电磁场场强测量实验报告
- 格式:doc
- 大小:1.74 MB
- 文档页数:22
北邮电磁场实验报告北邮电磁场实验报告引言:电磁场是现代科学中非常重要的一个概念,它对于理解和应用电磁现象具有重要意义。
本次实验旨在通过测量电磁场的强度和方向,探究电磁场的基本特性,并验证电磁场的作用规律。
实验仪器和原理:本次实验使用的仪器包括电磁场强度测量仪、磁力计和直流电源。
电磁场强度测量仪是一种用于测量电磁场强度的仪器,它利用霍尔效应原理测量磁场的大小。
磁力计则是用于测量磁场方向的仪器,它利用磁力对物体的作用原理进行测量。
实验过程和结果:首先,我们将电磁场强度测量仪放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的强度。
然后,通过调节直流电源的电流大小,我们可以改变电磁场的强度。
在不同电流下,我们分别测量了电磁场的强度,并记录下来。
接下来,我们使用磁力计来测量电磁场的方向。
将磁力计放置在电磁场中,调整其位置和角度,使其能够测量到电磁场的方向。
然后,通过改变直流电源的电流方向,我们可以改变电磁场的方向。
在不同电流方向下,我们分别测量了电磁场的方向,并记录下来。
通过实验测量,我们得到了一系列关于电磁场强度和方向的数据。
根据这些数据,我们可以绘制出电磁场的强度和方向分布图。
从分布图中,我们可以看出电磁场的强度随着距离的增加而减小,同时电磁场的方向沿着电流方向形成环状分布。
讨论和分析:通过实验数据的分析,我们可以得出以下结论:电磁场的强度与电流大小成正比,即电流越大,电磁场强度越大;电磁场的方向与电流方向一致,即电流方向决定了电磁场的方向。
这一结论与安培定律相吻合,即安培定律指出电流元产生的磁场与电流元的方向垂直,并且随着距离的增加而减小。
而我们的实验结果也验证了这一规律。
此外,我们还发现电磁场的强度和方向与测量位置和角度有关。
在实验中,我们调整了测量仪器的位置和角度,使其能够准确测量电磁场的强度和方向。
这说明在实际应用中,我们需要合理选择测量位置和角度,以获得准确的测量结果。
结论:通过本次实验,我们深入了解了电磁场的基本特性,并验证了安培定律。
电磁场与电磁波实验报告电磁场与电磁波实验报告引言:电磁场和电磁波是物理学中非常重要的概念。
电磁场是由电荷产生的一种物理场,它的存在和变化会影响周围空间中的其他电荷。
而电磁波则是电磁场的一种传播形式,它以电磁场的振荡和传播为基础,具有波动性质。
本次实验旨在通过实际操作和测量,深入了解电磁场和电磁波的特性。
实验一:测量电磁场强度在实验一中,我们使用了一个电磁场强度计来测量不同位置的电磁场强度。
首先,我们将电磁场强度计放置在一个固定的位置,记录下此时的电磁场强度。
然后,我们将电磁场强度计移动到其他位置,重复测量过程。
通过这些数据,我们可以得出不同位置的电磁场强度的分布情况。
实验结果显示,电磁场强度随着距离的增加而逐渐减弱。
这符合电磁场的特性,即电荷产生的电磁场在空间中以一定的规律传播,而传播的强度会随着距离的增加而减弱。
这一实验结果验证了电磁场的存在和变化对周围环境的影响。
实验二:测量电磁波频率和波长在实验二中,我们使用了一个频率计和一个波长计来测量电磁波的频率和波长。
首先,我们将频率计和波长计设置好,并将它们与电磁波源连接。
然后,我们观察频率计和波长计的测量结果,并记录下来。
通过这些数据,我们可以得出电磁波的频率和波长的数值。
实验结果显示,不同频率的电磁波具有不同的波长。
频率越高的电磁波,波长越短;频率越低的电磁波,波长越长。
这符合电磁波的特性,即电磁波的振荡频率和波长之间存在一定的关系。
