果树采摘机器人发展概况及特点
- 格式:docx
- 大小:25.79 KB
- 文档页数:1
果园采摘机械化发展现状及展望汇报人:日期:•果园采摘机械化发展现状•机械化采摘技术及设备•机械化采摘的优势与问题目录•果园采摘机械化发展展望•结论与建议果园采摘机械化发展现状01果园采摘机械化的主要目标是提高采摘效率,减轻人工劳动强度,国外在这方面已经取得了显著成果。
高效省力国外在果园采摘机械化的技术研发方面一直处于领先地位,不断推出新的技术和设备。
技术领先国外果园采摘机械化应用广泛,许多国家已经实现了果园采摘的全面机械化。
应用广泛我国果园采摘机械化起步较晚,整体水平相对较低。
起步较晚技术水平不高应用范围有限我国果园采摘机械化技术水平不高,与国外相比存在较大差距。
我国果园采摘机械化应用范围有限,主要集中在一些大型果园和示范基地。
030201资金瓶颈果园采摘机械化的推广和应用需要大量的资金投入,而一些小型果农无力承担高额的设备购置费用。
技术瓶颈我国果园采摘机械化的发展面临着技术瓶颈的制约,如机械设备的适应性、可靠性、稳定性等方面存在不足。
人才瓶颈果园采摘机械化需要专业的技术人才进行操作和维护,而我国在这方面的人才储备不足。
发展瓶颈机械化采摘技术及设备02通过高精度机械臂模拟人手臂运动,实现水果的精准抓取和采摘。
技术原理高精度、高效率,减少人工成本。
优势技术门槛高,维护成本相对较高。
不足机械臂采摘技术利用激光束照射水果表面,诱导水果瞬间裂开,实现采摘。
技术原理对水果损伤小,适用于多种水果类型。
优势激光切割设备价格较高,技术门槛较高。
不足激光切割技术优势采摘效率高,对水果损伤较小。
不足不适用于所有水果类型,如硬皮水果。
技术原理通过气动装置产生高压气流,将水果从树上瞬间吹落,实现采摘。
气动采摘技术03不足受环境因素影响较大,如地形和光照等。
01技术原理利用移动机器人搭载视觉识别系统,识别并抓取水果进行采摘。
02优势自动化程度高,可实现全天候作业。
机器人采摘技术机械化采摘的优势与问题03机械化采摘能够减轻人工采摘中因疲劳等因素造成的误差,确保果实采摘的准确性和一致性。
智能农业中的农业机器人技术在过去的几十年里,随着科技的不断进步,农业领域也经历了巨大的变革。
智能农业作为一种新兴的农业生产方式,利用现代信息技术、自动化技术和物联网技术等手段,实现了对农业生产过程的智能化管理和控制。
其中,农业机器人技术作为智能农业的重要组成部分,正逐渐改变着传统农业生产方式,提高农业生产效率和产品质量。
本文将详细介绍智能农业中的农业机器人技术,探讨其在我国农业发展中的应用和前景。
农业机器人技术的分类与应用1. 采摘机器人采摘机器人是农业机器人技术中最常见的一种类型,主要用于水果、蔬菜等农产品的采摘。
采摘机器人可以通过视觉系统识别和定位作物,利用机械臂或夹具完成采摘作业。
此外,采摘机器人还可以根据作物的成熟度和品质进行筛选,提高农产品的市场价值。
在我国,采摘机器人已经在柑橘、苹果、葡萄等水果生产中得到广泛应用。
2. 植保机器人植保机器人主要用于农作物的病虫害防治,通过搭载的喷雾装置进行精准喷洒。
与传统的人工喷洒相比,植保机器人具有喷洒均匀、药剂利用率高、作业效率高等优点。
此外,植保机器人还可以通过搭载的多光谱相机、无人机等设备,实现对作物生长状况的监测,为农业生产提供科学依据。
3. 施肥机器人施肥机器人主要用于农田的施肥作业,通过搭载的传感器检测土壤的养分含量,实现精准施肥。
施肥机器人具有施肥均匀、减少化肥浪费、降低农业生产成本等优点。
