ArcGIS中坐标系统详解
- 格式:docx
- 大小:471.53 KB
- 文档页数:18
ARCGIS中坐标系的定义及投影转换方法ArcGIS是一款由ESRI公司开发的地理信息系统软件,它提供了丰富的功能和工具来管理、分析和可视化地理空间数据。
在ArcGIS中,坐标系是地理数据的基础。
它定义了地理空间数据的坐标轴方向、单位和参考基准。
ArcGIS支持多种不同的坐标系,包括地理坐标系和投影坐标系。
地理坐标系使用经纬度来表示地球表面上的位置。
经度表示从西经0度到东经180度的角度,可以用-180到180度的范围表示。
纬度表示从南纬0度到北纬90度的角度,可以用-90到90度的范围表示。
常用的地理坐标系有WGS84和GCS_NAD83投影坐标系使用二维平面来表示地球表面上的位置。
由于地球是一个近似于椭球体的三维物体,将三维物体映射到二维平面上会引起形状、大小和方向的变化。
因此,投影坐标系定义了如何在平面上进行映射。
每种投影坐标系都有自己的坐标单位和转换方法。
常用的投影坐标系有UTM投影、Lambert投影和Mercator投影。
投影转换是将一种投影坐标系转换为另一种投影坐标系的过程。
在ArcGIS中,有以下几种常用的投影转换方法:1. 在地图视图中进行投影转换:在ArcMap中,可以通过选择地图视图的“数据”菜单下的“投影”选项来进行投影转换。
用户可以选择源坐标系和目标坐标系,并可以选择是否进行坐标转换。
2. 使用坐标系工具箱进行转换:ArcGIS提供了一系列坐标系工具箱,可以帮助用户进行坐标系的转换。
可以通过在ArcToolbox中选择“数据管理工具”>“坐标系”来访问这些工具。
3. 使用“项目”工具箱进行投影转换:在ArcGIS Pro中,可以使用“项目”工具箱中的“投影”工具来进行投影转换。
用户可以选择源数据和目标投影,并可以选择是否进行地理转换。
4. 使用ArcPy进行投影转换:ArcPy是ArcGIS的Python模块,可以通过编写Python脚本来进行投影转换。
用户可以使用ArcPy中的Projection类和ProjectRaster函数来实现投影转换。
arcgis横坐标和纵坐标在地理信息系统(GIS)中,ArcGIS是一款广泛使用的软件工具,它提供了一系列强大的功能用于地理数据的可视化、编辑和分析。
其中,横坐标和纵坐标作为地理数据的核心要素,扮演着至关重要的角色。
在本文中,我们将深入探讨ArcGIS中横坐标和纵坐标的含义、使用方法以及相关的注意事项。
一、横坐标的概念和使用在地理数据中,横坐标通常代表着地理空间的X轴,也叫做经度(Longitude)。
经度是地球表面的一种度量,用于表示地球表面上任意两点之间的东西方向距离。
经度的取值范围在-180°到180°之间,其中0°表示本初子午线(格林尼治天文台的经线),向东为正值,向西为负值。
在ArcGIS中,使用横坐标可以实现对地理数据的可视化和几何分析。
例如,我们可以通过输入一系列点的横坐标数值,绘制出这些点在地图上的分布情况。
同时,在进行空间分析时,横坐标的数值也是必不可少的数据要素之一。
通过对横坐标的处理,我们可以计算出地理数据的距离、方位、形状等信息,从而为后续的分析和决策提供支持。
二、纵坐标的概念和使用与横坐标相对应,纵坐标代表着地理空间的Y轴,也叫做纬度(Latitude)。
纬度是地球表面的一种度量,用于表示地球表面上任意两点之间的南北方向距离。
纬度的取值范围在-90°到90°之间,其中0°表示赤道,向北为正值,向南为负值。
在ArcGIS中,纵坐标的使用方式与横坐标类似。
通过输入一系列点的纵坐标数值,我们可以在地图上显示这些点的分布情况。
纵坐标也是进行空间分析和决策支持的重要数据要素。
例如,在统计某地区的人口密度时,纵坐标的数值可以帮助我们了解不同地区的人口分布情况,并进一步分析其与其他因素的关联性。
三、使用ArcGIS进行坐标转换在实际应用中,很多时候我们需要对地理数据进行坐标转换,以满足不同需求的分析要求。
而ArcGIS正是提供了一系列功能强大的工具,用于实现不同坐标系统之间的转换。
ArcGIS的地理坐标系与大地坐标系一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。
近日,在网上看到一篇文章介绍它们,非常喜欢。
所以在此转发一下,希望能够对制图的朋友们有所帮助。
地理坐标:为球面坐标。