这一实验结果验证了电磁波的波动性质,以及频率和波长之间的关系。
实验三:观察电磁波的干涉和衍射现象在实验三中,我们使用了一块光栅和一个狭缝装置来观察电磁波的干涉和衍射现象。
首先,我们将光栅放置在光源前方,并调整光源的位置和光栅的角度。
然后,我们观察到在光栅后方的屏幕上出现了一系列明暗相间的条纹。
这些条纹是由电磁波的干涉和衍射效应引起的。
实验结果显示,当电磁波通过光栅时,会发生干涉和衍射现象。
干涉现象表现为明暗相间的条纹,而衍射现象表现为条纹的扩散和交替。
电磁学综合实验报告引言电磁学作为物理学中的重要分支,研究了电荷和电流所产生的电场和磁场以及它们之间的相互作用。
本次实验旨在通过一系列实验探究电磁学的基本原理和现象,验证电磁学理论,并加深对电磁学知识的理解。
本文将对实验过程、结果和结论进行详细描述和分析。
实验一:电场的探测与测量实验一旨在通过测量电场强度,验证库仑定律。
实验中,我们首先使用电场传感器测量平行板电容器的电场强度随距离的变化。
实验结果表明,电场强度与距离的平方成反比,符合库仑定律的预期结果。
进一步,我们使用电场传感器测量带电导体周围的电场强度,结果表明电场强度与距离成反比,且与导体表面的电荷量成正比。
实验二:磁场的探测与测量实验二旨在通过测量磁场强度,验证安培环路定理。
实验中,我们使用霍尔效应传感器测量直流电流通过直导线产生的磁场强度。
实验结果表明,磁场强度与距离的关系符合安培环路定理的预期结果。
进一步,我们使用霍尔效应传感器测量螺线管产生的磁场强度,结果表明磁场强度与电流成正比,与理论相符。
实验三:法拉第电磁感应定律实验三旨在验证法拉第电磁感应定律,即磁通量的变化会在导体中产生感应电动势。
实验中,我们将一个螺线管与一个磁铁相连,通过改变磁铁相对螺线管的位置和速度,测量感应电动势的变化。
实验结果表明,感应电动势与磁通量的变化率成正比,验证了法拉第电磁感应定律。
实验四:电磁感应定律和洛伦兹力实验四旨在验证电磁感应定律和洛伦兹力定律。
实验中,我们将一个导体杆与一个磁铁相连,通过改变导体杆的速度和磁铁的位置,测量感应电动势和洛伦兹力的变化。
实验结果表明,感应电动势与磁通量的变化率成正比,洛伦兹力与导体杆的速度和磁场强度成正比,验证了电磁感应定律和洛伦兹力定律。
实验五:交流电路的研究实验五旨在研究交流电路的特性,包括交流电源、电感和电容的相位差以及交流电路中的阻抗。
实验中,我们通过测量电压和电流的相位差,计算电感和电容的阻抗,验证了交流电路的理论。
电磁场与微波测量实验、实验名称:天线方向图测试班级:2011211206成员:孙旦旦邹建列黄程远米献艳执笔人:米献艳北京邮电大学Beijing University of Posts and Telecommunications目录一.实验目的: (3)二.实验原理: (3)1.大尺度路径损耗 (3)2.阴影衰落 (4)3.建筑物的穿透损耗的定义 (5)三.实验内容: (6)四.实验步骤: (6)1.实验对象的选择 (6)2.数据采集 (6)3.数据录入excel (7)4.数据处理 (8)五.程序代码: (8)七.数据分析: (25)1.实验结果: (25)2.结果分析: (26)3.模型分析: (27)八.实验心得: (28)九.附实验分工: (30)十.参考资料: (30)一.实验目的:1. 掌握在移动环境下阴影衰落的概念以及正确测试方法。
2. 研究校园内各种不同环境下阴影衰落的分布规律。
3. 掌握在室内环境下的场强的正确测试方法,理解建筑物穿透损耗概念。
4. 通过实地测量,分析建筑物穿透损耗随频率的变化关系。
5. 研究建筑物穿透损耗与建筑材料的关系。
二.实验原理:无线通信系统是由发射机,发射天线,无线信道,接收机,接收天线所组成。
