4_4矩阵的秩
- 格式:ppt
- 大小:934.50 KB
- 文档页数:47
第28卷第1期2021年3月辽东学院学报(自然科学版)Journal of Eastern Liaoning University(Natural Science Edition)Vol.28No.1Mar.2021[基础科学与应用】DOI:10.14168/j.issn.1673-4939.2021.01.12关于矩阵秩的几个重要不等式黄述亮①(滁州学院数学与金融学院,安徽滁州239001)摘要:针对学生学习矩阵秩的不等式比较困难的问题,综合运用演绎、分析与综合、化归的数学论证方法对秩的估计、秩的降阶及互素多项式等方面的重要不等式进行研究,并举例说明这些不等式在分块矩阵、线性方程组及判断线面位置关系等问题中的应用,这将有助于学生更好地掌握矩阵的基本理论,提高学生的抽象思维能力和逻辑思维能力。
关键词:矩阵的秩;初等变换;齐次线性方程组中图分类号:0153.3文献标志码:A文章编号:1673-4939(2021)01-0061-05众所周知,在线性代数(或高等代数)课程中最主要的内容就是矩阵及其相关运算。
在学习矩阵的过程中会遇到的一个非常重要的概念——矩阵的秩。
在一般的教科书和文献中,习惯上用数学符号rank(A)来表示一个矩阵的秩,其定义是矩阵A 中的某个非零子式的最高阶数。
考虑到向量组、向量空间等概念,对矩阵分别进行行分块和列分块,且设A=(兔心,…,a”)=(肉,0;,…屈),则下列几个论断等价:(l)rank(A)=r;(2)rank(兔,他,…,a”)=r;(3)rank(0;,0:,…屈)=r;(4)dim®?如aj,a2,•••,a n|;(5)dimSpan W 嵐,…,0:}=r;(6)矩阵4的阶梯形矩阵中非零行(列)的行(列)数为r o矩阵的秩在很多领域中具有重要的理论意义和实际应用价值,比如在通信复杂性领域中,函数的通信矩阵的秩可以给出计算函数所需的通信量的界限。
此外,利用矩阵的秩可以定义数学中的等价关系,因此一个数域F上的全体"阶矩阵M”(F)可以被划分成n+1个子集(即等价类)的不交并M(F) =U U…U T”,其中7;={A e M”(F)I rank(4) =i}o换言之,矩阵的秩可以实现对全体矩阵的分类,这对进一步研究矩阵有着重要的意义。
矩阵的秩的求法
矩阵秩是用来衡量矩阵行(列)列向量空间的维数,它也是描述矩阵线性变换能力的量,是矩阵分解的重要指标,它的求法有多种,主要有下面几种:
一、基本定义法:
秩(Rank)是一个矩阵中非零的最大线性无关列数,也就是说矩阵有n列向量,如果它们的线性组合能够得到任意的列向量,就称这n列向量线性无关,它们之间构成一种基,n就是该矩阵的秩。
二、行列式法
用行列式法求解矩阵秩,是把矩阵的秩定义为矩阵的行列式值的非零因子的个数,例如矩阵的行列式值是 = 31 + 42 + 53,那么矩阵的秩便是三个非零因子的个数。
三、矩阵初等行变换法
采用该法求解矩阵秩的目的是要把原矩阵变换为一个列向量极
简行阶梯形矩阵,然后该矩阵的秩就等于非零行的数量。