四边形竞赛试题一
- 格式:doc
- 大小:76.50 KB
- 文档页数:11
初二几何竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是直角三角形的判定条件?A. 两边之和大于第三边B. 两边之差小于第三边C. 两边之和等于第三边D. 两边之和小于第三边答案:A2. 一个等腰三角形的底角是40°,那么顶角是多少度?A. 100°B. 80°C. 60°D. 120°答案:A3. 如果一个三角形的三个内角都是60°,那么这个三角形是:A. 等腰三角形B. 等边三角形C. 直角三角形D. 等腰直角三角形答案:B4. 一个圆的半径是5cm,那么它的周长是多少厘米?A. 10πB. 15πC. 20πD. 25π答案:C5. 一个矩形的长是宽的两倍,如果宽是3cm,那么矩形的面积是多少平方厘米?A. 9B. 12C. 18D. 24答案:C6. 下列哪个选项是平行四边形的性质?A. 对角线相等B. 对边相等C. 对角线互相垂直D. 对边互相垂直答案:B7. 一个正方形的对角线长度是5cm,那么它的边长是多少厘米?A. 2.5B. 3.5C. 4D. 5答案:C8. 一个圆的直径是10cm,那么它的面积是多少平方厘米?A. 25πB. 50πC. 100πD. 200π答案:C9. 一个等腰梯形的上底是6cm,下底是10cm,高是4cm,那么它的面积是多少平方厘米?A. 12B. 24C. 36D. 48答案:B10. 如果一个三角形的两边长分别是3cm和4cm,那么第三边的长度可能是:A. 1cmB. 2cmC. 5cmD. 7cm答案:C二、填空题(每题4分,共20分)1. 一个直角三角形的两条直角边长分别是3cm和4cm,那么斜边的长度是_________cm。
答案:52. 一个等腰三角形的顶角是30°,那么它的底角是_________°。
答案:753. 一个圆的半径是7cm,那么它的面积是_________平方厘米。
九年级数学(上)竞赛试题一. 选择题(每小题3分,共36分)1.一元二次方程的解是A .B .1203x x ==,C .1210,3x x == D . 2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形 B .菱形 C .矩形D .正方形3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是A .球B .圆柱C .圆锥D .棱锥4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m ,则旗杆高为 A 、22m B 、20m C 、18m D 、16m5. 下列说法不正确的是A .对角线互相垂直的矩形是正方形B .对角线相等的菱形是正方形C .有一个角是直角的平行四边形是正方形D .一组邻边相等的矩形是正方形 6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .107. 若点(3,4)是反比例函数221m m y x+-=图像上一点 ,则此函数图像必经过点A .(3,-4)B .(2,-6)C .(4,-3)D .(2,6)8. 二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x -- C .2(2)7x ++ D .2(2)1x +- 9.如图,在矩形ABCD 中,AB=2,BC=3.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )第9题图A .3√102B .3√105 C .√105 D .3√5510. 函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动 A .变短 B .变长 C .不变 D .无法确定12.如图,点A 在双曲线6y x=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为A .47B .5C .27D .22二:填空题.(每小题3分,共12分)13.如图,△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。
6风筝模型和梯形蝴蝶定理例题精讲【例11【巩固1【例21C、、/如图,四边形被两条对角线分成4个三角形,其中三个三角形的面积已知,求:⑴三角形BGC的面积;(2) AG:GC在^ABC中-B D=2:1,DC如图,平行四边形是2、4、4 和6.=?AE=I:3,求OB=?EC OEABCD的对角线交于0点,△ CEF、△ OEF、△ ODF、△ BOE的面积依次求:⑴求△ OCF的面积;⑵求△ GCE的面积.D【巩固】如右上图,已知 BO=2DO C0=5AO 阴影部分的面积和是 11平方厘米,求四边形 ABCD 的面积。
那么三角形DBE 的面积是O如图,边长为1的正方形ABCD 中,BE =2EC , CF =FD ,求三角形AEG 的面积.如图,长方形ABCD 中,BE: EC =2:3,DF :FC =1:2,三角形DFG 的面积为2平方厘米,求 长方形ABCD 的面积.如图,在 MBC 中,已知M 、N 分别在边AC 、BC 上,BM 与AN 相交于0 ,若AAOM 、虫ABO和人BON 的面积分别是3、2、1,则人MNC 的面积是如图4,在三角形 ABC 中,已知三角形 ADE 三角形DCE 三角形BCD 的面积分别是 89、28、26,-J f -I ”【例3】【巩固】【例4】 【巩固】CB【例5】已知ABCD是平行四边形,B C:CE=3:2,三角形ODE的面积为6平方厘米。
贝9阴影部分的面积是平方厘米。
AB E【巩固】在梯形ABCD中,上底长5厘米,下底长10厘米,S郎OC=20平方厘米,则梯形ABCD的面积是平方厘米。
【例6】如下图,一个长方形被一些直线分成了若干个小块,已知三角形ADG的面积是11,三角形BCH 的面积是23,求四边形EGFH的面积.【巩固】如图,长方形中,若三角形1的面积与三角形3的面积比为4比5,四边形2的面积为36,则三角形1的面积为在下图的正方形 ABCD 中,E 是BC 边的中点,AE 与BD 相交于F 点,三角形BEF 的面积为1如图所示,BD 、CF 将长方形ABCD 分成4块,心DEF 的面积是4平方厘米,ACED 的面积是6 平方厘米.问:四边形 ABEF 的面积是多少平方厘米?如图, MBC 是等腰直角三角形,DEFG 是正方形,线段 AB 与CD 相交于K 点.已知正方形DEFG 的面积48, AK : KB =1:3,则虫BKD 的面积是多少?如图所示,ABCD 是梯形,AADE 面积是1.8,心ABF 的面积是9,也BCF 的面积是27 .那么阴影 MEC 面积是多少?【例7】 平方厘米,那么正方形 ABCD 面积是平方厘米.【巩固】【例8】【巩固】方厘米,则四边形 PMON 勺面积是平方厘米。