对于接收者,只有处在发射信号的覆盖区内,才能保证接收机正常接收信号,此时,电波场强大于等于接收机的灵敏度。
因此,基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰。
1.大尺度路径损耗在移动通信系统中,路径损耗是影响通信质量的一个重要因素。
大尺度路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接收功率之间的dB 差值,根据理论和测试的传播模型,无论室内或室外信道,平均接收信号功率随距离对数衰减,这种模型已被广泛地采用。
第1篇一、实验目的1. 理解电磁场的基本概念和性质。
2. 掌握电磁场的基本测量方法。
3. 分析电磁场在不同介质中的传播特性。
4. 熟悉电磁场实验设备的操作。
二、实验原理电磁场是电场和磁场的总称,它们在空间中以波的形式传播。
本实验通过搭建电磁场实验平台,观察和分析电磁场在不同介质中的传播特性,以及电磁场与电荷、电流的相互作用。
三、实验器材1. 电磁场实验平台2. 电磁场发生器3. 电磁场传感器4. 信号发生器5. 示波器6. 测量仪器(如:电流表、电压表、频率计等)7. 实验用线、连接器等四、实验内容1. 电磁场基本性质观察(1)搭建电磁场实验平台,观察电磁场在不同介质中的传播特性。
(2)通过电磁场发生器产生电磁波,观察电磁波在空气、水、金属等介质中的传播情况。
2. 电磁场测量(1)利用电磁场传感器测量电磁场强度。
(2)通过信号发生器产生已知频率和强度的电磁波,与传感器测量结果进行对比。
3. 电磁场与电荷、电流的相互作用(1)观察电磁场对电荷的作用,如电场力、洛伦兹力等。
(2)观察电磁场对电流的作用,如安培力、法拉第电磁感应等。
4. 电磁场实验设备操作(1)学习电磁场实验平台各部分的功能和操作方法。
(2)掌握电磁场传感器、信号发生器、示波器等仪器的使用方法。
五、实验步骤1. 搭建电磁场实验平台,连接好各部分仪器。
2. 观察电磁场在不同介质中的传播特性,记录实验数据。
3. 利用电磁场传感器测量电磁场强度,与信号发生器产生的电磁波强度进行对比。
4. 观察电磁场对电荷和电流的作用,记录实验数据。
5. 学习电磁场实验设备操作,熟悉各仪器使用方法。
六、实验结果与分析1. 电磁场在不同介质中的传播特性:电磁波在空气中传播速度最快,在水、金属等介质中传播速度较慢。
2. 电磁场强度测量:通过传感器测量得到的电磁场强度与信号发生器产生的电磁波强度基本一致。
3. 电磁场与电荷、电流的相互作用:电磁场对电荷的作用表现为电场力,对电流的作用表现为安培力。
电磁场与微波测量实验报告学院:电子工程学院班级:2011211204执笔人:学号:2011210986组员:一、实验目的1.掌握在移动环境下阴影衰落的概念以及正确的测试方法;2.研究校园内各种不同环境下阴影衰落的分布规律;3.掌握在室内环境下场强的正确测量方法,理解建筑物穿透损耗的概念;4.通过实地测量,分析建筑物穿透损耗随频率的变化关系;5.研究建筑物穿透损耗与建筑材料的关系。
二、实验原理1.电磁波的传播方式无线通信系统是由发射机、发射天线、无线信道、接收机、接收天线所组成。
对于接受者,只有处在发射信号的覆盖区内,才能保证接收机正常接受信号,此时,电波场强大于等于接收机的灵敏度。
因此基站的覆盖区的大小,是无线工程师所关心的。
决定覆盖区的大小的主要因素有:发射功率,馈线及接头损耗,天线增益,天线架设高度,路径损耗,衰落,接收机高度,人体效应,接收机灵敏度,建筑物的穿透损耗,同播,同频干扰等。
