推荐传输DWDM波分系统色散补偿原则
- 格式:ppt
- 大小:425.00 KB
- 文档页数:29
色散补偿方法一、背景介绍色散是光在介质中传播时,不同频率光的传播速度不同所引起的现象。
在光纤通信中,色散会导致光脉冲扩展,从而限制了信号传输的速率和距离。
为了克服色散对光纤通信系统性能的影响,人们提出了各种色散补偿方法。
二、色散的分类根据色散现象的产生原理,色散可以分为两种类型:色散和相位色散。
色散是由于介质导致光在传播过程中速度的频率依赖性而引起的;相位色散则是由于介质对光的频率的相位响应不同而引起的。
在光纤通信中,我们主要关注两种类型的色散:色散和相位色散。
三、色散补偿方法1. 电子色散补偿电子色散补偿是通过使用光纤通信系统中的电子器件来减小或消除色散效应。
常见的电子色散补偿方法包括预计算和数字后处理两种。
1.1 预计算预计算方法通过事先对传输系统的特性建立模型,利用数值计算方法来评估和补偿色散效应。
它需要在系统设计阶段进行复杂的计算和建模工作,预测色散对光信号的影响,并提前进行补偿。
预计算方法的优点是可以准确地估计和补偿色散效应,但需要大量的计算和建模工作,并且对系统的实时性要求较高。
1.2 数字后处理数字后处理方法是通过对接收到的光信号进行数字信号处理来补偿色散效应。
这种方法在接收端引入了一些算法和电子器件,对接收到的光信号进行补偿。
数字后处理方法的优点是不需要对系统进行复杂的计算和建模,且实时性较好。
然而,它需要更高的计算能力和复杂的信号处理算法,且对噪声和非线性效应敏感。
2. 光纤色散补偿器光纤色散补偿器是一种被动光学元件,通过引入具有逆色散特性的光纤来补偿传输过程中产生的色散效应。
光纤色散补偿器通常包括光纤光栅和光纤光波导等结构。
它能够在光信号传输过程中引入逆色散效应,可以有效地补偿色散引起的脉冲扩展问题。
光纤色散补偿器的优点是结构简单、易于集成和应用,并且具有较好的逆色散特性。
但是,光纤色散补偿器的逆色散效应对频率的补偿范围有限。
3. 相位共轭相位共轭是一种通过光学器件来反转光波的相位特性,从而消除色散效应的方法。
色散补偿的原理色散补偿(dispersion compensation)是一种常见的光纤通信技术,它是为了弥补光在光纤内因色散而引起的信号失真而发展出来的一种技术。
色散是光在介质中传输时,由于不同频率的光波速度不同而引起的现象,它会导致光信号在光纤中传输时出现信号失真、色散扩展等问题。
因此,为了保持信号品质、提高光纤通信效率,需要对光信号进行色散补偿。
色散补偿的原理是在光纤通信系统中增加一个补偿器件,使补偿器件能够补偿因色散而引起的信号失真。
如图1所示,信号在传输过程中会因为时间延迟而出现失真。
色散补偿就是在发送端(transmitter)或者接收端(receiver)添加一些器件,减少这种时间延迟的影响,保证信号能够按照原先的信号速率传输,并且在传输距离较远的时候能够保持高质量的传输。
图1:光信号因色散引起的失真为了实现色散补偿,技术人员可以采用一些具体的策略。
比如,在传输端,可以使用预失真技术(pre-emphasis)来强化信号的宽带,从而降低信号的失真和色散;或者可以采用限制带宽的技术,减少信号受到色散的影响;或者选择合适的光纤材质,使纤芯的折射率变化能够与色散的变化呈反向变化,从而实现一定程度的补偿。
在接收端,可以采用时间反激励技术(time-reversal),将补偿器件与光接收器组合在一起,保证信号的补偿效果。
时间反激励技术利用了一个非线性反馈回路,来将通过光传输通道的信号进行恢复,并调整信号的相位、幅度等特征,来改善信号传输的质量。
除此之外,还可以采用其他的补偿技术,比如项链状补偿和光子晶体补偿等,来实现对光信号的补偿。
这些技术都是基于对光信号相位、幅度等特征进行有效调整,能够降低信号失真、提高光纤通信的效率。
综上所述,色散补偿是一种关键的光纤通信技术,它的实现需要引入一定的器件和技术,以解决光信号在传输过程中由于色散而引起的失真问题。
通过合理的方案设计,可以为光纤通信系统提供高性能、高效率的信号传输。