参考平面地是椭球面,坐标单位:经纬度大地坐标:为平面坐标。
参考平面地是水平面,坐标单位:米、千米等地理坐标转换到大地坐标的过程可理解为投影。
(投影:将不规则的地球曲面转换为平面)在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system)1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate syst em是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢?地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上?这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis: 6378245.000000000000000000Semiminor Axis: 6356863.018773047300000000Inverse Flattening(扁率): 298.300000000000010000然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
ARCGIS横坐标和纵坐标ArcGIS(Geographic Information System)是一款用于地理信息系统分析和地图制作的软件。
在ArcGIS中,坐标系统是一个关键的概念,它定义了地图上点的位置。
横坐标(X坐标)和纵坐标(Y坐标)用于描述地理空间中点的位置。
一、坐标系统简介1.1 地图投影地球是一个三维的球体,而地图是一个二维的平面。
为了在平面上准确表示地球表面的点,需要使用地图投影。
常见的地图投影包括经纬度坐标系统、UTM坐标系统等。
1.2 横纵坐标在地图上,横坐标通常表示经度(Longitude),纵坐标通常表示纬度(Latitude)。
经度是指地球表面上任意一点与本初子午线之间的角度,纬度是指地球表面上任意一点与赤道之间的角度。
二、经纬度坐标系统2.1 经度(横坐标)经度的度量单位是度(°),范围从-180°到+180°。
东经为正,西经为负。
本初子午线的经度为0°。
2.2 纬度(纵坐标)纬度的度量单位是度(°),范围从-90°到+90°。
北纬为正,南纬为负。
赤道的纬度为0°。
三、UTM坐标系统3.1 横坐标(Easting)横坐标通常以米为单位,表示点距离投影中央经线的东向距离。
UTM坐标系统将地球分为六度带,每个带内使用横坐标。
3.2 纵坐标(Northing)纵坐标通常以米为单位,表示点距离赤道的北向距离。
UTM坐标系统的纵坐标在南半球为负值,在北半球为正值。
四、在ArcGIS中使用坐标在ArcGIS中,您可以通过以下步骤查看和编辑坐标:4.1 查看坐标在ArcMap中,通过选择“查看”菜单下的“数据框属性”来查看数据框的坐标系统。
在ArcGIS Pro中,可以在“视图”选项卡的“坐标系统”面板中查看和更改坐标系统。
4.2 编辑坐标在ArcMap中,通过启用“编辑”工具栏,选择“编辑”菜单下的“编辑设置”来编辑图层的坐标系统。
ARCGIS中坐标系的定义及投影转换方法ArcGIS是一款广泛应用于地理信息系统(GIS)的软件。
在ArcGIS 中,坐标系的定义和投影转换方法是非常重要的,它们用于描述和处理地理空间数据。
坐标系的定义:坐标系是用来描述地球上其中一点在二维或三维空间中的位置的一种系统。
在ArcGIS中,常用的坐标系有地理坐标系和投影坐标系。
地理坐标系:地理坐标系是由经纬度确定的,在地理空间中以角度为单位描述位置的坐标系。
经度是从西经0度到东经180度,纬度是从赤道0度到北极90度或南极-90度。
地理坐标系在球面上描述地理位置,但在计算时会引入高度误差。
投影坐标系:为了在平面上准确描述地理位置,需要采用投影坐标系。
投影坐标系将地理空间中的位置投影到一个平面上,以米或英尺为单位。
ArcGIS提供了各种投影坐标系以满足不同地区和任务的需要。
常见的投影坐标系包括等角圆柱投影、等面积圆锥投影和兰勃托投影等。
投影转换方法:在ArcGIS中,进行坐标系的投影转换可以通过以下方法实现:1.工具栏转换:在ArcGIS的工具栏中,有许多工具可以用于投影转换。
例如,“投影”工具可以将地理坐标系转换为投影坐标系,而“定义坐标系”工具可以定义、更改和转换数据的投影坐标系。