电磁场在空间中的传输方式主要有反射﹑绕射﹑散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体﹑且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体﹑树叶﹑街道﹑标志﹑灯柱。
2.尺度路径损耗在移动通信系统中,路径损耗是影响通信质量的一个重要因素。
大尺度平均路径损耗:用于测量发射机与接收机之间信号的平均衰落,即定义为有效发射功率和平均接受功率之间的(dB)差值,根据理论和测试的传播模型,无论室内或室外信道,平均接受信号功率随距离对数衰减,这种模型已被广泛的使用。
对任意的传播距离,大尺度平均路径损耗表示为:()[]()()=+010log/0PL d dB PL d n d d即平均接收功率为:()[][]()()()[]() =--=-Pr010log/0Pr010log/0d dBm Pt dBm PL d n d d d dBm n d d其中,定义n为路径损耗指数,表明路径损耗随距离增长的速度,d0为近地参考距离,d为发射机与接收机之间的距离。
电磁波场强空间分布实验报告引言:电磁波是指电场和磁场以一定规律在空间中传播的波动现象。
电磁波在无线通信、雷达、无线电等领域有着重要的应用。
了解电磁波场强的空间分布对于优化通信系统的设计和布局具有重要意义。
本实验旨在通过测量电磁波场强的实验数据,分析其空间分布特点,为电磁波通信系统的优化提供参考。
实验目的:1. 测量不同距离下电磁波场强的大小;2. 分析电磁波场强的空间分布特点;3. 探讨电磁波传播过程中可能存在的衰减和干扰问题。
实验装置和方法:1. 实验装置:电磁波发射器、接收天线、场强测量仪;2. 实验方法:在实验室内设置一定距离的测量点,利用发射器产生电磁波,接收天线接收信号,并通过场强测量仪测量场强数值。
实验步骤:1. 设置测量点:在实验室内设置一系列距离发射器不同距离的测量点,确保每个测量点位置的空间分布均匀;2. 发射电磁波:调节发射器的频率和功率,产生一定频率和强度的电磁波;3. 测量场强:在每个测量点位置,利用接收天线接收电磁波信号,并通过场强测量仪测量场强数值;4. 记录数据:记录每个测量点位置的场强数值,并标注对应的距离;5. 分析数据:根据测量数据,分析电磁波场强的空间分布特点;6. 总结实验结果:总结电磁波场强的空间分布规律,并讨论可能的衰减和干扰问题。
实验结果:根据实验数据,可以得出以下结论:1. 随着距离的增加,电磁波场强呈现衰减趋势。
当距离增加时,电磁波的能量会逐渐分散,导致场强减小;2. 电磁波场强的衰减与距离的关系可以通过实验数据进行拟合,得到电磁波传播的衰减模型;3. 在一定距离范围内,电磁波场强的分布均匀性较好,但随着距离的增加,分布均匀性会逐渐降低;4. 实验中可能存在的干扰源包括其他电磁设备和建筑物等,这些干扰源可能会影响电磁波场强的测量结果。
实验讨论:本实验通过测量电磁波场强的空间分布,得出了电磁波场强随距离变化的规律。
在实际应用中,可以根据这些规律来优化电磁波通信系统的设计和布局,提高通信质量和覆盖范围。
北京邮电大学电磁场与电磁波测量实验实验报告实验内容:无线信号场强特性的研究学院:电子工程学院班级:2010211203班组员:崔宇鹏张俊鹏章翀2013年5月9日一、实验目的1.通过实地测量校园内室内外的无线电信号场强值,掌握室内外电波传播的规律。
2.熟悉并掌握无线电中的传输损耗,路径损耗,穿透损耗,衰落等概念。
3.熟练使用无线电场强仪测试空间电场强的方法。
4.学会对大量数据进行统计分析,并得到相关传播模型。
二、实验原理1、电波传播方式电磁场在空间中的传输方式主要有反射、绕射、散射三种模式。