高速光通信系统中的色散补偿1.前言随着光传输系统中的传输速率的提高和信号传输带宽的增加,色散问题日益显著。
已经铺设的常规光纤规G.652线路的零色散点位于1310nm,在1550 nm处时则具有较大的色散系数(17ps/nm/km),光脉冲信号经过长途传输后,由于光纤色散值的积累引起脉冲展宽,导致严重的码间串扰,使得接收端产生误码现象,从而使传输特性变坏。
光纤色散补偿技术的研究,对提高目前已经铺设的常规光纤通信系统的容量具有尤其重要的意义。
色散补偿器对于推动全光网络架构起着决定性作用,发展高速全光网络的一个先决条件是必须做到光层面的色散监控与管理。
色散补偿器件在高速传输系统及下一代智能光网络中有着广泛应用。
2. 技术方案简介目前商用的光学色散补偿模块,包含固定色散补偿和可调色散补偿两大类,分别是基于色散补偿光纤、啁啾光纤光栅、GT标准具这三种技术方案。
2.1 色散补偿光纤色散补偿光纤是利用基模波导来获得高的负色散值,通过改变光纤的芯径、掺杂浓度等结构参数,使零色散波长移至大于1550nm波长的位置,于是在1550nm处得到较大的负色散系数,通常在-50~-200ps/nm/km。
为了得到高的负色散值系数,必须减小光纤芯径,增加相对折射率差,而这种作法往往又会导致光纤的衰耗增加(0. 5~1dB/km)。
为了能在整个波段均匀补偿常规单模光纤的色散,又开发出一种既补偿色散又能补偿色散斜率的补偿光纤。
该光纤的特点是色散斜率之比与常规光纤相同,但符号相反,所以更适合在整个波形内的均衡补偿。
色散补偿光纤已经在全世界的高速通信系统中得到了广泛应用,许多传输系统都是通过DCF+G.652光纤实现的,具有无群时延抖动,全波段连续补偿,能够从100G Hz间隔系统平滑升级到50GHz间隔系统等优点,但存在损耗大、光脉冲延迟高、非线性效应以及模块尺寸大等缺点。
2.2 啁啾光纤光栅啁啾通常是指一种频率变化的现象。
如果光纤光栅的周期沿长度方向发生一定变化,则其频率沿长度方向也会发生一定变化,即发生了啁啾,称这种光栅为啁啾光纤光栅。
色散补偿技术介绍光通信使用的G.652标准光纤在1550 nm波长窗口的色散值为17ps/nm.km。
1550nm外调制传输系统光纤链路色散的容差比SDH等数字通信1550nm光链路要小得多,仅为1100 ps 左右,因此,对于1550nm外调制光纤干线/超干线而言,必须尽力解决好色散补偿问题。
目前,光通信系统使用的光纤色散补偿技术大多是针对非载波调制数字光纤系统的,因此,对于HFC有线电视宽带网络1550nm光纤干线/超干线而言,实际可供选用的色散补偿手段较少,限制条件较多,在实际1550nm外调制光纤传输链路中如何用好有关色散补偿技术还存在不少问题。
目前业内几种色散补偿技术介绍:1、色散补偿光纤(DCF)色散补偿光纤(DCF)开发于20世纪90年代中期,它在实现色散补偿任务中扮演了十分重要的角色。
目前,国内99% 以上1550nm外调制光纤干线/超干线仍然使用G.652标准光纤,因此在每个(或几个)光纤段的输入或输出端可以通过放置DCF色散补偿模块(DCM),周期性地使光纤链路上累积的色散接近零,使单信道1550nm外调制光纤干线/超干线传输光纤的色散得到较好的补偿。
但是,一般的1550nm外调制光纤干线/超干线长距离传输系统中所使用光发射机的光波长范围较大,可达20nm。
此外,随着在1550nm外调制光纤干线/超干线长距离传输系统中CWDM或DWDM技术的引入,必须考虑光纤对不同波长信道的色散斜度问题。
以G.652光纤1550 nm窗口为例,光纤的色散明显地随波长而变化,在1530nm处色散系数约为15.5ps/nm.km,在1565nm处约为17.6ps/nm.km,色散斜率(定义为色散系数对波长的微分)约为0.06ps/nm.km。
