模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,cos 2A2=b +c2c ,则△ABC 的形状一定是( )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形[解析] 在△ABC 中,∵cos 2A2=b +c 2c ,∴1+cos A 2=sin B +sin C2sin C =12·sin B sin C +12,∴1+cos A =sin B sin C +1,∴cos A sin C =sin B =sin(A +C )=sin A cos C +cos A sin C , ∴sin A cos C =0,sin A ≠0,∴cos C =0,∴C 为直角.故选B. [答案] B2.[角度2](2017·辽宁师大附中模拟)在△ABC 中,内角A ,B ,C 所对的边长分别为a ,b ,c ,且满足a sin B cos C +c sin B cos A =12b ,则B =( )A.π6或5π6B.π3C.π6D.5π6[解析] ∵a sin B cos C +c sin B cos A =12b ,∴由正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B . 又∵sin B ≠0,∴sin A cos C +sin C cos A =12,解得sin(A +C )=sin B =12. ∵0<B <π,∴B =π6或5π6.故选A. [答案] A3.[角度3](2017·威海模拟)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a =2,且(2+b )(sin A -sin B )=(c -b )sin C ,则△ABC 面积的最大值为________.[解析] 由正弦定理得,(2+b )(a -b )=(c -b )·c ,又a =2,所以b 2+c 2-bc =4,所以cos A =b 2+c 2-42bc =bc 2bc =12,故A =π3.因为b 2+c 2≥2bc ,所以bc ≤4,所以S △ABC =12bc sin A ≤12×4×32=3,当且仅当b =c 时取等号.[答案]3考点三 正、余弦定理的实际应用1.实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.2.实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.[对点训练]1.(2017·济南二模)张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( )A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km [解析] 画出示意图如图,由条件知AB =24×1560=6.在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.BS sin30°=AB sin45°,所以BS =AB sin30°sin45°=3 2.[答案] B2.(2017·广东省五校协作体高三一诊)如图所示,在一个坡度一定的山坡AC 的顶上有一高度为25 m的建筑物CD,为了测量该山坡相对于水平地面的坡角θ,在山坡的A 处测得∠DAC=15°,沿山坡前进50 m到达B处,又测得∠DBC=45°,根据以上数据可得cosθ=________.[解析]由∠DAC=15°,∠DBC=45°可得∠BDA=30°,∠DBA =135°,∠BDC=90°-(15°+θ)-30°=45°-θ,由内角和定理可得∠DCB=180°-(45°-θ)-45°=90°+θ,根据正弦定理可得50sin30°=DBsin15°,即DB=100sin15°=100×sin(45°-30°)=252(3-1),又25sin45°=252(3-1)sin(90°+θ),即25sin45°=252(3-1)cosθ,得到cosθ=3-1.[答案]3-1解三角形实际问题的4步骤热点课题8 解三角形中的范围问题[感悟体验](2017·河南豫北联考)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且3a cos C =(2b -3c )cos A .(1)求角A 的大小;(2)求cos ⎝ ⎛⎭⎪⎫5π2-B -2sin 2C 2的取值范围.[解] (1)由正弦定理将原等式化为3sin A cos C =2sin B cos A -3sin C cos A ,从而可得,3sin(A +C )=2sin B cos A , 即3sin B =2sin B cos A .又B 为三角形的内角,所以sin B ≠0, 于是cos A =32.又A 为三角形的内角,因此A =π6.(2)cos ⎝ ⎛⎭⎪⎫5π2-B -2sin 2C 2 =sin B +cos C -1=sin B +cos ⎝ ⎛⎭⎪⎫5π6-B -1=sin B +cos 5π6cos B +sin 5π6sin B -1 =32sin B -32cos B -1 =3sin ⎝⎛⎭⎪⎫B -π6-1,由A =π6可知,B ∈⎝ ⎛⎭⎪⎫0,5π6,所以B -π6∈⎝ ⎛⎭⎪⎫-π6,2π3,从而sin ⎝ ⎛⎭⎪⎫B -π6∈⎝ ⎛⎦⎥⎤-12,1,因此,3sin ⎝ ⎛⎭⎪⎫B -π6-1∈⎝ ⎛⎦⎥⎤-3+22,3-1, 故cos ⎝ ⎛⎭⎪⎫5π2-B -2sin 2C 2的取值范围为⎝ ⎛⎦⎥⎤-3+22,3-1.。