八年级数学竞赛试题及参考答案八年级数学竞赛试题(一)一、选择题(每小题5分,共30分) 1.已知2220082008,2ca b a b c k k +=-==++=,且那么的值为( ). A .4 B .14 C .-4 D .14- 2.若方程组312433x y k x y k x y x y +=+⎧<<-⎨+=⎩的解为,,且,则的取值范围是( ). A .102x y <-<B .01x y <-<C .31x y -<-<-D .11x y -<-< 3.计算:2399100155555++++++=( ).A .10151- B .10051- C .101514- D .100514-4.如图,已知四边形ABCD 的四边都相等,等边△AEF 的顶点E 、F 分别在BC 、CD 上,且AE=AB ,则∠C=( ). A .100° B .105° C .110° D .120°5.已知5544332222335566a b c d a b c d ====,,,,则、、、的大小关系是( ). A .a b c d >>> B .a b d c >>> C .b a c d >>> D .a d b c >>> 6.如果把分数97的分子、分母分别加上正整数913a b 、,结果等于,那么a b +的最小 值是( ).A .26B .28C .30D .32 二、填空题:(每小题5分,共30分)(第4题图)DCB(第15题图)EDCBA7.方程组200820092007200720062008x y x y -=⎧⎨-=⎩的解是 .8.如图,已知AB 、CD 、EF 相交于点O ,EF ⊥AB ,OG 为∠COF 的平分线,OH 为∠DOG 的平分线,若∠AOC :∠COG=4:7,则∠GOH= .9.小张和小李分别从A 、B 两地同时出发,相向而行,第一次在距A 地5千米处相遇,继续往前走到各地(B 、A )后又立即返回,第二次在距B 地4千米处两人再次相遇,则A 、B 两地的距离是 千米.10.在△ABC 中,∠A 是最小角,∠B 是最大角,且2∠B=5∠A ,若∠B 的最大值为m °,最小值为n °,则m °+n °= .11.已知21()()()04b c b c a b c a a a+-=--≠=,且,则 . 12.设p q ,均为正整数,且7111015p q <<,当q 最小时,pq 的值为 . 以下三、四、五题要求写出解题过程. 三、(本题满分20分)13.在一次抗击雪灾而募捐的演出中,晨光中学有A 、B 、C 、D 四个班的同学参加演出,已知A 、B 两个班共16名演员,B 、C 两个班共20名演员,C 、D 两个班共34名演员,且各班演员的人数正好按A 、B 、C 、D 次序从小到大排列,求各班演员的人数. 四、(本题满分20分)14.已知2211x x y y x y =+=+≠,,且. ⑴ 求证:1x y +=. ⑵ 求55x y +的值.五、(本题满分20分)15.如图,在△ABC 中AC >BC ,E 、D 分别是AC 、BC 上的点,且∠BAD=∠ABE ,AE=BD .求证:∠BAD=12∠C .G(第8题图)HOFED CBA参考答案一、选择题1.A 2.B 3.C 4.A 5.A 6.B 二、填空题: 7、21x y =⎧⎨=⎩ 8、72.5° 9、11 10、175° 11、2 12、68213、解:依题意得:A+B=16,B+C=20,C+D=34∵A <B <C <D ,∴A <8,B >8,B <10,C >10,C <17,D >17 由8<B <10且B 只能取整数得,B=9 ∴C=11,D=23,A=7答:A 、B 、C 、D 各班演员人数分别是7人、9人、11人、23人。
第10章 四边形§10.1 平行四边形与梯形10.1.1★如图(a),在四边形ABCD 中,AC 、BD 是对角线,已知ABC △是等边三角形,30ADC ∠=︒,3AD =,5BD =,求边CD 的长.DABC DAB CE(a)(b)解析 如图(b),以CD 为边向四边形ABCD 外作等边CDE △,连结AE .由于AC BC =,CD CE =, BCD BCA ACD ∠=∠+∠DCE ACD =∠+∠ACE ∠. 所以BCD △≌ACE △,从而BD AE =.又因为30ADC ∠=︒,5BD =,3AD =,于是90ADE ∠=︒,从而在Rt ADE △中,4DE =.所以4CD =.10.1.2★在ABCD 中,2AB AD =,F 为AB 中点,CE AD ⊥D 交AD (或延长线)于E .求证:3BFE AEF ∠=∠.解析 如图,取CD 中点G ,连结FG 、CF .A FBE DGC易知四边形ADGF 与FGCB 均为菱形,FG 垂直平分CE ,于是EFG ∠CFG CFB =∠=∠,于是33BFE EFG AEF ∠=∠∠=∠.10.1.3★AD 、BE 、CF 是ABC △的三条中线,FG BE ∥,EG AB ∥,四边形ADCG 是平行四边形. 解析 如图,连结EF ,则EF 是中位线.AGFEB D C由条件知EG BF ∥,故EG AF ∥,于是AG EF CD ∥∥,故结论成立. 10.1.4★延长矩形ABCD 的边CB 到E ,使CE CA =,F 是AE 的中点,求证:BF FD ⊥.解析 如图,取BD 中点G ,连结FG ,则()11112222FG AD BE CE CA BD =+===,于是BF FD ⊥. ADBCADFGEBC题10.1.4题10.1.510.1.5★菱形ABCD中,2BD AC -=120BAD ∠=︒,求菱形的面积. 解析 如图,易知ABC △与ACD △均为正三角形.设菱形边长为x ,则由120BAD ∠=︒,得BD ,AC x =,所以)12x =x =此菱形面积为212BD AC ⋅=. 10.1.6★在梯形ABCD 中,AD BC ∥,中位线MN 分别交AB 、CD 、AC 、BD 于M 、N 、P 、Q ,若延长AQ 、DP 的交点正好位于BC 上,求BCAD. ADMQPNB RC解析 设AQ 、DP 延长后交于R ,且R 在BC 上,则由中位线知2AD PQ =,2AD PN =,2BC QN =,故2BCAD=. 10.1.7★★四边形ABCD 中,135ABC ∠=︒,120BCD ∠=︒,AB =5BC =6CD =,求AD . 解析 如图所示,作AF BC ⊥,DE BC ⊥分别交BC 所在直线于F 、E ,作FG AD ∥交DE 于G ,则AFB △为等腰直角三角形,90AFB ∠=︒,AB =故FB A F =;90DEC ∠=︒,60DCE ∠=︒,6CD =,故3CE =,DE =.F BCEADG所以EF FB BC CE =++538+=,GE DE DG DE AF =-=-==从而AD FG ==10.1.8★★★已知ABC △中,90A ∠=︒,D 是BC 上一点,D 关于AB 、AC 的对称点分别为F 、E ,若BE CF =,12AD BC =.解析 如图,连结AF 、AE 、BF 、CE .FAEBDC由对称,有22180FAD EAD BAD CAD ∠+∠=∠+∠=︒,故F 、A 、E 共线.又180BFE FEC ADB ADC ∠+∠=∠+∠=︒,故FB ∥EC ,而BE CF =,所以梯ECBF 为等腰梯形.又AF AD AE ==,于是1122AD EF BC ==.10.1.9★★将梯形的各个顶点均作关于不包含该顶点的对角线的对称点,证明:如果所得到的四个像点也形成四边形,则必为一个梯形.B'C'ADBCA'D'O解析 如图,AD BC ∥,A 、B 、C 、D 关于对应对角线的对称点分别为A ′、B ′、C ′、D ′. 设AC 、BD 交于O ,连结A ′O 、B ′O 、C ′O 、D ′O .则A ∠′OB =AOB COD C ∠=∠=∠′OD ,故A ′、O 、C ′共线,且A O AO C O CO '=',同理B ′、O 、D ′共线,B O D O ''BO DO =,所以由1BO CODO AO=≠得1B O C OD O A O''=≠''. 