假设宽带色散补偿器件对所有C-band信号的色散补偿量是一样的,则经多个光纤段传输后,红端信号光(1565nm)所积累的色散将明显大于比蓝端(1530nm),因此,无论对于一般的1550nm外调制光纤干线/超干线长距离传输系统或CWDM/DWDM1550nm外调制光纤干线/超干线长距离传输系统,都必需考虑采用斜率补偿型色散补偿光纤组件,用于补偿光纤的色散斜率,将总色散控制在色散容限窗口内,使1550nm外调制光纤干线/超干线长距离传输系统中色散斜率问题得到较好的解决。
光纤通信系统中偏振模色散效应的补偿设计一、引言随着社会的信息化,用户对通信容量的需求日益增加,未来全业务服务中每一用户的容量需求可能超过100 Mb/s。
在这种需求的推动下,作为现代长途干线通信主体的光纤通信一直在朝着高速率、大容量和长距离的方向发展。
在单信道速率不断提升(现已发展到10 Gb/s,正向40 Gb/s甚至160Gb/s发展)的同时,密集波分复用技术(DWDM)也已日趋成熟并商用化。
从技术的角度来看,限制高速率信号长距离传输的因素主要包括光纤衰减、非线性和色散。
掺铒光纤放大器(EDFA)的研制成功,使光纤衰减对系统的传输距离不再起主要限制作用。
而非线性效应和色散对系统传输的影响随着非零色散位移光纤(NZDSF)的引入也逐渐减小和消除。
随着单信道传输速率的提高和模拟信号传输带宽的增加,原来在光纤通信系统中不太被关注的偏振模色散(PMD)问题近来变得十分突出。
与光纤非线性和色散一样,PMD能损害系统的传输性能,限制系统的传输速率和距离,并被认为是限制高速光纤通信系统传输容量和距离的最终因素。
正是由于PMD对高速大容量光纤通信系统有着不可忽视的影响,所以自20世纪90年代以来,已引起业界的广泛关注,并正成为目前国际上光纤通信领域研究的热点。
二、光纤中偏振模色散的定义单模光纤中,基模是由两个相互垂直的偏振模组成的。
两偏振模的群速度由于受到外界一些不稳定因素的影响而产生差异,在传播中两偏振模的迭加使得信号脉冲展宽,从而形成偏振模色散。
PMD是由以下几个方面的因素造成的:光纤所固有的双折射,即光纤在生产过程中产生的几何尺寸不规则和在光纤中残留应力导致折射率分布的各向异性;光缆在铺设使用过程中,由于受到外界的挤压、弯曲、扭转和环境温度变化的影响而产生偏振模耦合效应,从而改变两偏振模各自的传播常数和幅度,导致PMD;另外当光信号通过一些光通信器件如隔离器、耦合器、滤波器时,由于器件结构和材料本身的不完整性,也能导致双折射,产生PMD。
色散补偿原理色散补偿是指在光通信系统中,由于光纤的色散效应而引起的信号失真问题,需要采取一定的措施来进行补偿的原理。
色散是指不同波长的光在光纤中传输时由于光速不同而导致的信号传输延迟不同的现象,这会使得信号在传输过程中发生扭曲,影响系统的传输质量。
因此,色散补偿原理是光通信系统中非常重要的一个环节。
首先,我们来看一下色散补偿的原理。
色散补偿的主要方法有预色散补偿和后色散补偿两种。
预色散补偿是在光发射端进行的补偿,通过在光发射端加入特定的色散补偿器件,可以在光信号传输过程中对色散进行补偿,从而减小色散对信号的影响。
而后色散补偿则是在光接收端进行的补偿,通过在光接收端对接收到的信号进行处理,来消除色散引起的失真。
其次,色散补偿的原理是基于对光信号的频率特性进行调整。
由于色散效应导致不同频率的光信号在光纤中传输时产生不同的传输延迟,因此可以通过对光信号的频率特性进行调整来进行色散补偿。
预色散补偿可以通过在光发射端加入特定的色散补偿器件,来对光信号的频率特性进行调整,从而实现对色散的补偿。
后色散补偿则是通过在光接收端对接收到的信号进行数字信号处理,来对光信号的频率特性进行调整,从而消除色散引起的失真。
最后,色散补偿的原理是光通信系统中保证信号传输质量的重要手段。
在光通信系统中,由于光纤的色散效应会对信号的传输质量产生影响,因此需要采取一定的措施来进行色散补偿。
通过预色散补偿和后色散补偿两种方法,可以有效地对光信号的频率特性进行调整,从而减小色散对信号的影响,保证系统的传输质量。
综上所述,色散补偿原理是光通信系统中非常重要的一个环节,通过对光信号的频率特性进行调整,可以有效地消除色散引起的失真,保证系统的传输质量。