当电磁波传播遇到比波长大很多的物体时,发生反射。
当接收机和发射机之间无线路径被尖锐物体阻挡时发生绕射。
当电波传播空间中存在物理尺寸小于电波波长的物体、且这些物体的分布较密集时,产生散射。
散射波产生于粗糙表面,如小物体或其它不规则物体、树叶、街道、标志、灯柱。
2、无线信道中信号衰减无线信道中的信号衰减氛围衰落,路径损耗,建筑物穿透损耗。
此外还有多径传播的影响。
移动环境下电波的衰落包括快衰落和慢衰落(又叫阴影衰落),快衰落的典型分布为Rayleigh分布或Rician分布;阴影衰落的典型分布为正态分布,即高斯分布。
快衰落和慢衰落两者构成移动通信系统中接收信号不稳定因素。
路径损耗:测量发射机和接收机之间信号的平均衰落。
即定义为有效发射功率(Pt )和平均接收功率(Pr )之差(dB )。
距离是决定路径损耗大小的首要因素;除此之外,还与接收点的电波传播条件密切相关。
人们根据不同的地形地貌条件,总结出各种电波传播模型:自由空间模型,布林顿模型,Egli 模型,Hata-Okumura 模型。
建筑物的穿透损耗是指建筑物外测量的信号的中值电场强度和同一位置室内测量的信号中值电场强度之差(dB )。
建筑物穿透损耗的大小同建筑物的材料、结构、高度、室内陈设、工作频率等多种因素有关。
室外至室内建筑物的穿透损耗定义为:室外测量的信号平均场强减去在同一位置室内测量的信号平均场强,用公式表示为:()()1111N Moutside inside i ji i P P PN M===-∑∑P 为穿透损耗(单位:dB ),j P 是在室内所测的每一点的功率(单位:dBuv ),共M 个点,i P 是在室外所测的每一点的功率(单位:dBuv ),共N 个点。
电磁场实验校园内无线信号场强特性的研究学院:信息与通信工程学院班级:姓名:学号:班内序号:一、实验目的1、掌握在移动环境下阴影衰落的概念以及正确测试方法;2、研究校园内不同环境下阴影衰落的分布规律;3、熟练使用DS1131场强仪实地测试信号场强的方法;4、学会对大量数据进行统计分析和处理,进而得出实验结论。
二、实验原理1、三种基本电波传播机制影响电波在空间传播的三种最基本的机制为反射﹑绕射﹑散射。
当电磁波传播遇到比其波长大得多的物体时,发生反射。
当接收机和发射机之间无线路径被尖利的边缘阻挡时会发生绕射。
散射波产生于粗糙表面、小物体或其它不规则物体,比如树叶﹑街道标志和灯柱等都会引发散射。
2、阴影衰落在无线信道里,造成慢衰落的最主要原因是建筑物或其它物体对电波的遮挡。
在测量过程中,不同位置遇到的建筑物遮挡情况不同,因此接收功率也不同,这样就会观察到衰落现象,这就叫“阴影效应”或“阴影衰落”。
在阴影衰落的情况下收到的信号是各种绕射,反射,散射波的合成。
所以,在距基站距离相同的地方,由于阴影效应的不同,它们收到的信号功率有可能相差很大,理论和测试表明,对任意的d值,特定位置的接受功率为随机对数正态分布。
对数正态分布描述了在传播路径上,具有相同T-R距离时,不同的随机阴影效应。
这样利用高斯分布可以方便地分析阴影的随机效应。
正态分布,也叫高斯分布,它的概率密度函数是:应用于阴影衰落时,上式中的 D_Dd__________áðϨdB表示的接收功率的均值或中值,表示接收功率的标准差,单位是dB。
阴影衰落的标准差同地形,建筑物类型,建筑物密度等有关,在市区的150MHz频段其典型值是5dB。
除了阴影效应外,大气变化也会导致阴影衰落。
比如一天中的白天,夜晚,一年中的春夏秋冬,天晴时,下雨时,即使在同一个地点上,也会观察到路径损耗的变化。
但在测量的无线信道中,大气变化造成的影响要比阴影效应小的多。