2.批量转换:ArcGIS中的“批量投影”工具可以用于将多个数据一次性地从一个坐标系转换为另一个坐标系。
这对于处理大量数据和保持一致性非常有用。
3.手动转换:有时,需要手动转换坐标系。
在ArcGIS中可以通过在数据的属性中手动定义或更改坐标系,然后将其转换为新的投影坐标系。
4.预定义转换:ArcGIS提供了一系列预定义的转换方法,可以将数据从一种坐标系转换为另一种坐标系。
这些预定义的转换方法可以根据需要进行调整和优化。
总结:在ArcGIS中,坐标系的定义和投影转换方法是地理空间数据处理的重要环节。
通过合理选择合适的坐标系和使用正确的投影转换方法,可以确保数据的准确性和一致性,为地理分析和空间研究提供可靠的支持。
ARCGIS中坐标转换及地理坐标、投影坐标的定义1.ARCGIS中坐标转换及地理坐标、投影坐标的定义1.1动态投影(ArcMap)所谓动态投影指,ArcMap中的Data 的空间参考或是说坐标系统是默认为第一加载到当前工作区的那个文件的坐标系统,后加入的数据,如果和当前工作区坐标系统不相同,则ArcMap会自动做投影变换,把后加入的数据投影变换到当前坐标系统下显示!但此时数据文件所存储的数据并没有改变,只是显示形态上的变化!因此叫动态投影!表现这一点最明显的例子就是,在Export Data时,会让你选择是按this layer's source data(数据源的坐标系统导出),还是按照the Data (当前数据框架的坐标系统)导出数据!1。
2坐标系统描述(ArcCatalog)大家都知道在ArcCatalog中可以一个数据的坐标系统说明!即在数据上鼠标右键—>Properties->XY Coordinate System选项卡,这里可以通过modify,Select、Import方式来为数据选择坐标系统!但有许多人认为在这里改完了,数据本身就发生改变了!但不是这样的!这里缩写的信息都对应到该数据的。
aux文件!如果你去把该文件删除了,重新查看该文件属性时,照样会显示Unknown!这里改的仅仅是对数据的一个描述而已,就好比你入学时填写的基本资料登记卡,我改了说明但并没有改变你这个人本身!因此数据文件中所存储的数据的坐标值并没有真正的投影变换到你想要更改到的坐标系统下!但数据的这个描述也是非常重要的,如果你拿到一个数据,从ArcMap下所显示的坐标来看,像是投影坐标系统下的平面坐标,但不知道是基于什么投影的!因此你就无法在做对数据的进一不处理!比如:投影变换操作!因为你不知道要从哪个投影开始变换!因此大家要更正一下对ArcCatalog中数据属性中关于坐标系统描述的认识!1.3投影变换(ArcToolBox)上面说了这么多,要真正的改变数据怎么办,也就是做投影变换!在ArcToolBox—>Data Management Tools->Projections and Transformations下做!在这个工具集下有这么几个工具最常用:1、Define Projection2、Feature—〉Project3、Raster->Project Raster4、Create Custom Geographic Transformation当数据没有任何空间参考时,显示为Unknown!时就要先利用Define Projection来给数据定义一个Coordinate System,然后在利用Feature-〉Project或Raster—〉Project Raster工具来对数据进行投影变换!由于我国经常使用的投影坐标系统为北京54,西安80!由这两个坐标系统变换到其他坐标系统下时,通常需要提供一个Geographic Transformation,因为Datum已经改变了!这里就用到我们说常说的转换3参数、转换7参数了!而我们国家的转换参数是保密的!因此可以自己计算或在购买数据时向国家测绘部门索要!知道转换参数后,可以利用Create Custom Geographic Transformation工具定义一个地理变换方法,变换方法可以根据3参数或7参数选择基于GEOCENTRIC_TRANSLATION和COORDINATE_方法!这样就完成了数据的投影变换!数据本身坐标发生了变化!当然这种投影变换工作也可以在ArcMap 中通过改变Data 的Coordinate System来实现,只是要在做完之后在按照Data 的坐标系统导出数据即可!方法一:在Arcmap中转换:1、加载要转换的数据,右下角为经纬度;2、点击视图——数据框属性——坐标系统;3、导入或选择正确的坐标系,确定.这时右下角也显示坐标.但数据没改变;4、右击图层-—数据-—导出数据;5、选择第二个(数据框架),输出路径,确定;6、此方法类似于投影变换。