此外,施肥机器人还可以根据作物生长的需求,实时调整施肥策略,提高肥料利用率。
4. 收割机器人收割机器人主要用于小麦、稻谷等粮食作物的收割。
通过搭载的视觉系统和传感器,收割机器人可以准确识别作物和秸秆,实现精准收割。
此外,收割机器人还具有作业速度快、降低人力成本等优点。
在我国,收割机器人已经在部分地区的粮食生产中得到应用。
农业机器人技术的发展前景随着科技的不断进步,农业机器人技术在我国农业领域中的应用将越来越广泛。
在未来,农业机器人技术将朝着以下几个方向发展:1.智能化:农业机器人将具备更强大的感知和决策能力,能够适应复杂的农田环境,完成各种农业生产任务。
水果采摘装置的现状及发展趋势水果采摘是一个需要大量人力的工作,而且由于工作条件恶劣,往往会对采摘工人的身体健康造成伤害。
因此,研发和应用自动化水果采摘装置已经成为当前水果种植行业的研究和应用热点。
现状水果采摘装置的现状是已经取得了较为显著的进展。
目前,水果采摘装置中应用最为广泛的是机器人腕臂。
机器人腕臂采用先进的机械手臂,可以在控制下执行高精度的采摘工作。
其操作方式基本与人类手臂相同,通过关节的运动达到灵活的动作控制,可以满足不同水果采摘的需求。
此外,水果收获机器人还可以利用计算机视觉技术快速和准确地检测和识别水果,使得采摘的效率得到了极大的提高。
此外,因为机器人可以在恶劣的气候和环境条件中工作,所以可以避免因为人力短缺或者极端天气导致的采摘效率低的情况。
发展趋势未来,水果采摘装置的发展将会朝着更高效、更轻便、更多功能化的方向发展。
首先,随着机械臂技术和人工智能技术的发展,机器人腕臂的精度和操作速度将会得到更大的提高。
这样,机器人腕臂将能够操作更小、更柔软的水果,实现真正意义上的全自动化采摘。
其次,未来的水果采摘装置很有可能使用更多的移动机器人(例如无人机和小型车辆),这样可以让机器更加轻便和灵活,同时可以提高采摘的效率和范围。
最后,未来水果采摘装置将采用更多的传感器和监控技术,以实现更精确的操作和更高的采摘效率。
例如,通过分析水果成熟状态和形态特征,机器人可以选择最佳采摘策略,从而同时保证采摘的效率和水果的质量。
总之,未来的水果采摘装置将会得到更大的进一步发展,减少对人力资源的依赖,同时提高采摘效率和水果品质,这将为农民提供更加便利和高效的种植工具,为整个行业迎来更显著的改进和进步。
苹果采摘机器人关键技术研究现状与发展
趋势
苹果采摘机器人是一种应用于农业领域的自动化设备,目的是提高采摘效率和减轻劳动负担。
以下是苹果采摘机器人关键技术的研究现状和发展趋势:(1)视觉识别技术:通过图像识别、深度学习等技术,使采摘机器人能够准确识别成熟的苹果,并确定最佳的采摘位置和角度。
(2)机械臂技术:采摘机器人需要具备精准的机械臂动作,以实现对苹果的准确抓取和采摘。
机械臂的设计要考虑到灵活性、力量控制以及对树干和果实的轻柔处理。
(3)智能路径规划:采摘机器人需要能够有效地规划采摘路径,以覆盖果园中所有苹果树并最小化移动距离。
智能路径规划可以借助传感器、地图导航和算法等技术实现。
(4)环境感知技术:为了适应复杂多变的果园环境,采摘机器人需要能够感知和适应不同的地形、光线条件以及天气变化。
传感器技术在实现环境感知方面发挥重要作用。
(5)数据分析与优化:通过对果园数据的收集和分析,可以优化采摘机器人的工作效率和苹果品质。
数据分析可以帮助农民进行农业管理决策,从而提高果园的产量和质量。
未来,随着技术的不断进步和创新,苹果采摘机器人有望实现更高效的采摘速度和更精确的操作。
