2013年广东省中考数学试卷
- 格式:doc
- 大小:393.00 KB
- 文档页数:6
2013年中考数学试题(广东省卷)(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. (2013年广东省3分)2的相反数是【 】A.12-B. 12C.-2D.2 【答案】C 。
2. (2013年广东省3分)下列几何体中,俯视图为四边形的是【 】A. B. C. D.【答案】D 。
3. (2013年广东省3分)据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为【 】A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 【答案】B 。
4. (2013年广东省3分)已知实数a 、b ,若a >b ,则下列结论正确的是【 】A.a 5<b 5--B.2a<2b ++C.a b<33D.3a>3b 【答案】D 。
5. (2013年广东省3分)数据1、2、5、3、5、3、3的中位数是【 】A.1B.2C.3D.5 【答案】C 。
6. (2013年广东省3分)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是【 】A.30°B.40°C.50°D.60° 【答案】C 。
7. (2013年广东省3分)下列等式正确的是【 】A.311--=() B. 041-=() C. ()()236222-⨯-=- D. ()()422555-÷-=- 【答案】B 。
8. (2013年广东省3分)不等式5x 1>2x 5-+的解集在数轴上表示正确的是【 】A.B.C.D.【答案】A 。
9. (2013年广东省3分)下列图形中,不是..轴对称图形的是【 】A. B. C. D.【答案】C 。
2013年省初中毕业生学业考试数学(时间:100分钟 满分:120分)班别:__________学号:____________:___________成绩:______________一、选择题(本大题10小题,每小题3分,共30分) 1. 2的相反数是( )A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为( )A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是( )A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是( ) A.1 B.2 C.3 D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是( ) A.30° B.40° C.50° D.60°7.下列等式正确的是( ) A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则是函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的角和是__________.14.在R t △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=821y x y x① ②18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设R t △CBD 的面积为S 1, R t △BFC 的面积为S 2, R t △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O是Rt△ABC的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5,BE⊥DC交DC的延长线于点E.(1)求证:∠BCA=∠BAD;(2)求DE的长;(3)求证:BE是⊙O的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重∠FDE=90°,DF=4,DE=3合,直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ;18.选取①、②得3)(3)(332222b a b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,A D ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3). (3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x yFNMEDC BAGFN MEDCB AFEA当0=y 时,23=x ,∴P(23,0).24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.25. 解:(1)15;(2)在R t △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=ο30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FNDE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ; ②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF =∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆ 综上所述,当20≤≤x 时,844312+++-=x x y 题25图(4)题25图(5)当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=。