故如A ′、B ′、C ′、D ′不位于同一直线上,则A ′D ′∥B ′C ′,即A ′B ′C ′D ′成梯形.10.1.10★已知:直角梯形ABCD ,AD BC ∥,AB BC ⊥,AB BC =,E 是AB 上一点,AE AD =,75CEB ∠=︒,求ECD ∠.A DE BC解析 如图,连结AC ,则由AB BC =,AB BC ⊥,得45BAC DAC ∠=︒=∠. 又AE AD =,故AEC △≌ADC ,EC CD =.又180754560DEC ∠=︒-︒-︒=︒,故DEC △为正三角形,于是60ECD ∠=︒.10.1.11★★在四边形ABCD 中,60A ∠=︒,90B D ∠=∠=︒,2AB =,1CD =,求BC 、AD 和BD 的长.ACED解析 如图,延长AD 、BC 至E ,则60DCE ∠=︒,22CE CD ==.又60A ∠=︒,故BE =2BC =,又4AE =,CE,故4AD =.至于求BD ,有多种方法,如勾股定理或余弦定理,也可用A 、B 、C 、D 四点共圆的性质:AC,sin 60BD AC =⋅︒=§10.2 正方形10.2.1★在正方形ABCD 中,E 为BC 的中点,F 为CD 上的点,且AF BC CF =+.求证:2BAF BAE ∠=∠.ADBECFP解析 如图,延长AE 、DC ,设交于P ,则B E C E =得CP AB BC ==,FP FC CP FC BC AF =+++=.于是BAE P FAP ∠=∠=∠,即2BAF BAE ∠=∠.10.2.2★正方形边长等于1,通过它的中心引一条直线,求正方形的四个顶点到这条直线的距离平方和的取值范围.AMDONBCl解析 如图,设O 是正方形ABCD 的中心,l 通过O ,AM 、DN 分别与l 垂直于M 、N . 由于90MAO AOM DON ∠=︒-∠=∠,AO OD =,故AMO △≌OND △,2222212AM DN AM MO AO +=+==.对B 、C 的垂线也有类似结论,因此所求距离的平方和是常数1.10.2.3★正方形ABCD 的对角线交于O ,BAC ∠的平分线交BD 于G ,交BC 于F ,求证:2CFOG =. 解析 如图,作OE FC ∥,交AF 于E ,OE 为ACF △中位线,2CF EO =. 问题变为证明EO GO =.因为么4545GEO OAF FAF OGE ∠=︒+∠=∠+︒=∠,于是结论成立.ADE OG BFC10.2.4★设M 、N 分别为正方形ABCD 的边AD 、CD 的中点,且CM 与BN 交于P ,求证:PA AB =. 解析 如图,由MD CN =知BNC △≌CMD △,故90PBC PCB NCM PCB ∠+∠=∠+∠=︒,故C M B N ⊥.延长CM 、BA ,设交于Q ,则QA CD AD ==,A 为直角三角形QPB 斜边BQ 之中点,于是AP AB =.QADMBCN P题10.2.410.2.5★已知两个正方形ABCD 、AKLM (顶点均按照顺时针方向排列),求证:这两个正方形的中心和BM 、DK 的中点组成一个正方形.题10.2.5MAQBP CDRSLK解析 如图,设DB 、BM 、MK 、KD 的中点分别为P 、Q 、R 、S .由于DA AB =,AK AM =,90DAM BAM BAK ∠=︒+∠=∠,于是DAM △≌BAK △,由此得KB 与DM 垂直且相等.由于12SR DM PQ ∥∥,12SP KB RQ ∥∥,故四边形PQRS 为正方形.10.2.6★★M 是正方形ABCD 内一点,若2222AB MA MB -=,90CMB ∠=︒,求MCD ∠.解析 如图,作MN AB ⊥于N ,则22222,2,AB AN BN AM BM AN BN AB ⎧-=-=⎪⎨⎪+=⎩ADBLCMN解得34AN AB =,14BN AB =. 不妨设3AN =,3BN =,MN x =,则 ()22229(4)DM AN AD MN x =+-=+-, ()2222()14CM BN CM MN x =+-=+-,由条件90CMD ∠=︒,知222DM CM CD +=,即()2102416x +-=,解得4x = 又作ML BC ⊥于L,于是4LC x =-1ML NB ==,故60MCD LMC ∠=∠=︒.10.2.7★O 是正方形ABCD 的两对角线的交点,P 是BD 上异于O 的任一点,PE AD ⊥于E ,PF AB⊥于F ,G 是EO 的延长线和BC 的交点,求OFG ∠.CGB OPFDEA解析 如图,易知AF EP ED ==,AO DO =,45FAO EDO ∠=︒=∠,于是AFO △≌DEO △≌BGO △,于是OF OG =,90AOB FOG ∠=︒-∠,故OFG △为等腰直角三角形,45OFG ∠=︒.10.2.8★★K 是正方形ABCD 的边AB 的中点,点L 分对角线AC 的比为:3AL LC =,证明:90KLD ∠=︒.解析 连结BL ,由正方形关于AC 对称,知BL DL =. 又作LJ AB ⊥于J ,由3AL LC =,易知1142JB AB KB ==,故J 为KB 中点,JL 垂直平分KB ,于是LK LB =,LKB LBK ADL ∠=∠=∠,或180AKL ADL ∠+∠=︒,故90KLD ∠=︒.A EDFPOB GC10.2.9★已知ABC △,向外作正方形ABEF 和ACGH .直线AK 垂直BC 于K ,反向延长交FH 于M ,求证:M 是FH 的中点.解析 如图,作FQ 、HP 分别与直线KA 垂直,垂足为Q 、P .P HMFQ AEBKC G易见,90QFA QAF BAK ∠=︒-∠=∠,又90FQA AKB ∠=︒=∠,FA AB =,故有AQF △≌BKA △,FQ AK =,同理PH AK =,于是FQ PH =,FM MH =.10.2.10★已知:正方形ABCD 中,E 、F 分别在BC 、CD 上,AG EF ⊥于G .若45EAF ∠=︒,求证:AG AB =.反之,若AG AB =,则45EAF ∠=︒.解析 如图,延长CB 至H ,使BH DF =,连结AH ,则AHB △≌AFD △,90HAF BAD ∠=∠=︒,904545HAE EAF ∠=︒-︒=︒=∠,又AH AF =,AE AE =,故AHE △≌AFE △,AB 、AG 为其对应 边上的高,于是AG AB =.A D F GH B E C反之,若AG AB =,则Rt ABE △≌Rt AGE △,EAG BAE ∠=∠,同理,FAG DAF ∠=∠,于是1452EAF BAD ∠=∠=︒.10.2.11★★在梯形ABCD 中,AD BC ∥(BC >AD ),90D ∠=︒,12BC CD ==,E 在边CD 上,45ABE ∠=︒,若10AE =,求CE 的长.解析 延长DA 至M ,使BM BE ⊥过B 作BG AM ⊥,G 为垂足.易知四边形BCDG 为正方形,所以BC BG =.又CBE GBM ∠=∠,Rt BEC △≌Rt BMG △,故BM BE =. 又45ABE ABM ∠=∠=︒,故ABE △≌ABM △,10AM AE ==. 设CE x =,则10AG x =-,()12102AD x x =--=+,12DE x =-.在Rt ADE △中,222AE AD DE =+,故()()22100212x x =++-,即210240x x -+=,解之,得14x =,26x =.故CE 的长为4或6.DEC BAGM10.2.12★★在正方形ABCD 的边BC 上任取一点M ,过C 作CQ DM ⊥于Q ,且延长交AB 于N ,设正方形对角线的交点为O ,连结OM 、ON ,求证:OM ON ⊥.解析 如图,易知MDC NCB ∠=∠,故DMC △≌CNB △,故NB MC =,又45NBO OCM ∠=︒=∠,BO CO =,于是ONB △≌OMC △,90NOM BOC ∠=∠=︒.\ADBCMQON10.2.13★★四边形ABCD 是正方形,四边形ACEF 是菱形,E 、F 、B 在一直线上.求证:AE 、AF 三等分CAB ∠.解析 如图,作BM 、FN 与AC 垂直,垂足为M 、N ,于是由AB BF ∥知1122FN BM AC AF ===,于是30FAC ∠=︒.又45CAB ∠=︒,于是15BAF ∠=︒,15FAE CAE ∠=∠=︒,AE 、AF 三等分CAB ∠. ADBCMNFE。