ArcGIS中坐标系统简介ArcGIS中坐标系统简介GIS处理的是空间信息,⽽所有对空间信息的量算都是基于某个坐标系统的,因此GIS中坐标系统的定义是GIS系统的基础,正确理解GIS中的坐标系统就变得尤为重要。
ArcGIS是⼤家常⽤的地理信息系统软件,但是对于其中的坐标系统,许多⼈都表⽰不理解。
现在就介绍⼀下ArcGIS的坐标系统特点及其中常⽤坐标系统。
⾸先,我们要介绍⼀下基础知识,在ArcGIS中,坐标系统有两种,⼀种叫做地理坐标系统(Geographic Coordinate Systems),还有⼀种叫投影坐标系统(Projected Coordinate Systems),他们位于ArcGIS安装⽬录的Coordinate Systems ⽂件夹中,其实ArcGIS还有⼀种坐标系统叫做Vertical Coordinate Systems,直译过来就是垂直坐标系统,其实就是定义空间地理数据所采⽤的⾼程基准,⽐如中国现⾏的⾼程基准是1985国家⾼程基准。
1. 地理坐标系统(Geographic Coordinate Systems)所谓地理坐标系统(Geographic Coordinate Systems)是指⽤经纬度表⽰地⾯点位的球⾯坐标,很显然地理坐标系统为球⾯坐标系统。
ArcGIS中最常⽤的地理坐标系统为WGS84,locaspace viewer三维地球软件所采⽤的坐标系统也是WGS84投影坐标系,该坐标系应⽤⾮常⼴泛,其参数如下:Angular Unit: Degree (0.017453292519943295)Prime Meridian: Greenwich (0.000000000000000000)Datum: D_WGS_1984Spheroid: WGS_1984Semimajor Axis: 6378137.000000000000000000Semiminor Axis: 6356752.314245179300000000Inverse Flattening: 298.257223563000030000 从上⾯的参数中我们可以看出,WGS84地理坐标系统包含有Angular Unit(⾓度单位)、Prime Meridian(本初⼦午线)、Datum(基准⾯)和Spheroid (椭球体)四个参数。
一直以来,总有很多朋友针对地理坐标系、大地坐标系这两个概念吃不透。
近日,在网上看到一篇文章介绍它们,非常喜欢。
所以在此转发一下,希望能够对制图的朋友们有所帮助。
地理坐标:为球面坐标。
参考平面地是椭球面,坐标单位:经纬度大地坐标:为平面坐标。
参考平面地是水平面,坐标单位:米、千米等地理坐标转换到大地坐标的过程可理解为投影。
(投影:将不规则的地球曲面转换为平面)在ArcGIS中预定义了两套坐标系:地理坐标系(Geographic coordinate system)投影坐标系(Projected coordinate system)1、首先理解地理坐标系(Geographic coordinate system),Geographic coordinate system直译为地理坐标系统,是以经纬度为地图的存储单位的。
很明显,Geographic coordinate syst em是球面坐标系统。
我们要将地球上的数字化信息存放到球面坐标系统上,如何进行操作呢地球是一个不规则的椭球,如何将数据信息以科学的方法存放到椭球上这必然要求我们找到这样的一个椭球体。
这样的椭球体具有特点:可以量化计算的。
具有长半轴,短半轴,偏心率。
以下几行便是Krasovsky_1940椭球及其相应参数。
Spheroid: Krasovsky_1940Semimajor Axis:SemiminoInverse Flattening然而有了这个椭球体以后还不够,还需要一个大地基准面将这个椭球定位。
在坐标系统描述中,可以看到有这么一行:Datum: D_Beijing_1954表示,大地基准面是D_Beijing_1954。