2013年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的相反数是()A .21-B .21C .2-D .22.下列四个几何体中,俯视图为四边形的是()3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A .1210126.0⨯元 B .121026.1⨯元 C .111026.1⨯元 D .11106.12⨯元 4.已知实数a 、b ,若b a >,则下列结论正确的是()A .55-<-b aB .b a +<+22C .33b a < D .b a 33> 5.数学1、2、5、3、5、3、3的中位数是()A .1B .2C .3D .56.如题6图,DF AC //,EF AB //,点D 、E 分别在AB 、AC 上,若︒=∠502,则1∠的大小是() A .︒30 B .︒40 C .︒50 D .︒607.下列等式正确的是()A .1)1(3=--B .1)4(0=-C .6322)2()2(-=-⨯-D .2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是()9.下列图形中,不是..轴对称图形的是()10.已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是()二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.分解因式:92-x = .12.若实数a 、b 满足042=-++b a ,则=ba 2 . 13.一个六边形的内角和是 .14.在ABC Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A sin .15.如题15图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D 逆时针旋转︒180,点E 到了点E '位置,则四边形E E AC '的形状是 . 16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=,82,1y x y x 18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD ∆≌EFC ∆四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22、如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设CB D Rt ∆的面积为1S ,BFC Rt ∆的面积为2S ,DCE Rt ∆的面积为3S ,则3S 1S +2S (用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如题23图,当2=m 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PD PC +最短?,若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是ABC Rt ∆的外接圆,︒=∠90ABC ,弦BD=BA ,AB=12,BC=5,DC BE ⊥交DC 的延长线于点E.(1)求证:BAD BCA ∠=∠;(2)求DE 的长;(3)求证:BE 是⊙O 的切线.(25.有一副直角三角板,在三角板ABC 中,︒=∠90BAC ,AB=AC=6,在三角板DEF 中,︒=∠90FDE ,DF=4,34=DE .将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 到点A 重合时,设EF 与BC 交于点M ,则=∠EMC 15 度;(2)如题25图(3),当三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;12根号3(3)在三角板DEF 运动过程中,设x BF =,两块三角板重叠部分的面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.。
2013年广东省初中毕业生学业考试数学说明:1. 全卷共4页,考试用时100 分钟.满分为120 分.2.答题前,考生务必用黑色字迹的签字笔或钢笔在答题卡上填写自己准考证号、姓名、试室号、座位号,用2B铅笔把对应号码的标号涂黑.3.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案,答案不能答在试题上.4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 2的相反数是A. B. C.-2 D.2答案:C解析:2的相反数为-2,选C,本题较简单。
2.下列几何体中,俯视图为四边形的是答案:D解析:A、B、C的俯视图分别为五边形、三角形、圆,只有D符合。
3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元答案:B解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.1 260 000 000 000=1.26×1012元4.已知实数、,若>,则下列结论正确的是A. B. C. D.答案:D解析:不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A、B、C错误,选D。
2013年中考数学试题(广东省卷)(本试卷满分120分,考试时间100分钟)一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. (2013年广东省3分)2的相反数是【 】A.12-B. 12C.-2D.2 【答案】C 。
2. (2013年广东省3分)下列几何体中,俯视图为四边形的是【 】A. B. C. D.【答案】D 。
3. (2013年广东省3分)据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为【 】A. 0.126×1012元B. 1.26×1012元C. 1.26×1011元D. 12.6×1011元 【答案】B 。
4. (2013年广东省3分)已知实数a 、b ,若a >b ,则下列结论正确的是【 】A.a 5<b 5--B.2a<2b ++C.a b<33D.3a>3b 【答案】D 。
5. (2013年广东省3分)数据1、2、5、3、5、3、3的中位数是【 】A.1B.2C.3D.5 【答案】C 。
6. (2013年广东省3分)如图,AC ∥DF ,AB ∥EF ,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是【 】A.30°B.40°C.50°D.60° 【答案】C 。