全国初中数学竞赛试题汇编---几何解答题1、如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.(1)证明:点O 在圆D 的圆周上.(2)设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解:(1)连,,,OA OB OC AC ,因为O 为圆心,AB BC =,所以△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,所以9090DOB OBA OBC DBO ∠=°−∠=°−∠=∠,所以DB DO =,因此点O 在圆D 的圆周上.(2)设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,则222a x y =+,()S y a x =+,22222222()2222()aSl y a x y a ax x a ax a a x y=++=+++=+=+=.因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,所以△BDO ∽△ABC ,所以BD BO AB AC =,即2r a l y =,故2alr y=.所以22223222()4422a l a aS S a Sr y y y y ==⋅=⋅≥,即r ≥其中等号当a y =时成立,这时AC 是圆O 的直径.所以圆D 的的半径r .2、如图,给定锐角三角形ABC ,BC CA <,AD ,BE 是它的两条高,过点C 作△ABC 的外接圆的切线l ,过点D ,E 分别作l 的垂线,垂足分别为F ,G .试比较线段DF 和EG 的大小,并证明你的结论.解法1:结论是DF EG =.下面给出证明.因为FCD EAB ∠=∠,所以Rt △FCD ∽Rt △EAB .于是可得CD DF BE AB =⋅.同理可得CEEG AD AB=⋅.又因为tan AD BEACB CD CE ∠==,所以有BE CD AD CE ⋅=⋅,于是可得DF EG =.解法2:结论是DF EG =.下面给出证明连接DE ,因为90ADB AEB ∠=∠=°,所以A ,B ,D ,E 四点共圆,故CED ABC ∠=∠.又l 是⊙O 的过点C 的切线,所以ACG ABC ∠=∠.所以,CED ACG ∠=∠,于是DE ∥FG ,故DF =EG .3、是否存在一个三边长恰是三个连续正整数,且其中一个内角等于另一个内角2倍的△ABC ?证明你的结论.解:存在满足条件的三角形.当△ABC 的三边长分别为6=a ,4=b ,5=c 时,B A ∠=∠2.………………5分如图,当B A ∠=∠2时,延长BA 至点D ,使b AC AD ==.连接CD ,则△ACD 为等腰三角形.因为BAC ∠为△ACD 的一个外角,所以2BAC D ∠=∠.由已知,2BAC B ∠=∠,所以D B ∠=∠.所以△CBD 为等腰三角形.又D ∠为△ACD 与△CBD 的一个公共角,有△ACD ∽△CBD ,于是BDCDCD AD =,即cb aa b +=,所以()c b b a +=2.而264(45)=×+,所以此三角形满足题设条件,故存在满足条件的三角形.………………15分说明:满足条件的三角形是唯一的.若B A ∠=∠2,可得()c b b a +=2.有如下三种情形:(i )当b c a >>时,设1+=n a ,n c =,1−=n b (n 为大于1的正整数),代入()c b b a +=2,得()()()21121n n n +=−−,解得5=n ,有6=a ,4=b ,5=c ;(ⅱ)当b a c >>时,设1+=n c ,n a =,1−=n b (n 为大于1的正整数),代入()c b b a +=2,得()n n n 212⋅−=,解得2=n ,有2=a ,1=b ,3=c ,此时不能构成三角形;(ⅲ)当c b a >>时,设1+=n a ,n b =,1−=n c (n 为大于1的正整数),代入()c b b a +=2,得()()1212−=+n n n ,即0132=−−n n ,此方程无整数解.所以,三边长恰为三个连续的正整数,且其中一个内角等于另一个内角的2倍的三角形存在,而且只有三边长分别为4,5,6构成的三角形满足条件.4、△ABC 的三边长,,,,,BC a AC b AB c a b c === 都是整数,且,a b 的最大公约数是2.点G和点I 分别为△ABC 的重心和内心,且90oGIC ∠=,求△ABC 的周长.解:如图,连结GA ,GB ,过G ,I 作直线交BC 、AC 于点E 、F ,作△ABC 的内切圆I ,切BC 边于点D 。
四边形竞赛试题一、选择题:1. 如图,在矩形 ABCD 中,对角线 AC , BD 交于点0 .已知/ AOB=60 ° AC = 16,则图中长度为8的线段有( )A. 2条B . 4条C . 5条D . 6条2如图,形ABCD 中,AB = 6,点E 在边CD 上,且CD = 3DE .将△ ADE 沿AE对折至△ AFE,延长EF 交边BC 于点G ,连结AG 、CF .下列结论: ①厶ABG ^A AFG ;②BG = GC ;③AG //CF ;④S ^FGC = 3.其中正确结论的 个数是()3.如图,矩形纸片ABCD 中,已知AD=8,折叠纸片使AB 边与对角线AC 重合, 点B 落在点F处,折A . 1B. 2C . 3DC痕为AE,且EF=3,则AB的长为()4. 已知一个菱形的周长是 20cm ,两条对角线的比是4: 3,则这个菱形的面积是( )2 2 2 2A . 12cm B. 24cm C . 48cm D . 96cm5. 四边形的四条边长分别是 a 、b 、c 、d ,其中a 、c 为对边,且满足a 2b 2c 2d 2 2ab 2cd ,则这个四边形一定是( )A .平行四边形B .两组对角分别相等的四边形C .对角线互相垂直的四边形D .对角线相等的四边形 &如图,形ABCD 外有一点P ,P 在BC 外侧,并在平 AB 与 CD 之间,若 PA 二一 \ PB= :■:, PC=-,则 ( ) A . 2、 B. 彳 C . 3: D .7、如图,以Rt A ABC 的斜边BC 为一边在△ ABC 的同侧作形BCEF 设形的中心 为O ,连结AO ,如果AB=4,AO= 6、2,那么AC 的长等于( )(A) 12(B) 16(C) 4、3 (D) 8,2AB // DC ,AB 丄 BC, E 是 AD 的中点, 则梯形ABCD 的面积等于( ).A . 