--------------------------------------------------------------------------------有了Spheroid和Datum两个基本条件,地理坐标系统便可以使用。
完整参数:Alias:Abbreviation:Remarks:Prime Meridian(起始经度): GreenwichDatum(大地基准面): D_Beijing_1954Spheroid(参考椭球体): Krasovsky_1940Semimajor Axis:2、接下来便是Projection coordinate system(投影坐标系统),首先看看投影坐标系统中的一些参数。
Projection: Gauss_KrugerParameters:False_Easting:False_Northing:Central_Meridian:Scale_Factor:Latitude_Of_Origin:Linear Unit: MeterGeographic Coordinate System:Name: GCS_Beijing_1954Alias:Abbreviation:Remarks:Prime Meridian: GreenwichDatum: D_Beijing_1954Spheroid: Krasovsky_1940Semimajor Axis:从参数中可以看出,每一个投影坐标系统都必定会有Geographic Coordinate System。
投影坐标系统,实质上便是平面坐标系统,其地图单位通常为米。
那么为什么投影坐标系统中要存在坐标系统的参数呢这时候,又要说明一下投影的意义:将球面坐标转化为平面坐标的过程便称为投影。
好了,投影的条件就出来了:a、球面坐标b、转化过程(也就是算法)也就是说,要得到投影坐标就必须得有一个“拿来”投影的球面坐标,然后才能使用算法去投影!即每一个投影坐标系统都必须要求有Geographic Coordinate System参数。
关于北京54和西安80是我们使用最多的坐标系先简单介绍高斯-克吕格投影的基本知识,了解就直接跳过,我国大中比例尺地图均采用高斯-克吕格投影,其通常是按6度和3度分带投影,1:万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。
具体分带法是:6度分带从本初子午线开始,按经差6度为一个投影带自西向东划分,全球共分60个投影带,带号分别为1-60;3度投影带是从东经1度30秒经线开始,按经差3度为一个投影带自西向东划分,全球共分120个投影带。
为了便于地形图的测量作业,在高斯-克吕格投影带内布置了平面直角坐标系统,具体方法是,规定中央经线为X轴,赤道为Y轴,中央经线与赤道交点为坐标原点,x值在北半球为正,南半球为负,y值在中央经线以东为正,中央经线以西为负。
由于我国疆域均在北半球,x值均为正值,为了避免y值出现负值,规定各投影带的坐标纵轴均西移500km,中央经线上原横坐标值由0变为500km。
为了方便带间点位的区分,可以在每个点位横坐标y值的百千米位数前加上所在带号,如20带内A点的坐标可以表示为YA=20 。
在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Beijing 1954目录中,我们可以看到四种不同的命名方式:Beijing 1954 3 Degree GK CMBeijing 1954 3 Degree GK ZoneBeijing 1954 GK ZoneBeijing 1954 GK Zone对它们的说明分别如下:三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前不加带号三度分带法的北京54坐标系,中央经线在东75度的分带坐标,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前加带号六度分带法的北京54坐标系,分带号为13,横坐标前不加带号在Coordinate Systems\Projected Coordinate Systems\Gauss Kruger\Xian 1980目录中,文件命名方式又有所变化:Xian 1980 3 Degree GK CMXian 1980 3 Degree GK ZoneXian 1980 GK CMXian 1980 GK Zone西安80坐标文件的命名方式、含义和北京54前两个坐标相同,但没有出现“带号+N”这种形式,为什么没有采用统一的命名方式让人看了有些费解。