7. (2013年广东省3分)下列等式正确的是【 】A.311--=() B. 041-=() C. ()()236222-⨯-=- D. ()()422555-÷-=- 【答案】B 。
8. (2013年广东省3分)不等式5x 1>2x 5-+的解集在数轴上表示正确的是【 】A. B.C.D.【答案】A 。
9. (2013年广东省3分)下列图形中,不是..轴对称图形的是【 】A. B. C. D.【答案】C 。
第一部分 选择题(共30分)一、选择题:1、比0大的数是( ) A -1 B 12-C 0D 1 2、图1所示的几何体的主视图是( )(A )(B)(C)(D)正面3、在6×6方格中,将图2—①中的图形N 平移后位置如图2—②所示,则图形N 的平移方法中,正确的是( )A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格 4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.C'图6ACB O A'B'A O图7yx( 6, 0 )P三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y x20.(本小题满分10分)已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”AD图9BC为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里); (2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.23.(本小题满分12分)如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- ---姓名= a⎩绝密★启用前在广东省 2013 年初中毕业生学业考试数 学9. 下列图形中,不.是.轴对称图形的是 ( )本试卷满分 120 分,考试时间 100 分钟.此一、选择题(本大题 10 题,每小题 3 分,共 30 分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.2 的相反数是()10. 已知k <0<k ,则是函数 y = k x -1和 y = k 2 的图象大致是()1 2 1xA. - 1 2B. 12C. -2D. 2卷2.下列几何体中,俯视图为四边形的是() 二、填空题(本大题 6 小题,每小题 4 分,共 24 分)请将下列各题的正确答案填写在答题卡相应的位置上. 11.分解因式: x 2 - 9 = .12. 若实数a 、b 满足| a + 2 | + 20 ,则 = . b上3.据报道,2013 年第一季度,广东省实现地区生产总值约 1 260 000 000 000 元,用科学记数法表示为 ( ) A . 0.126⨯1012 元 B .1.26⨯1012 元 C .1.26⨯1011 元 D .12.6⨯1011 元 4.已知实数a 、b ,若a >b ,则下列结论正确的是 ( )13. 一个六边形的内角和是.14. 在Rt △ABC 中, ∠ABC = 90︒ , AB = 3 , BC = 4 ,则sin A = .DE 着 CB 的中点 D 逆时针旋转180︒ ,点 E 到了点 E ' 位置,则四边形 ACE ' E 的形状 A . a - 5<b - 5 B . 2 + a <2 + b C. a <b 3 3D. 3a >3b 是.答5.数据 1、2、5、3、5、3、3 的中位数是 ( ) A .1 B . 2 C . 3 D . 56. 如题 6 图, AC ∥DF , AB ∥EF ,点 D 、 E 分别在 AB 、 AC 上,若 ∠2 = 50︒ ,则∠1 的大小是 ( ) A . 30︒ B . 40︒ 题C . 50︒D . 60︒ 7. 下列等式正确的是 ( )16. 如题 16 图,三个小正方形的边长都为1 ,则图中阴影部分面积的和是(结果保留π ).A . (-1)3 = 1B . (-4)0= 1 三、解答题(一)(本大题 3 小题,每小题 5 分,共 15 分)C . (-2)2 ⨯(-2)3 = -26D . (-5)4 ÷ (-5)2 = -52⎧x = y +1, ① 8. 不等式5x -1>2x + 5 的解集在数轴上表示正确的是()无17.解方程组⎨2x + y = 8. ②18.从三个代数式:① a 2 - 2ab + b 2 ,② 3a - 3b ,③ a 2 - b 2 中任意选择两个代数式构造成分式,然后进行化简,并求当 a = 6 , b = 3 时该分式的值.效数学试卷 第 1 页(共 4 页)数学试卷 第 2 页(共 4 页)b -4 毕业学校考生号15.如题 15 图,将一张直角三角板纸片 ABC 沿中位线 剪开后,在平面上将△BDE 绕 A . B . C . D .ABCDA .B .C .D .A .B .C .D .19.如题19 图,已知□ABCD .(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE =BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:△AFD≌△EFC .23.已知二次函数y =x2 - 2mx +m2 -1 .(1)当二次函数的图象经过坐标原点O(0,0) 时,求二次函数的解析式;(2)如题23 图,当m = 2 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下, x 轴上是否存在一点P ,使得PC +PD 最短?若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.四、解答题(二)(本大题3 小题,每小题8 分,共24 分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20 图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20 图);(2)若七年级学生总人数为920 人,请你估计七年级学生喜爱羽毛球运动项目的人数.【表1】样本人数分布表24.