3B. 4C. 5D. 6B(A ) 13(B ) 8 (C )13(D ) 4D行线 :PD=C8、如图,在梯形7軀BCD 中, , ,(第 9 题) (第 10 题)9、 如图,在菱形 ABCD 中,/ A=110 ° , E , F 分别是边AB 和BC 的中点,EP丄CD 于点P ,则/ FPC=( ) A . 35° B . 45° C . 50° D . 55° 10、 将矩形纸片ABCD 按如图所示的方式折叠,得到菱形 AECF.若AB = 3,则BC 的长为( ) A . 1 B . 2 C . 2 D . ,3二、填空题:1、如图,△ ABC 中,AB=3,AC=4,BC=5,A ABD 、A ACE 、A BCF 都是等边 三角形,则四边形AEFD 的面积为 __________2、 在矩形 ABCD 中,已知两邻边 AD=12,AB=5,P 是AD 边上异于A 和D 的 任意一点,且PE 丄BD ,PF 丄AC ,E 、F 分别是垂足,那么 PE+PF= ______ .3、 长方形 ABCD 的面积为8,E 、F 分别在BC 、CD 上,且BE=FD=2,贝AEF 的面积= ____________ .4、 在梯形 ABCD 中AD//BC ,AD=2,AC=4,BC=6,那么梯形 ABCD 的面积为 5•在四边形ABCD 中,AB=DC , AD=BC.请再添加一个条件,使四边形 ABCD 是 矩形你添加的条件是 _______________ .(写出一种即可)6. 如图,矩形纸片 ABCD 中,AB = 2cm ,点E 在BC 上,且AE = EC.若将纸片沿 AE 折叠,点B 恰好与AC 上的点B'重合,则AC = ______________ c m.wBEL7. 平行四边形ABCD 中,AB = 6,BC = 4,/ ABC = 60 ° •要用一块矩形铝板E BP C切割出这样的平行四边形并使废料最少,则矩形的面积最小为___________ . 8. 阅读下面短文:如图〔,△ ABC是直角三角形,/ C=90。
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
2023年全国中学生数学奥林匹克竞赛(预赛)暨2023年全国高中数学联合竞赛一试(A 卷)试题(含参考答案)说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 设复数910i z (i 为虚数单位),若正整数n 满足2023n z ,则n 的最大值为 . 答案:2.解:22910181nnnnz z.因21812023z ,而当3n 时,181132023nn n z,故n 的最大值为2.2. 若正实数,a b 满足lg 2b a ,lg lg 5a b a b ,则lg ()ab ab 的值为 . 答案:20.解:因为lg lg lg lg 102a a b b b a ,所以lg lg lg lg lg lg lg ()()()52220ab a b a b b a ab ab a b a b .3. 将一枚均匀的骰子独立投掷三次,所得的点数依次记为,,x y z ,则事件“777C C C x y z”发生的概率为 . 答案:127.解:由于162534777777C C C C C C ,因此当,,{1,2,3,4,5,6}x y z 时,事件“777C C C x y z”发生当且仅当“{1,6},{2,5},{3,4}x y z ”成立,相应的概率为321627. 4. 若平面上非零向量,, 满足 ,2|| ,3|| ,则||的最小值为 .答案:23.解:由 ,不妨设(,0),(0,)a b ,其中,0a b ,并设(,)x y,则由2||得2by a ,由3|| 得3ax b .所以2232||2223b ax y xy a b. 取3,2a b ,此时6x y ,||取到最小值23.5. 方程sin cos2x x 的最小的20个正实数解之和为 . 答案:130 .解:将2cos212sin x x 代入方程,整理得(2sin 1)(sin 1)0x x ,解得532,2,2()662Z x k k k k.上述解亦可写成2()36Z k x k,其中0,1,,19k 对应最小的20个正实数解,它们的和为192219202013036326k k. 6. 设,,a b c 为正数,a b .若,a b 为一元二次方程20ax bx c 的两个根,且,,a b c 是一个三角形的三边长,则a b c 的取值范围是 .答案:7,518. 解:由条件知2222()()()ax bx c a x a x b ax a ab x a b ,比较系数得22,b a ab c a b ,故24,11a a b c a a,从而 24231a a a b c a a a a a .由于201a a b a,故112a .此时显然0b c .因此,,,a b c 是一个三角形的三边长当且仅当a c b ,即4211a a a a a,即2(1)0a a a ,结合112a ,解得15122a .令23()f x x x x ,则()a b c f a .显然当0x 时()f x 连续且严格递增,故a b c 的取值范围是151,22f f,即7,518 . 7. 平面直角坐标系xOy 中,已知圆 与x 轴、y 轴均相切,圆心在椭圆2222:1(0)x y a b a b内,且 与 有唯一的公共点(8,9).则 的焦距为 .答案:10.解:根据条件,可设圆心为(,)P r r ,则有222(8)(9)r r r ,解得5r 或29r .因为P 在 内,故5r .椭圆 在点(8,9)A 处的切线为2289:1x y l a b ,其法向量可取为2289,n a b. 由条件,l 也是圆 的切线,故n 与PA 平行,而(3,4)PA ,所以223227a b.又2264811a b ,解得22160,135a b .从而 的焦距为22210a b .8. 八张标有,,,,,,,A B C D E F G H 的正方形卡片构成下图.现逐一取走这些卡片,要求每次取走一张卡片时,该卡片与剩下的卡片中至多一张有公共边(例如可按,,,,,,,D A B E C F G H 的次序取走卡片,但不可按,,,,,,,D B A E C F G H 的次序取走卡片),则取走这八张卡片的不同次序的数目为 .AB C D EFGH答案:392.解:如左下图重新标记原图中的八张卡片.现将每张卡片视为顶点,有公共边的两张卡片所对应的顶点之间连一条边,得到一个八阶图,该图可视为右下图中的2m n 阶图(,)G m n 在3,3m n 时的特殊情况.231-3-20P-1 G (m , n )Pn...210-1-2-m ...取卡片(顶点)的规则可解释为:(i) 若顶点P 已取走,则以下每步取当前标号最小或最大的顶点,直至取完; (ii) 若顶点P 未取走,则必为某个(,)(,0)G m n m n 的情形,此时若0m ,则将P 视为1 号顶点,归结为(i)的情形;若0,0m n ,则将P 视为1号顶点,归结为(i)的情形;若,1m n ,则当前可取P 或m 号顶点或n 号顶点,分别归结为(i)或(1,)G m n 或(,1)G m n 的情形.设(,)G m n 的符合要求的顶点选取次序数为(,)f m n ,本题所求即为(3,3)f .