大地坐标(GeodeticCoordinate):大地测量中以参考椭球面为基准面的坐标。
地面点P的位置用大地经度L、大地纬度B和大地高H表示。
当点在参考椭球面上时,仅用大地经度和大地纬度表示。
大地经度是通过该点的大地子午面与起始大地子午面之间的夹角,大地纬度是通过该点的法线与赤道面的夹角,大地高是地面点沿法线到参考椭球面的距离。
方里网:是由平行于投影坐标轴的两组平行线所构成的方格网。
因为是每隔整公里绘出坐标纵线和坐标横线,所以称之为方里网,由于方里线同时又是平行于直角坐标轴的坐标网线,故又称直角坐标网。
在1:1万——1:20万比例尺的地形图上,经纬线只以图廓线的形式直接表现出来,并在图角处注出相应度数。
为了在用图时加密成网,在内外图廓间还绘有加密经纬网的加密分划短线(图式中称“分度带”),必要时对应短线相连就可以构成加密的经纬线网。
1:25万地形图上,除内图廓上绘有经纬网的加密分划外,图内还有加密用的十字线。
我国的1:50万——1:100万地形图,在图面上直接绘出经纬线网,内图廓上也有供加密经纬线网的加密分划短线。
直角坐标网的坐标系以中央经线投影后的直线为X轴,以赤道投影后的直线为Y轴,它们的交点为坐标原点。
这样,坐标系中就出现了四个象限。
纵坐标从赤道算起向北为正、向南为负;横坐标从中央经线算起,向东为正、向西为负。
虽然我们可以认为方里网是直角坐标,大地坐标就是球面坐标。
但是我们在一副地形图上经常见到方里网和经纬度网,我们很习惯的称经纬度网为大地坐标,这个时候的大地坐标不是球面坐标,她与方里网的投影是一样的(一般为高斯投影),也是平面坐标。
在之前的博文中,为大家介绍过ArcGIS中的地理坐标系和投影坐标系(或称大地坐标系)(),这里面简要的说明了两者的概念及关系。
接下来,针对这块的GIS理论基础,将做个系统全面的介绍,希望为各位带来帮助。
1、现实世界和坐标空间的联系任何空间特征都表示为地球表面的一个特定位置,而位置依赖于既定的坐标系来表示。
通过统一的坐标系和高程系,可以使不同源的GIS数据叠加在一起显示,以及执行空间分析。
2、地球空间模型描述为了深入研究地理空间,需要建立地球表面的几何模型,这是进行大地测量的前提。
根据大地测量学的成果,地球表面几何模型可以分为三类:1) 第一类是地球的自然表面。
2) 第二类是相对抽象的面,即大地水准面,可用来代表地球的物理化形状。
其中大地水准面包围的球体,叫大地球体,是对地球形体的一级逼近。
地球上有71%的海洋面积,因此可以假设当海水处于完全静止的平衡状态时,从海平面延伸到所有大陆下部,而与地球重力方向处处正交的一个连续、闭合的曲面,这就是大地水准面。
它是重力等位面。
3) 第三类是以大地水准面为基准建立起来的地球椭球体模型。
大地水准面虽然十分复杂,但从整体来看,起伏是微小的,且形状接近一个扁率极小的椭圆绕短轴旋转所形成的规则椭球体,这个椭球体称为地球椭球体。
其表面是一个规则数学表面,可用数学公式表达,所以在测量和制图中用它替代地球的自然表面。
地球形体的二级逼近。
地球椭球体有长半径a(赤道半径)和短半径b(极半径)之分,f为椭圆的扁率。
a、b、f是其三要素,决定地球椭球体的形状和大小。
各种地球椭球体模型(参考椭球体,下面会介绍)如下图所示。
我国1952年以前采用海福特椭球体,从1953年起采用克拉索夫斯基椭球体。
1978年我国决定采用新椭球体GRS(1975),并以此建立了我国新的、独立的大地坐标系,对应ArcGIS里面的Xian_1980椭球体。
从1980年开始采用新椭球体GRS(1980),这个椭球体参数与ArcGIS中的CGCS2000椭球体相同。
地球椭球体视为球体:制作小比例尺地图时(小于1:500万),因缩小程度很大,可以把地球视为球体,忽略地球扁率。
计算更简单,半径约为6371千米。
地球椭球体视为椭球体:制作大比例尺地图时(大于1:100万),为保证精度,必须将地球视为椭球体。
3、地理坐标系地球的形状与大小确定之后,还必须确定椭球体与大地水准面的相对关系,这项工作称为椭球定位与定向。
与大地水准面符合得最好的一个地球椭球体,称为参考椭球体,是地球形体三级逼近。
说到这里,我们需要对这几个词汇做区分:球体:小比例尺,视作球体。
椭球体/旋转椭球体:大比例尺,两个概念不区分。