如题24 图, O 是Rt△ABC 的外接圆, ∠ABC = 90BE ⊥DC 交DC 的延长线于点E .(1)求证:∠BCA =∠BAD ;(2)求DE 的长;(3)求证:BE 是O 的切线.,弦BD =BA , AB =12 , BC = 5 ,25.有一副直角三角板,在三角板ABC 中, ∠BAC =90, AB =AC = 6 ,在三角板DEF 中,21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000 元,第三天收到捐款12 100 元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率; (2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22 图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C .(1)设Rt△CBD 的面积为S1 , Rt△BFC 的面积为S2 ,Rt△DCE 的面积为S3 ,则S1S2+S3(用“>”、“=”、“<”填空);(2)写出题22 图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3 小题,每小题9 分,共27 分)数学试卷第3 页(共4 页)∠FDE =90︒,DF = 4 ,DE = 4 3 .将这副直角三角板按如题25 图(1)所示位置摆放, 点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25 图(2),当三角板DEF 运动到点D 与点A 重合时,设EF 与BC 交于点M ,则∠EMC = 度;(2)如题25 图(3),在三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设BF =x ,两块三角板重叠部分面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.数学试卷第4 页(共4 页)类别人数百分比排球 3 6%乒乓球14 28%羽毛球15篮球20%足球8 16%合计100%。
2013年广东省初中毕业生学业考试数 学说明:1. 全卷共4页,考试用时100 分钟.满分为 120 分.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 2的相反数是A.21-B. 21C.-2D.22.下列几何体中,俯视图为四边形的是3.据报道,2013年第一季度,广东省实现地区生产总值约1 260 000 000 000元,用科学记数法表示为 A. 0.126×1012元 B. 1.26×1012元 C. 1.26×1011元 D. 12.6×1011元 4.已知实数a 、b ,若a >b ,则下列结论正确的是A.55-<-b aB.b a +<+22C.33ba < D.b a 33> 5.数据1、2、5、3、5、3、3的中位数是A.1B.2C.3D.56.如题6图,AC ∥DF,AB ∥EF,点D 、E 分别在AB 、AC 上,若∠2=50°,则∠1的大小是 A.30° B.40° C.50° D.60°7.下列等式正确的是 A.1)1(3=-- B. 1)4(0=- C. 6322)2()2(-=-⨯- D. 2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是9.下列图形中,不是..轴对称图形的是10.已知210k k <<,则是函数11-=x k y 和k y 2=的图象大致是二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:92-x =________________.12.若实数a 、b 满足042=-++b a ,则=ba 2________. 13.一个六边形的内角和是__________.14.在R t △ABC 中,∠ABC=90°,AB=3,BC=4,则sinA=________.15.如题15图,将一张直角三角板纸片ABC 沿中位线DE 剪开后,在平面上将△BDE 绕着CB 的中点D 逆时针旋转180°,点E 到了点E ′位置, 则四边形ACE ′E 的形状是________________.16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________(结果保留π). 三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解方程组⎩⎨⎧=++=821y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选择两个代数式构造成分式,然后进行化简,并求当3,6==b a 时该分式的值.19.如题19图,已知□ABCD .(1)作图:延长BC,并在BC 的延长线上截取线段CE,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,不连结AE,交CD 于点F,求证:△AFD ≌△EFC.四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表. (1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);① ②21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF,使得另一边EF 过原矩形的顶点C.(1)设R t △CBD 的面积为S 1, R t △BFC 的面积为S 2, R t △DCE 的面积为S 3 , 则S 1______ S 2+ S 3(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.五、解答题(三)(本大题3小题,每小题9分,共27分)23. 已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O(0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C,顶点为D, 求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P,使得PC+PD 最短?