由(i)、(ii)知1(,0)2(0)m f m m ,1(0,)2(0)n f n n ,且(,)2(1,)(,1)(,1)m n f m n f m n f m n m n .由此可依次计算得(1,1)12f ,(1,2)(2,1)28f f ,(1,3)(3,1)60f f ,(2,2)72f ,(2,3)(3,2)164f f ,(3,3)392f ,即所求数目为392.二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分)平面直角坐标系xOy 中,抛物线2:4y x ,F 为 的焦点,,A B 为 上的两个不重合的动点,使得线段AB 的一个三等分点P 位于线段OF 上(含端点),记Q 为线段AB 的另一个三等分点.求点Q 的轨迹方程.解:设1122(,),(,)A x y B x y .不妨设AP PQ QB ,则121222,33x x y y P. 易知(1,0)F .由于点P 位于线段OF 上,故122[0,1]3x x ,12203y y . ……………4分可设12,2y t y t ,则2212,4t x x t .此时有2122[0,1]32x x t ,且由,A B 不重合知0t ,所以2(0,2]t . ……………8分设(,)Q Q Q x y ,则21212232,343Q Q x x y y x t y t,有243Q Q y x . 注意到2330,42Q x t ,故点Q 的轨迹方程为243(0)32y x x .……………16分10.(本题满分20分)已知三棱柱111:ABC A B C 的9条棱长均相等.记底面ABC 所在平面为 .若 的另外四个面(即面111111111,,,A B C ABB A ACC A BCC B )在 上投影的面积从小到大重排后依次为23,33,43,53,求 的体积.解:设点111,,A B C 在平面 上的投影分别为,,D E F ,则面11111,,A B C ABB A 1111,ACC A BCC B 在 上的投影面积分别为,,,DEF ABED ACFD BCFE S S S S .由已知及三棱柱的性质,DEF 为正三角形,且,,ABED ACFD BCFE 均为平行四边形.由对称性,仅需考虑点D 位于BAC 内的情形(如图所示). 显然此时有ABED ACFD BCFE S S S . ……………5分XFEB DCA由于,,,23,33,43,53DEF ABED ACFD BCFE S S S S ,故,ABED ACFD S S 必为23,33的排列,53BCFE S ,进而43DEF S ,得DEF 的边长为4,即正三棱柱 的各棱长均为4. ……………10分不妨设23,33ABED ACFD S S ,则333,2ABD ACD S S .取射线AD 与线段BC 的交点X ,则23ABD ACD BX S CX S ,故85BX .因此2242cos60195AX AB BX AB BX , 而58ABD ACD ABC AD S S AX S ,故192AD. ……………15分 于是 的高221352h AA AD. 又43ABC S ,故 的体积615ABC V S h . ……………20分11.(本题满分20分)求出所有满足下面要求的不小于1的实数t :对任意,[1,]a b t ,总存在,[1,]c d t ,使得()()1a c b d .解:记[1,]t I t ,()()S a c b d .假如2t ,则当a b t 时,对任意,t c d I ,均有2(1)1S t ,不满足要求.假如312t,则当1,2a b t 时,对任意,t c d I ,均有 21a c t ,12t b d .若,a c b d 同正或同负,则2(1)1S t ,其余情况下总有01S ,不满足要求. ……………5分以下考虑322t 的情形.为便于讨论,先指出如下引理.引理:若1,2u v ,且52u v ,则1uv .事实上,当32u v 时,22225312244u v u v uv . 当32u v 时,1131222uv .引理得证. 下证对任意,t a b I ,可取11,t c d I ,使得111()()1S a c b d .① 若12a b ,则取111c d ,此时1(1)(1)(1)(1)S a b a b ,其中31311,12222a b b a ,且5(1)(1)2()2a b a b ,故由引理知11S .若12a b ,则取1132t c d I ,此时13322S a b, 其中331,222a b ,且3353222a b a b ,故由引理知11S . ……………15分 注意到,当,t a b I 时,可取2t c I ,使得21a c (例如,当[1,1]a 时取20c ,当(1,]a t 时取21c ),同理,可取2t d I ,使得21b d .此时22222()()1S a c b d a c b d .②根据①、②,存在一个介于12,c c 之间的实数c ,及一个介于12,d d 之间的实数d ,使得()()1a c b d ,满足要求.综上,实数t 满足要求当且仅当322t . ……………20分。
××学校八年级数学《平行四边形》竞赛试题总分120分,时间120分钟一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=_________.2.(2003•宁波)如图,BD是平行四边形ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是_________.(填一个即可)3.如图,已知矩形ABCD,对角线AC、BD相交于O,AE⊥BD于E,若AB=6,AD=8,则AE=____.4.如图,以△ABC的三边为边在BC的同一侧分别作三个等边三角形,即△ABD、△BCE、△ACF.(1)四边形ADEF是_________;(2)当△ABC满足条件_________时,四边形ADEF为菱形;(3)当△ABC满足条件_________时,四边形ADEF不存在.1题2题3题4题5.已知一个三角形的一边长为2,这边上的中线为1,另两边之和为1+,则这两边之积为________.6.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF、GH的交点P在BD上,图中有_________对四边形面积相等;它们是_________.7.如图,菱形ABCD的对角线AC、BD相交于O,△AOB的周长为3+,∠ABC=60°,则菱形ABCD的面积为_________.8.如图,矩形ABCD中,AC、BD相交于点O,AE平分∠BAD,交BC于E,若∠EAO=15°,则∠BOE的度数为_________度.9.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为_________.6题7题8题9题二、选择题(共9小题,每小题5分,满分45分)10.如图,▱ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是()A.60°B.65°C.70°D.75°10题11题12题13题11.如图,正△AEF的边长与菱形ABCD的边长相等,点E、F分别在BC、CD上,则∠B的度数是()A.70°B.75°C.80°D.95°12.如图,正方形ABCD外有一点P,P在BC外侧,并在平行线AB与CD之间,若PA=,PB=,PC=,则PD=()A.2B.C.3D.13.