同时,通过与大数据、人工智能等技术的结合,可以进一步提升机器人的智能化水平,使其更好地适应不同果树品种和果园环境的需求。
农业机器人在果蔬采摘中的应用前景如何在当今科技飞速发展的时代,农业领域也迎来了一系列的变革。
其中,农业机器人的出现为果蔬采摘带来了新的可能性。
那么,农业机器人在果蔬采摘中的应用前景究竟如何呢?首先,让我们来了解一下为什么果蔬采摘需要引入农业机器人。
传统的果蔬采摘方式主要依赖人工,然而,随着人口老龄化加剧以及劳动力成本的不断上升,人工采摘面临着巨大的挑战。
此外,人工采摘还存在效率低下、劳动强度大、容易造成果蔬损伤等问题。
而农业机器人的出现,有望解决这些难题。
农业机器人在果蔬采摘中的应用具有诸多优势。
其一,它们能够提高采摘效率。
通过先进的传感器和图像识别技术,农业机器人可以快速准确地识别成熟的果蔬,并进行采摘。
相比人工采摘,机器人可以不知疲倦地工作,大大缩短采摘时间。
其二,农业机器人能够保证采摘质量。
它们可以根据果蔬的成熟度、大小和形状等进行精准采摘,减少对果蔬的损伤,提高果蔬的品质和市场价值。
其三,农业机器人可以适应各种复杂的环境。
无论是高温、低温还是恶劣的天气条件,机器人都能够正常工作,不受外界环境的影响。
然而,目前农业机器人在果蔬采摘中的应用还面临一些挑战。
技术方面,果蔬的生长环境复杂多样,果实的形状、大小和颜色也各不相同,这给机器人的识别和采摘带来了很大的困难。
例如,某些水果在成熟过程中颜色变化不明显,或者被树叶遮挡,机器人可能会出现误判。
此外,机器人的采摘动作还需要更加轻柔灵活,以避免损伤果蔬。
成本方面,农业机器人的研发和生产成本较高,这使得其在短期内难以大规模普及。
同时,机器人的维护和保养也需要专业技术人员,增加了使用成本。
尽管面临挑战,但随着科技的不断进步,农业机器人在果蔬采摘中的应用前景依然十分广阔。
未来,我们可以期待以下几个方面的发展。
在技术创新方面,随着人工智能、机器学习和计算机视觉技术的不断发展,农业机器人的识别和采摘能力将得到显著提高。
例如,通过深度学习算法,机器人可以更好地理解果蔬的生长规律和特征,从而更加准确地进行采摘。
《智能移动式水果采摘机器人系统的研究》篇一一、引言随着科技的飞速发展,农业自动化和智能化已成为现代农业发展的重要方向。
其中,智能移动式水果采摘机器人系统的研究,不仅对于提高水果采摘效率、降低人工成本、减少采摘过程中的损失具有重要意义,而且有助于推动农业现代化进程。
本文将对智能移动式水果采摘机器人系统的研究进行详细阐述,以期为相关研究提供参考。
二、研究背景及意义水果采摘是一项劳动强度大、技术要求高的工作。
传统的人工采摘方式存在效率低下、成本高、易损伤果实等问题。
而智能移动式水果采摘机器人系统,通过集成传感器、控制系统、执行机构等设备,实现自主导航、定位、识别、采摘等功能,有效解决了人工采摘的难题。
因此,研究智能移动式水果采摘机器人系统,对于提高水果采摘效率、降低生产成本、保护果实品质具有重要意义。
三、系统构成及工作原理智能移动式水果采摘机器人系统主要由移动平台、视觉识别系统、机械臂及末端执行器等部分组成。
其中,移动平台负责机器人的行走和定位;视觉识别系统通过图像处理和机器视觉技术,实现对果实的识别和定位;机械臂及末端执行器则负责完成果实的采摘任务。
工作原理方面,机器人首先通过移动平台自主导航至果树附近,然后通过视觉识别系统识别和定位果实。
接着,机械臂根据视觉系统的指令,调整姿态和位置,使用末端执行器进行采摘。