若P 点 存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt △ABC 的外接圆,∠ABC=90°,弦BD=BA,AB=12,BC=5, BE ⊥DC 交DC 的延长线于点E.(1)求证:∠BCA=∠BAD; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6,在三角板DEF中,4.将这副直角三角板按如题25图(1)所示位置摆放,点B与点F重合,∠FDE=90°,DF=4,DE=3直角边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动.(1)如题25图(2),当三角板DEF运动到点D与点A重合时,设EF与BC交于点M,则∠EMC=______度;(2)如题25图(3),在三角板DEF运动过程中,当EF经过点C时,求FC的长;(3)在三角板DEF运动过程中,设BF=x,两块三角板重叠部分面积为y,求y与x的函数解析式,并求出对应的x取值范围.FED CBA参考答案一、C D B D C C B A C A二、11.)3)(3(-+x x ;12. 1;13. 720°;14.54;15.平行四边形;16.83π 三、17.⎩⎨⎧==23y x ; 18.选取①、②得3)(3)(332222ba b a b a b a b ab a -=--=-+-,当3,6==b a 时,原式=1336=-(有6种情况).19. (1)如图所示,线段CE 为所求;(2)证明:在□ABCD 中,A D ∥BC,AD=BC.∴∠CEF=∠DAF ∵CE=BC,∴AD=CE,又∵∠CFE=∠DFA,∴△AFD ≌△EFC. 20.(1)30%、10、50;图略;(2)276(人).21.(1)10%;(2)12100×(1+0.1)=13310(元). 22.(1) S 1= S 2+ S 3;(2)△BCF ∽△DBC ∽△CDE; 选△BCF ∽△CDE证明:在矩形ABCD 中,∠BCD=90°且点C 在边EF 上,∴∠BCF+∠DCE=90° 在矩形BDEF 中,∠F=∠E=90°,∴在Rt △BCF 中,∠CBF+∠BCF=90° ∴∠CBF=∠DCE,∴△BCF ∽△CDE.23.(1)m=±1,二次函数关系式为x x y x x y 2222-=+=或;(2)当m=2时,1)2(3422--=+-=x x x y ,∴D(2,-1);当0=x 时,3=y ,∴C(0,3).(3)存在.连结C 、D 交x 轴于点P,则点P 为所求,由C(0,3)、D(2,-1)求得直线CD 为32+-=x y 当0=y 时,23=x ,∴P(23,0). 24.(1)∵AB=DB,∴∠BDA=∠BAD,又∵∠BDA=∠BCA,∴∠BCA=∠BAD. (2)在Rt △ABC 中,AC=135122222=+=+BC AB ,易证△ACB ∽△DBE,得ACBDAB DE =, ∴DE=13144131212=⨯ (3)连结OB,则OB=OC,∴∠OBC=∠OCB,∵四边形ABCD 内接于⊙O,∴∠BAC+∠BCD=180°,又∵∠BCE+∠BCD=180°,∴∠BCE=∠BAC,由(1)知∠BCA=∠BAD,∴∠BCE=∠OBC,∴OB ∥DE ∵BE ⊥DE,∴OB ⊥BE,∴BE 是⊙O 的切线.FNMEDC BAGFN MEDCB AFEA25. 解:(1)15;(2)在R t △CFA 中,AC=6,∠ACF=∠E=30°,∴FC=30cos AC=6÷3423= (3)如图(4),设过点M 作MN ⊥AB 于点N,则MN ∥DE,∠NMB=∠B=45°,∴NB=NM,NF=NB-FB=MN-x∵MN ∥DE ∴△FMN ∽FED,∴FD FN DE MN =,即434x MN MN -=,∴x MN 233+= ①当20≤≤x 时,如图(4) ,设DE 与BC 相交于点G ,则DG=DB=4+x ∴x x x MN BF DG DB S S y BMF BGD 23321)4(2121212+⋅⋅-+=⋅⋅-⋅⋅=-=∆ 即844312+++-=x x y ;②当3262-≤<x 时,如图(5),x x MN BF AC S S y BMFBCA 23321362121212+⋅-⨯=⋅⋅-⋅=-=∆ 即184332++-=x y ; ③当4326≤<-x 时, 如图(6) 设AC 与EF 交于点H , ∵AF=6-x ,∠AHF =∠E=30° ∴AH=)6(33x AF -=2)6(23)6(3)6(21x x x S y FHA -=-⋅-==∆综上所述,当20≤≤x 时,844312+++-=x x y 当3262-≤<x ,184332++-=x y 当4326≤<-x 时,2)6(23x y -=题25图(4)题25图(5)。
2013年广东省初中毕业生学业考试(数学)一、选择题(本大题10小题,每小题3分,共30分) 1.2的相反数是( )A .21-B .21C .2-D .22.下列四个几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为( ) A .1210126.0⨯元 B .121026.1⨯元 C .111026.1⨯元 D .11106.12⨯元4.已知实数a 、b ,若a b >,则下列结论正确的是( )A .55-<-b aB .b a +<+22C .33ba < D .b a 33> 5.数据1、2、5、3、5、3、3的中位数是( )A .1B .2C .3D .56.如题6图,DF AC //,EF AB //,点D 、E 分别在AB 、AC 上,若︒=∠502,则1∠的大小是( ) A .︒30 B .︒40 C .︒50 D .︒60 7.下列等式正确的是( ) A .1)1(3=-- B .1)4(0=-C .6322)2()2(-=-⨯-D .2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分) 11.分解因式:92-x= . 12.若实数a 、b 满足042=-++b a ,则=ba 2. 13.一个六边形的内角和是 . 14.在A B C Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A s i n. 15.