在实际应用中,需要根据具体的系统要求选择合适的色散补偿方法,从而实现对色散的有效补偿,保证光通信系统的正常运行。
色散补偿原理色散补偿原理是指在光通信系统中,由于光纤对不同波长的光信号传输速度不同而产生的色散效应,通过一定的方法或器件来抵消或补偿这种色散效应,以保证光信号的传输质量和稳定性。
色散补偿技术是光通信系统中非常重要的一部分,对于提高光信号的传输速率、扩大传输距离、提高系统性能都起着至关重要的作用。
光纤通信系统中的色散效应是由于光在光纤中传输时不同波长的光信号由于色散导致传输速度不同而产生的。
一般来说,光纤通信系统中的色散效应主要包括色散的模式,即色散的波长和色散的位相。
在光通信系统中,色散效应会导致光信号的波形失真、频率偏移、相位畸变等问题,从而影响光信号的传输质量和稳定性。
为了解决光纤通信系统中的色散效应,人们提出了多种色散补偿原理和技术。
常见的色散补偿原理包括预补偿原理、后补偿原理、混合补偿原理等。
预补偿原理是指在光信号传输前通过一定的方法对光信号进行预处理,使得光信号在光纤中传输时能够抵消或减小色散效应。
后补偿原理是指在光信号传输后通过一定的方法对光信号进行处理,以抵消或减小色散效应。
混合补偿原理则是指在光信号传输前后均进行补偿处理,以最大程度地减小色散效应。
色散补偿技术主要包括电子补偿技术、光子补偿技术和光纤设计优化等。
电子补偿技术是指通过在光信号传输前后加入特定的电子器件或电路来对光信号进行处理,以抵消或减小色散效应。
光子补偿技术是指通过光学器件或光学方法对光信号进行处理,以减小色散效应。
光纤设计优化则是指通过改变光纤的结构或材料,以减小色散效应。
总的来说,色散补偿原理是光通信系统中非常重要的一部分,对于提高光信号的传输质量和稳定性具有至关重要的作用。
随着光通信技术的不断发展,人们对色散补偿原理和技术也在不断进行研究和改进,以满足日益增长的光通信需求。
希望通过不断的努力和创新,能够更好地解决光纤通信系统中的色散效应,提高光信号的传输速率和质量。
色散是光纤的一种重要的光学特性,它引起光脉冲的展宽,严重限制了光纤的传输容量。
对于在长途干线上实际使用的单模光纤,起主要作用的是色度色散,在高速传输时偏振模色散也是不可忽视的因素。
随着脉冲在光纤中传输,脉冲的宽度被展宽,劣化的程度随数据速率的平方增大,决定了电中继器之间的距离。
色散补偿是单纯地采用各种手段减小系统最终的残余色散,而色散管理除了考虑色散补偿外,同时还要考虑光纤非线性的影响,即使系统具有较大的本地色散和较小的残余色散。
这是因为光纤非线性的抑制和完全色散补偿是存在矛盾的,例如当光纤具有很低的色散时,则互相位调制和四波混频等非线性的危害就比较严重。
简单的色散补偿只考虑一阶色散补偿,但一阶色散补偿只能补偿零色散波长处附近的几个波长的色散,而对于长距离传输和高速率传输系统则需要考虑高阶色散补偿,即对色散斜率的补偿。
常用的色散补偿器件包括单模和光纤布拉格光栅。
单模色散补偿光纤DCF 是当前使用最广泛、技术最成熟的器件。
它具有特殊设计的折射率分布,因此具有较大的波导色散(表现为负色散),能和具有正色散的G .652、G .655光纤适配,完成色散补偿的功能。
但是DCF 的色散斜率偏小,不能完全补偿单模传输光纤的色散斜率,必要时需要对部分信道进行单独的色散补偿,另外,DCF 的有效面积小,非线性阈值功率低、光纤损耗大,所以在色散管理中需要综合考虑。
为了克服单模色散补偿光纤的缺点,高阶模色散补偿光纤(HOM-DCF )被开发出来,它的优点是具有较大的负色散,较大的有效面积较大的相对色散斜率,从而能匹配各种NZDSF 。
其缺点是需要分立的模式转换器,既增加了成本又增加了插损,还会引入不同模式之间的多径干涉噪声(应该限制在-40dB 以下)。
高阶模色散补偿光纤的可靠性和实用性还有待进一步的研究,和单模DCF 一样,HOM-DCF 的色散补偿量不可以调节,限制了使用的灵活性。
光纤布拉格光栅的工作原理是利用啁啾光栅对不同波长信号的反射点不同,改变了信号的差分群时延,从而完成色散补偿的功能。