整个过程中,机器人可实现自主决策、协调控制,提高采摘效率和准确性。
四、关键技术及研究进展智能移动式水果采摘机器人系统的研究涉及多项关键技术,包括自主导航与定位技术、果实识别与定位技术、机械臂及末端执行器设计等。
其中,自主导航与定位技术是实现机器人自主行走和精确定位的关键;果实识别与定位技术则关系到机器人的采摘准确性和效率;机械臂及末端执行器的设计则直接影响机器人的作业性能和可靠性。
近年来,国内外学者在智能移动式水果采摘机器人系统方面取得了显著的研究进展。
例如,在自主导航与定位技术方面,研究人员通过优化算法和硬件设备,提高了机器人的行走速度和定位精度;在果实识别与定位技术方面,利用深度学习和计算机视觉等技术,实现了对果实的快速识别和准确定位;在机械臂及末端执行器设计方面,通过优化机械结构和控制算法,提高了机器人的作业效率和可靠性。
果树采摘机器人发展概况及特点机器人技术的发展是一个国家高科技水平和工业自动化程度的重要标志和体现f3l。
机器人集成了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科的发展成果,代表高技术的发展前沿,是当前科技研究的热点方向14J。
21世纪是农业机械化向智能化方向发展的重要历史时期。
我国是一个农业大国,要实现农业现代化,农业装备的机械化、智能化是发展的必然趋势。
随着计算机和自动控制技术的迅速发展,机器人已逐步进入农、lp生产领域。
目前,国内浆果采摘作业基本上都是靠人工完成的,采摘效率低,费用占成本的比例约为50%.70%。
采摘机器人作为农业机器人的重要类型,其作用在于能够降低工人劳动强度和尘产费用、提高劳动生产率和产品质量、保证果实适时采收,冈而具有很大的发展潜力lM。
1.2.1国外研究成果及现状自从20世纪60年代(1968年)美国人Schertz 和Brown提出,}J机器人采摘果实之后,对采摘机器人的研究便受到广泛重视。
随蓿科学技术的发展,农业机器人在国外迅速发展起来。
最早的机械采摘方法是机械振摇式和7 e动振摇式两种方法,但这两种方法不仅容易损伤果实,采摘效率也不高,同时容易摘到未成熟果实I61。
1983年,第一台采摘机器人在美固诞生,在以后20多年的时M晕,同、韩及欧美国家相继研究了采摘番茄、黄瓜、苹果、蘑菇、柑橘、番茄和甜瓜等的智能机器人。
l、日本的番茄采摘机器人:日本的果蔬采摘机器人研究始于1 984年,他们利用红色的番茄与背景(绿色)的差别,采用机器视觉对果实进行判别,研制了番茄采摘机器人。
该机器人有5个自由度,对果实实行三维定位。
由于不是全自由度的机械手,操作空间受到了限制,而且孥硬的机械手爪容易损伤果实。
日本冈山大学的Kondo等人研制的番茄采摘机器人,山机械手、末端执行器、行走装置、视觉系统和控制部分组成,如图1-1所示。
·—●T—争Sl7777一图1.1番茄采摘机器人结构简图S1一前后延伸棱柱关节;S2一上下延伸棱柱关节:3、4、5、6、7一旋转关节该机器人采用由彩色摄像头和图像处理卡组成的视觉系统来寻找和识别成熟果实。
考虑到番茄的果实经常被叶茎遮挡,为了能灵活避开障碍物,采用具有冗余度的7自由度机械手。
为了不损伤果实,其末端执行器配带2个带有橡胶的手指和1个气动吸嘴,把果实吸住抓紧后,利用机械手的腕关节把果实拧下。
行走机构有4个车轮,能在!tl问自动行走,利用机器人上的光传感器和设置在地头土埂的反射板,可检测是否到达土埂,到达后自动停止,转向后再继续前进。
该番茄采摘机器人从识别到采摘完成的速度大约是15s/个,成功率在70%左右。