如图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D 逆时针旋转︒180, 点E 到了点E '位置,则四边形E E AC '的形状是 .16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=,82,1y x y x 18.从三个代数式:①222b ab a+-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.19. 如题19图,已知□ABCD.(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法); (2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD ∆≌EFC ∆20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21.雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22.如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C. (1)设CBD Rt ∆的面积为1S ,BFC Rt ∆的面积为2S ,DCE Rt ∆的面积为3S ,则1S 2S +3S(用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.23.已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式; (2)如题23图,当2=m 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;(3)在(2)的条件下,x 轴上是否存在一点P ,使得PD PC +最短?,若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是Rt ABC ∆的外接圆,︒=∠90ABC ,弦BD=BA ,AB=12,BC=5,DC BE ⊥交DC 的延长线于点E.(1)求证:BAD BCA ∠=∠;(2)求DE 的长;(3)求证:BE 是⊙O 的切线.25. 有一副直角三角板,在三角板ABC 中,︒=∠90BAC ,AB=AC=6,在三角板DEF 中,︒=∠90FDE ,DF=4,34=DE .将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 到点A 重合时,设EF 与BC 交于点M ,则=∠EMC 度; (2)如题25图(3),当三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长; (3)在三角板DEF 运动过程中,设x BF =,两块三角板重叠部分的面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.。
2013年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的相反数是( )A .21-B .21C .2-D .22.下列四个几何体中,俯视图为四边形的是( )3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A .1210126.0⨯元B .121026.1⨯元C .111026.1⨯元D .11106.12⨯元4.已知实数a 、b ,若b a >,则下列结论正确的是( )A .55-<-b aB .b a +<+22C .33ba< D .b a 33>5.数学1、2、5、3、5、3、3的中位数是( )A .1B .2C .3D .56.如题6图,DF AC //,EF AB //,点D 、E 分别在AB 、AC 上,若︒=∠502,则1∠的大小是( )A .︒30B .︒40C .︒50D .︒607.下列等式正确的是( )A .1)1(3=--B .1)4(0=-C .6322)2()2(-=-⨯-D .2245)5()5(-=-÷-8.不等式5215+>-x x 的解集在数轴上表示正确的是( )9.下列图形中,不是..轴对称图形的是( )10.已知210k k <<,则函数11-=x k y 和xk y 2=的图象大致是( )二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.11.分解因式:92-x = .12.若实数a 、b 满足042=-++b a ,则=ba 2 . 13.一个六边形的内角和是 .14.在ABC Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A sin .15.如题15图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D 逆时针旋转︒180,点E 到了点E '位置,则四边形E E AC '的形状是 .16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).三、解答题(一)(本大题3小题,每小题5分,共15分)17.解方程组⎩⎨⎧=++=,82,1y x y x18.从三个代数式:①222b ab a +-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行化简,并求出当6=a ,3=b 时该分式的值.19.如题19图,已知□ABCD.(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,连结AE ,交CD 于点F ,求证:AFD ∆≌EFC ∆四、解答题(二)(本大题3小题,每小题8分,共24分)20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.21、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多少捐款?22、如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设CB D Rt ∆的面积为1S ,BFC Rt ∆的面积为2S ,DCE Rt ∆的面积为3S ,则1S 2S +3S (用“>”、“=”、“<”填空);(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.