如图,平行四边形ABCD中,BC=2AB,CE⊥AB于E,F为AD的中点,若∠AEF=54°,则∠B=()A.54°B.60°C.66°D.72°14.四边形ABCD的四边分别为a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形一定是()A.两组角分别相等的四边形B.平行四边形C.对角线互相垂直的四边形D.对角线相等的四边形15.周长为68的长方形ABCD被分成7个全等的长方形,如图所示,则长方形ABCD的面积为()A.98 B.196 C.280 D.284 15题16题16.(2003•吉林)如图,菱形花坛ABCD的边长为6m,∠A=120°,其中由两个正六边形组成的图形部分种花,则种花部分图形的周长为()A.12m B.20m C.22m D.24m17.在凸四边形ABCD中,AB∥CD,且AB+BC=CD+DA,则()A.A D>BC B.A D<BCC.A D=BC D.A D与BC的大小关系不能确定18.已知四边形ABCD,从下列条件中:(1)AB∥CD;(2)BC∥AD;(3)AB=CD;(4)BC=AD;(5)∠A=∠C;(6)∠B=∠D.任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况有()A.4种B.9种C.13种D.15种三、解答题(共11小题,满分0分)20.设P为等腰直角三角形ACB斜边AB上任意一点,PE垂直AC于点E,PF垂直BC于点F,PG垂直EF于点G,延长GP并在其延长线上取一点D,使得PD=PC,试证:BC⊥BD,且BC=BD.21.如图,在等腰三角形ABC中,延长AB到点D,延长CA到点E,且AE=BD,连接DE.如果AD=BC=CE=DE,求∠BAC 的度数.22.如图,△ABC为等边三角形,D、F分别为BC、AB上的点,且CD=BF,以AD为边作等边△ADE.(1)求证:△ACD≌△CBF;(2)点D在线段BC上何处时,四边形CDEF是平行四边形且∠DEF=30°.23.(2002•河南)如图所示,在Rt△ABC中,AB=AC,∠A=90°,点D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M 为BC的中点,试判断△MEF是什么形状的三角形,并证明你的结论.24.(2008•咸宁)如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.25.如图,在Rt△ABC中,∠ABC=90°,∠C=60°,BC=2,D是AC的中点,以D作DE⊥AC与CB的延长线交于E,以AB、BE为邻边作长方形ABEF,连接DF,求DF的长.26.(2002•陕西)阅读下面短文:如图①,△ABC是直角三角形,∠C=90°,现将△ABC补成矩形,使△ABC的两个顶点为矩形一边的两个端点,第三个顶点落在矩形这一边的对边上,那么符合要求的矩形可以画出两个矩形ACBD和矩形AEFB(如图②)解答问题:(1)设图②中矩形ACBD和矩形AEFB的面积分别为S1、S2,则S1_________S2(填“>"“="或“<").(2)如图③,△ABC是钝角三角形,按短文中的要求把它补成矩形,那么符合要求的矩形可以画_________个,利用图③把它画出来.(3)如图④,△ABC是锐角三角形且三边满足BC>AC>AB,按短文中的要求把它补成矩形,那么符合要求的矩形可以画出_________个,利用图④把它画出来.(4)在(3)中所画出的矩形中,哪一个的周长最小?为什么?27.如图,在△ABC中,∠C=90°,点M在BC上,且BM=AC,N在AC上,且AN=MC,AM与BN相交于P,求证:∠BPM=45°.28.如图,在锐角△ABC中,AD、CE分别是BC、AB边上的高,AD、CE相交于F,BF的中点为P,AC的中点为Q,连接PQ、DE.(1)求证:直线PQ是线段DE的垂直平分线;(2)如果△ABC是钝角三角形,∠BAC>90°,那么上述结论是否成立?请按钝角三角形改写原题,画出相应的图形,并给予必要的说明.新课标八年级数学竞赛培训第15讲:平行四边形参考答案与试题解析一、填空题(共9小题,每小题4分,满分36分)1.在矩形ABCD中,已知两邻边AD=12,AB=5,P是AD边上异于A和D的任意一点,且PE⊥BD,PF⊥AC,E、F分别是垂足,那么PE+PF=.考点:矩形的性质;等腰三角形的性质。
【例1】如图,四边形ABCD有4个直角三角形拼凑而成,它们的公共顶点为O,已知△AOB、△BOC、△COD的面积分别为20、10、16,求△AOD的面积。
(1992年北京市“迎春杯”竞赛题)【注释】求三角形的面积,通常需要求出底和高,当这两个值不易求出时,常把它们的积作为一个整体,设法求出它们的积。
【例2】如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数。
(1999年重庆市竞赛题)【注释】求凹多边形的内角和,常利用四边形和三角形的内角和进行计算,有事需要添加辅助线,将其转化为求一个凸多边形的和或一个凸多边形和一个三角形的内角和,如本题连接BF、CE,则所求的值等于四边形ABFG的内角和加上△DCE的内角和。
【例3】如图,在四边形ABCD中,∠B=∠D=90°,∠A=60°,AB=4,AD=5,求CDBC 的值。
(1993年“祖冲之杯”邀请赛试题)【注释】有些几何题,按原有的图形很难求解,可根据图形的特点,将原图形补成特殊图形,利用特殊图形的性质进行求解。
【例4】(1)是否存在这样的四边形,它的4条边依次是1、2、4、7?(2)是否存在这样的四边形,它的一组对角是直角,其中一个直角的两条边分别为3、4,另一个直角的边为6?【注释】探索存在型问题是指在一定条件下,判断是否存在某个结论。
解答这类问题,先假设结论存在,从假设出发,根据题设条件及有关性质进行推理论证,若推出矛盾,则不定假设,若推出合理的结果,则说明假设正确。
这种方法叫“假设法”。
【例5】如图,在四边形ABCD中,AB=AD=8,∠A=60°,∠D=150°,四边形ABCD的周长为32,求BC和CD的长。
【注释】对于四边形,作对角线是常用的辅助线。
【例6】如图,在四边形ABCD中,AC、BD相交于O,△DOC的面积S1=4,△AOB的面积S2=64,求四边形ABCD的面积的最小值。
(第十一届“希望杯”邀请赛培训题)【注释】本题求最值的方法称为配方法,即欲求一个量的最大值或最小值,可先用一个量或两个量表示这个量,然后对列出的代数式进行配方,从而确定最大值或最小值。
【针对训练】【1】如图,A、B、C在一条直线上,FA ⊥AC,FG⊥BE,DE⊥BE,DC⊥BC,且∠F=60°,求∠EBC与∠D的度数。
【2】如图,求∠A+∠B+∠C+∠D+∠E+∠F+∠G的度数。
(1994年“祖冲之杯”邀请赛试题)【3】是否存在这样的四边形,它的一组对角分别为60°、120°,且60°角的两边均为5,120°角的一边为6?【4】如图,在四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB于E。
若四边形ABCD的面积为8,求DE的长。
(1996年四川省竞赛题)【5】在四边形ABCD中,AB=2,BC=4,CD=7,求AD的取值范围。
【6】如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠ADC=135°,AE=21(AD+AB),BC=2。
求BE的长。
