欧氏空间的定义与基本性质
- 格式:pptx
- 大小:584.76 KB
- 文档页数:29
关于欧氏空间的若干问题欧氏空间,也称欧几里德空间,是数学中研究最广泛、应用最广泛的一个空间概念。
它是一个三维的空间,通常用欧氏度量来度量距离。
在欧氏空间中,可以进行许多有趣的几何推理和计算,下面将针对欧氏空间的一些常见问题进行探讨。
一、欧氏空间的定义和性质:1. 欧氏空间的定义:欧氏空间是一个具有三个轴向(x、y、z)的空间,其中任意两点之间的距离可以用欧氏度量来度量。
2. 欧氏度量的定义:欧氏度量是指两个点之间的距离,即在空间中点A和点B的距离可以表示为√[(xB-xA)² + (yB-yA)² + (zB-zA)²]。
3. 欧氏空间的性质:欧氏空间满足公理化的欧氏几何的所有性质,包括点、线、平行、相似、共面等等。
二、欧氏空间中的几何推理和计算:1. 直线和平面:在欧氏空间中,可以定义直线和平面,直线是两点之间的最短路径,平面是由三个或更多点组成的平坦表面。
2. 平行和垂直:在欧氏空间中,可以定义平行和垂直关系,平行的直线永远不会相交,垂直的直线相交时角度为90度。
3. 距离和角度:在欧氏空间中,可以计算两点之间的距离,并且可以计算两条直线或两个平面之间的夹角。
4. 对称和相似:在欧氏空间中,可以定义对称和相似的概念,对称是指关于某一中心轴或点对称,而相似是指形状和大小相似但不完全相同。
5. 三角形和多边形:在欧氏空间中,可以进行三角形和多边形的计算,包括面积、周长、角度等。
6. 空间图形的投影:在欧氏空间中,可以进行空间图形的投影计算,包括平行投影和透视投影等。
三、欧氏空间在现实生活中的应用:1. 建筑和工程:欧氏空间的几何推理和计算在建筑和工程领域中得到广泛应用,如房屋设计、结构力学分析等。
2. 机械制造:欧氏空间的几何推理和计算在机械制造中也起到重要作用,如零件加工、装配设计等。
3. 计算机图形学:欧氏空间的概念在计算机图形学中被广泛应用,如三维建模、渲染等。
欧氏空间(Euler space )一、 内积与欧氏空间1.设V 是实数域R 上的线性空间,在V 上定义一个二元实函数,称为内积,记为),(βα,它具有以下性质: )3(,)2(),,(),)(1( αββα= 这样的线性空间V 称为欧几里的空间,简称欧氏空间.2.设V 是数域P 上的线性空间,如果V 中的任意两个向量βα,都按某一法则对应P 内唯一确定的数,记为),(βαf ,且),(),(),(,,,,)1(221122112121βαβαβααβααk f k k k f V P k k +=+∈∈∀有;),(),(),(,,,,)2(221122112121βαβαββαββαl f l l l f V P l l +=+∈∈∀有 则称),(βαf 是V 上的一个双线性函数.3.内积是双线性函数.4.设V 是n 维欧氏空间,n e e e ,,,21 为V 的一组基,V ∈βα,,若n n e x e x e x +++= 2211α; n n e y e y e y +++= 2211β则j i n j ni j i j i n j n i j i y x a y x e e ∑∑∑∑====∆=1111),(),(βα,5.称 )),(()(j i ij e e a A ==为基n e e e ,,,21 的度量矩阵.6. 设n e e e ,,,21 是n 维欧氏空间V 的一组基,,A 是基n e e e ,,,21 下的度量矩阵,则任意V ∈βα,,有AY X '=),(βα.7.度量矩阵必为正定矩阵,且不同基下的度量矩阵是合同的.二、 长度与夹角1。
欧氏空间V 中向量长度 ),(||ααα=;单位化:当||0||0αααα=≠时, 2.欧氏空间中的重要不等式:① Cauchy-Буняковский不等式:对任意向量V ∈βα,有线性相关时等式成立。
,当且仅当βαβαβα|,||||),(|≤。
第八章欧氏空间计划课时:22学时 (P335—360)§8.1 欧氏空间的定义及基本性质(4学时)教学目的及要求:理解内积、长度、夹角、正交、距离的定义,掌握柯西一施瓦兹不等式。
通过本节的学习,使学生逐步掌握由特殊的例子抽象出一般概念的方法。
教学重点、难点:内积的定义、柯西一施瓦兹不等式本节内容分为下面四个问题讲授:一.内积及欧氏空间的定义1. 内积及欧氏空间的定义定义1(内积及欧氏空间的定义P336)注意:(1) .通过这个定义让学生逐步学会从具体例子抽象出一般概念的方法。
(2). 让学生体会公理化定义的特点。
(3). 内积的定义是本章的难点之一。
例1 (P336)例2 (P336)例3 (P336)例4 (P336)2. 向量的长度定义2(向量的长度P337)例5 (P336)例6 (P336)例7 (P336)长度的性质: | kα|=|k||α|.单位向量二. 柯西一施瓦兹不等式定理8.1.1注意:Cauchy不等式与Schwarz不等式这两个看似完全不同的不等式在高等代数课程中达到了高度的统一。
例8 (P338)例9(P338)三. 两向量的夹角、正交、距离定义3(P338-339)定义4 (P339)作业:P356-P357习题八1(1),2,3,4,5.§8.2 度量矩阵与正交基(4学时)教学目的及要求:理解度量矩阵、规范正交基、正交矩阵的定义及相应的理论,掌握在规范正交基下内积的算法与正交化方法教学重点、难点:正交化方法本节内容分为下面三个问题讲授:一. 度量矩阵(1). 内积的计算(2).度量矩阵定理8.2.1 (P 309)例1 (P 341)二. 规范正交基(1). 规范正交基的定义注意:一个基为规范正交基的充分必要条件是它的度量矩阵是单位矩阵.(2). 在规范正交基下内积、坐标的算法(3). 规范正交基的求法—正交化过程.定理8.2.3注意:1.Schmidt 正交化方法肯定了)1(≥n n 维欧氏空间的规范正交基的存在性。