四、解答题(三)(本大题3小题,每小题9分,共27分)23.已知二次函数1222-+-=m mx x y .(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;(2)如题23图,当2=m 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标; (3)在(2)的条件下,x 轴上是否存在一点P ,使得PD PC +最短?,若P 点存在,求出P 点的坐标;若P 点不存在,请说明理由.24.如题24图,⊙O 是ABC Rt ∆的外接圆,︒=∠90ABC ,弦BD=BA ,AB=12,BC=5,DC BE ⊥交DC 的延长线于点E.(1)求证:BAD BCA ∠=∠; (2)求DE 的长;(3)求证:BE 是⊙O 的切线.25.有一副直角三角板,在三角板ABC 中,︒=∠90BAC ,AB=AC=6,在三角板DEF 中,︒=∠90FDE ,DF=4,34=DE .将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.(1)如题25图(2),当三角板DEF 运动到点D 到点A 重合时,设EF 与BC 交于点M ,则=∠EMC 度;(2)如题25图(3),当三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;(3)在三角板DEF 运动过程中,设x BF =,两块三角板重叠部分的面积为y ,求y 与x 的函数解析式,并求出对应的x 取值范围.↓2013年广东省中考数学试题答案一、选择CDBDC CBACA二、填空11、()()33x x +- 12、1 13、720︒ 14、45 15、平行四边形 16、38π 三、解答题(一)17、32x y =⎧⎨=⎩18、略 19、略四、解答题(二)20、30%、10、50、276人21、(1)10%(2)13310元22、(1)=(2)△BCD ∽△CFB ∽△DEC五、解答题(三)23、(1)22y x x =-或22y x x =+(2)C (0,3)、D (2,-1)(3)当P 、C 、D 共线时最短,P (32,0) 24、(1)∵BD =BA ,∴∠BCA =∠BAD(2)∵△BED ∽△CBA ,∴BD DE AC AB =,∴12144,131213DE DE == (3)连结OB ,OD∵AB=DB ,OA=OD ∴△ABO ≌△DBO∴∠DBO=∠ABO ∵∠ABO=∠OAB=∠BDC∴∠DBO=∠BDC∴OB //ED∵BE ⊥ED∴EB ⊥BO∴BE 是⊙O 的切线. 25、(1)15 (2)∵△AFC ∽△DFE,∴,8FC AC FCFE DE == ∴FC =(3)解:①当0≤ x ≤2时,过点M 作M N ⊥AB 于点N ,则MN=x 233+↓ ↓↓ ↓ 8441323321)4(2122+++-=+⋅-+⨯=x x x x x y②当2< x ≤326-时,过点M 作M N ⊥AB 于点N , 则MN=x 233+184332332162122++-=+⋅-⨯=x x x y③当326-< x ≤6时,3183623)6(3)6(212+-=-⨯-=x x x x y综上:()⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<-+--≤<++-≤≤+++-=)6326(3183623)3262(184332084413222x x x x x x x x y。
2013
年广东省初中毕业生学业考试
数
学
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.
1.2的相反数是()
A.2
1
-B.
2
1
C.2
-D.2
2.下列四个几何体中,俯视图为四边形的是()
3.据报道,2013年第一季度,广东省实现地区生产总值约1260 000 000 000元,用科学记数法表示为()A.12
10
126
.0⨯元B.12
10
26
.1⨯元C.11
10
26
.1⨯元D.11
10
6.
12⨯元
4.已知实数
a、b,若b
a>,则下列结论正确的是()
A.5
5-
<
-b
a B.b
a+
<
+2
2C.
3
3
b
a
<D.b
a3
3>
5.数学1、2、5、3、5、3、3的中位数是()
A.1 B.2 C.3 D.5
6.如题6图,DF
AC//,EF
AB//,点D、E分别在AB、AC上,若︒
=
∠50
2,
则1
∠的大小是()
A.︒
30B.︒
40C.︒
50D.︒
60
7.下列等式正确的是()
A.1
)1
(3=
--B.1
)4
(0=
-
C.
6
3
22
)2
(
)2
(-
=
-
⨯
-D.2
2
45
)5
(
)5
(-
=
-
÷
-
8.不等式5
2
1
5+
>
-x
x的解集在数轴上表示正确的是()
9.下列图形中,不是..
轴对称图形的是( )
10.已知210k k <<,则函数11-=x k y 和x k y 2
=的图象大致是( )
二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应位置上.
11.分解因式:92-x = .
12.若实数a 、b 满足042=-++b a ,则=b
a 2 . 13.一个六边形的内角和是 .
14.在ABC Rt ∆中,︒=∠90ABC ,3=AB ,4=BC ,则=A sin .
15.如题15图,将一张直角三角形纸片ABC 沿中位线DE 剪开后,在平面上将BDE ∆绕着CB 的中点D 逆时针旋转︒180,点E 到了点E '位置,则四边形E E AC '的形状是 .
16.如题16图,三个小正方形的边长都为1,则图中阴影部分面积的和是 (结果保留π).
三、解答题(一)(本大题3小题,每小题5分,共15分)
17.解方程组⎩⎨⎧=++=,
82,
1y x y x
18.从三个代数式:①22
2b ab a
+-,②b a 33-,③22b a -中任意选两个代数式构造分式,然后进行
化简,并求出当6=a ,3=b 时该分式的值.