【例1】已知:四边形ABCD,从(1)AB ∥DC;(2)AB=DC;(3)AD∥BC;(4)AD=BC;(5)∠A=∠C;(6)∠B=∠D中取出两个条件加以组合,能推出四边形ABCD 是平行四边形的有哪几种情形?请具体写出这些组合。
(1998年江苏省竞赛题)【注释】解四边形问题,常需要判定其形状,要熟记判定定理;由于判定定理比较多,易混易忘,可从边、角、对角线3个方面加以记忆。
【例2】凸四边形ABCD中,AB∥CD,且AB+BC=CD+AD。
求证:ABCD是平行四边形。
(1990年芜湖市竞赛题)【例3】平面上有三个正△ABD、△ACE、△BCF,两两共有一个顶点。
求证:CD 与EF互相平分。
(1990年芜湖市竞赛题)【例4】在Rt△ABC中,∠ACB=90°,CD⊥AB于D,AE平分∠BAC,交CD于K,交BC于E,F是BE上一点,且BF=CE。
求证:FK∥AB。
(大连市第八届“育英杯”竞赛题)【注释】对于求证线段相等,角相等,线段互相平行,两线平行,两线垂直等问题,常先判定出某个四边形是平行四边形或特殊的平行四边形,再根据其性质进行证明。
这种证明方法往往优于用三角形的性质证明的方法。
【例5】如图,边长为a的菱形ABCD中,∠DAB=60°,E是异于A、D两点的动点,F是CD上的动点,满足AE+CF=a。
证明:不论E、F怎样移动,△BEF总是正三角形。
(1990年合肥市竞赛题)【注释】对于平行四边形问题,常将其转化为三角形问题解决。
解题时要注意利用平行四边形的性质,这些性质往往为解题提供必要的条件。
【例6】矩形ABCD中,AB=20cm,BC=10cm。
若在AC、AB上各取一点M、N,使BM+MN 的值最小,求这个最小值。
(1998年北京市竞赛题)【例7】设P为直角等腰三角形ABC斜边AB上任意一点,PE⊥AC于点E,PF ⊥BC于点F,PG⊥EF于G,延长GP并在其延长线上取一点D,使得PD=PC。
求证:BC⊥BD且BC=BD。
【例8】如图,△ABC是正三角形,△A1B1C1的三条边A1B1、B1C1、C1A1交△ABC各边分别于C2、C3,A2、A3,B2、B3。
已知A2C3=C2B3=B2C3,且C2C32+B2B32=A2A32。
请证明:A1B1⊥C1A1。
(2002年北京市数学竞赛复赛题)【针对训练】【1】下面有4个命题:①一组对边相等,一组对角相等的四边形是平行四边形;②一组对边相等且一条对角线平分另一条对角线的四边形是平行四边形;③一组对角相等且这一组对角的顶点所连接的对角线平分另一条对角线的四边形是平行四边形;④一组对角相等且这一组对角的顶点所连接的对角线被另一条对角线平分的四边形是平行四边形。
其中,正确命题的个数是()(1988年全国联赛试题)A、1B、2C、3D、4【2】菱形ABCD的对角线AC与BD相交于O,∠ABC≠90°,则图中共有全等三角形()A、4对B、6对C、8对D、12对【3】如图,AB∥CD∥EF,AD∥BC,AC 平分∠BAD且与EF相交于O,那么图中与∠AOE相等的角(不包括∠AOE)总共有()(1996年荆沙市竞赛题)A、6个B、4个C、3个D、5个【4】四边形的4条边长分别是a、b、c、d,其中a、c为对边,且满足a2+b2+c2+d2=2ab+2cd,则这个四边形一定是()(1995年“希望杯”邀请赛试题)A、两组对角分别相等的四边形B、平行四边形C、对角线互相垂直的四边形D、对角线长相等的四边形【5】如图,在□ABCD中,∠ABC=75°,AF⊥BC于F,AF交BD于E,若DE=2AB,则∠AED的大小是。
(1998年“希望杯”邀请赛试题)【6】矩形纸片ABCD,AB=6,BC=8,将纸片折叠使得A与C重合,则折痕EF 的长为。
(1995年河北省竞赛题)【7】如图,P为□ABCD内一点,过P点分别作AB、AD的平行线,交□ABCD于E、F、G、H四点,若SAHPE=3,SPFCG=5,则S△PBD= 。
(1998年北京市竞赛题)【8】如图,P为矩形外一点,PC=3,PB=4,PA=5,则PD= 。
(1998年河北省竞赛题)【9】如图,有一湖的湖岸在AB之间呈一段圆形劣弧,AB之间的直线距离不能直接测得;为了得到AB之间的距离,请你用测角仪和量尺,在岸边设计出三种不同类型的测量方案(分别画出图形),并求出AB间的距离(经测量得到的线段的长的数据用a或b或c等表示,角度用α或β等表示)。
(1999年河北省竞赛题)【10】如图,在□ABCD中,以AC为边长在两侧各作一个正△ACP、△ACQ。
试证BPDQ为平行四边形。
【11】如图,矩形ABCD、BFDE中,AB=BF。
求证:CF⊥MN。
【12】在□ABCD中,BC=2AB,M为AD 的中点,CE⊥AB于E。
求证:∠DME=3∠MEA。
【13】P为四边形ABCD的两边AD、BC 的延长线的交点,过P作线段EF,使PE=PF。
求证:不论EF的长度与位置如何变化,线段AE、BF的中点连线恒经过某一定点。
【14】如图,在等腰△ABC中,AB=AC,延长边AB到点D,延长边CA到点E,连接DE,恰有AD=BC=CE=DE。
求证:∠BAC=100°。
(2001年北京市数学竞赛试题)第三节梯形的判定和中位线定理【知识点拨】1、梯形的定义:一组对边平行,另一组对边不平行的四边形。
2、等腰梯形的性质与判定性质定理:等腰梯形在同一底上的两个角相等。
判定定理:在同一底上两个角相等的梯形是等腰梯形。
3、梯形中位线定理:梯形中位线平行于两底,且等于两底和的一半。
对于梯形的问题,往往是通过作辅助线,将梯形问题转化成三角形或平行四边形问题来解决。
常用的辅助线如下:【赛题精选】【例1】已知E、F、G分别是AB、BC、CA的中点,AD⊥BC于D。
求证:四边形EFDG是等腰梯形。
【说明】一组对边平行的四边形可能是梯形,还可能是平行四边形!因此,要证明一个四边形是梯形,必须证这个四边形的另一组对边不平行,证明一组对边不平行的方法有:(1)证明四边形的一组对边平行且不相等,则这个四边形不是平行四边形,因而另一组对边不平行;(2)利用经过直线外一点有且只有一条直线与这条直线平行,而经过这点的其它直线与这条直线不平行进行证明。
【例2】已知一个梯形的四条边的长分别是1、2、3、4,求此梯形的面积。
(2000年全国联赛试题)【例3】如图,在梯形ABCD中,AD∥BC,AB=DC,AC⊥BD于E,BD=BC。
求证:2CE=AD+BC。
【说明】以上介绍的几种辅助线要知道,还应通过做题总结出何时作何种辅助线。
如本题在结论中有两底的和或题设中有关于对角线的条件,辅助线常作对角线的平行线。
【例4】如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、M、F、N分别是AB、BC、CD、AD的中点,已知BC=7,MN=3,求EF的值。
(1997年全国联赛试题)【说明】对于涉及梯形的两底角互余问题,常将其转化为直角三角形问题。
本题有辅助线还可过点N分别作AB、AC 的平行线,证MN=21(BC-AD)即可。
【例5】在等腰梯形ABCD中,CD∥AB,对角线AC、BD相交于O,∠ACD=60°,点S、P、Q分别是OD、OA、BC的中点。
(1)求证:△PQS是等边三角形。
(2)若AB=5,CD=3,求△PQS的面积。
(3)若△PQS的面积与△AOD的面积比是7:8,求梯形上下底的比CD:AB=?(1999年“希望杯”邀请赛试题)【例6】分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE、CBFG,点P是EF的中点。