19.如题19图,已知□ABCD.
(1)作图:延长BC ,并在BC 的延长线上截取线段CE ,使得CE=BC (用尺规作图法,保留作图痕迹,不要求写作法);不讲解
(2)在(1)的条件下,连结AE ,交CD 于点F ,
求证:AFD ∆≌EFC ∆
四、解答题(二)(本大题3小题,每小题8分,共24分)
20.某校教导处为了解该校七年级同学对排球、乒乓球、羽毛球、篮球和足球五种球类运动项目的喜爱情况(每位同学必须且只能选择最喜爱的一项运动项目),进行了随机抽样调查,并将调查结果统计后绘制成了如【表1】和题20图所示的不完整统计图表.
(1)请你补全下列样本人数分布表(【表1】)和条形统计图(题20图);
(2)若七年级学生总人数为920人,请你估计七年级学生喜爱羽毛球运动项目的人数.
样本总人数=50 羽毛球百分比30% 篮球人数10人,
920×30%=276
21、雅安地震牵动着全国人民的心,某单位开展了“一方有难,八方支援”赈灾捐款活动.第一天收到捐款10 000元,第三天收到捐款12 100元.
(1)如果第二天、第三天收到捐款的增长率相同,求捐款增长率;
(2)按照(1)中收到捐款的增长率速度,第四天该单位能收到多
少捐款?
10000(1+x )²=12100
解得x=1/5 x=-11/5 (舍去)
12100×(1+1/5)=14550
22、如题22图,矩形ABCD 中,以对角线BD 为一边构造一个矩形
BDEF ,使得另一边EF 过原矩形的顶点C.
(1)设CBD Rt ∆的面积为1S ,BFC Rt ∆的面积为2S ,DCE Rt ∆的面积为3S ,则3S = 1S +2
S (用“>”、“=”、“<”填空);
(2)写出题22图中的三对相似三角形,并选择其中一对进行证明.
△BFC ∽△CED
四、解答题(三)(本大题3小题,每小题9分,共27分)
23.已知二次函数1222-+-=m mx x y .
(1)当二次函数的图象经过坐标原点O (0,0)时,求二次函数的解析式;
M=±1,y=x ²±2x
(2)如题23图,当2=m 时,该抛物线与y 轴交于点C ,顶点为D ,求C 、D 两点的坐标;
M=2,那么y=x ²-4x+3 c (0,3) D (2,-1)
(3)在(2)的条件下,x 轴上是否存在一点P ,使得PD PC +最短?,若P 点存在,求出P 点的坐标;若P
点不存在,请说明理由.
24.如题24图,⊙O 是ABC Rt ∆的外接圆,︒=∠90ABC ,弦BD=BA ,AB=12,BC=5,DC BE ⊥交DC 的延长线于点E.
(1)求证:BAD BCA ∠=∠;
(2)求DE 的长;
(3)求证:BE 是⊙O 的切线.
(等弧所对的圆周角相等)
AB=12,BC=5,AC=13
弦BD=BA
AB=BD=12
∠BAC=∠BDC
DE/BD=AB/AC
DE=11.08
连结BO 。
BO=OA
∠BAC=∠BDC
BE 是⊙O 的切线.
25.有一副直角三角板,在三角板ABC 中,︒=∠90BAC ,AB=AC=6,在三角板DEF 中,︒=∠90FDE ,DF=4,34=DE .将这副直角三角板按如题25图(1)所示位置摆放,点B 与点F 重合,直角边BA 与FD 在同一条直线上.现固定三角板ABC ,将三角板DEF 沿射线BA 方向平行移动,当点F 运动到点A 时停止运动.
(1)如题25图(2),当三角板DEF 运动到点D 到点A 重合时,设EF 与BC 交于点M ,则=∠EMC 15 度;
(2)如题25图(3),当三角板DEF 运动过程中,当EF 经过点C 时,求FC 的长;12根号3
(3)在三角板DEF 运动过程中,设x BF =,两块三角板重叠部分的面积为
y ,求y 与x 的函数解析式,并求
出对应的x 取值范围.。