有些成熟番茄未被采摘的主要原因是其位置处于叶茎相对茂密的地方,机器手无法避开叶茎障碍物。
因此需要在机器手的结构、采摘工作方式和避障规划方面加以改进,以提高采摘速度和采摘成功率,降低机器人自动化收获的成本,才可能达到实用化17,81。
2、荷兰的黄瓜采摘机器人:1996年,荷兰农业环境工程研究所(1MAG)研制出一种多功能黄瓜收获机器人。
该机器人利用近红外视觉系统辨识黄瓜果实,并探测它的位置;末端执行器由手爪和切割器构成,用来完成采摘作业。
机械手安装在行走车上,机械手的操作和采摘系统初步定位通过移动行走车来实现,机械手只收获成熟黄瓜,不损伤其他未成熟的黄瓜。
该机械手有7个自山度,采用三菱公司(Mitsubishi)RV.E2的6自由度机械手,另外在底座增加了一个线性滑动自由度。
收获后黄瓜的运输由一个装有可卸集装箱的自动行走的运输车来完成。
整个系统无人工干预就能在温室工作,工作速度为54s/根,采摘率为80%。
试验结果表明:该机器人在实验室中的采摘效果良好,但由于制造成本和适应性的制约,还不能满足商用的要求l引。
3、韩国的苹果收获机器人:韩国庆北大学的科研人员研制出节果采摘机器人,它具有4个自由度,包括3个旋转关节和1个移动关节。
采用三指夹持器作为末端执行器,其手心装有压力传感器,可以起到避免苹果损伤的作用。
它利用CCD摄像机和光电传感器识别果实,从树冠外部识别苹果的识别率达85%,速度达5个/s。
该机器人末端执行器下方安装有果实收集袋,缩短了从采摘到放置的时问,提高了采摘速度。
该机器人无法绕过障碍物摘取苹果;对于叶茎完全遮盖的苹果,也没有给出识别和采摘的解决方法【lol。
4、英国的蘑菇采摘机器人:英国Silsoe研究院研制了蘑菇采摘机器人,它可以自动测量蘑菇的位置、大小,并选择性地采摘和修剪。
它的机械手包括2个气动移动关节和1个步进电机驱动的旋转关节;末端执行器是带有软衬挚的吸引器;视觉传感器采用TV摄像头,安装在顶部用来确定蘑菇的位置和大小。
采摘成功率在7s%左右,采摘速度为6.7s/个,生长倾斜是采摘失败的主要原因。
如何根据图像信息调整机器手姿态动作来提高成功率和采用多个未端执行器提高生产率是亟待解决的问趔¨1。
5、西班牙的柑橘采摘机器人:西班爿:科技人员发明的这种柑橘采摘机器人主体装在拖拉机上,由摘果手、彩色视觉系统和超声传感定位器3部分组成。
它能依据柑桔的颜色、大小、形状束判断柑桔是否成熟?决定是否采摘。
采下的桔子还可按色泽、大小分级装箱。
这种采桔机器人采摘速度为1个/s,比人工提高效率6倍多‘121。
6、以色列和美国联合研制的甜瓜收获机器人:以色列和美国科技人员联合开发研制了一台甜瓜采摘机器人。
该机器人丰体架设在以拖拉机牵引为动力的移动平台上,采用黑白图像处理的方法进行甜瓜的识别和定位,并根据甜瓜的特殊性来增加识别的成功率。
在两个季节和两个品种的}H问试验证明,甜瓜采摘机器人可以完成85%以上的}H问甜瓜的识别和采摘.1=作‘"1。
表1.1给出了国外部分国家果蔬收获机器人同期研究进展统计。
1.2.2国内研究成果及现状国内在农业机器人方面的研究始于20世纪90年代中期,与发达国家相比,虽然起步较晚,但不少大专院校、研究所都在迸行采摘机器人和智能农业机械方面的研究,已有很多研究成果披露,简介如下:l、林木球果采摘机器人:东北林业大学的陆怀民研制了林木球果采摘机器人,主要由5自由度机械手、行走机构、液压驱动系统和单片机控制系统组成,如图1.2所示。
采摘时,机器人停在距离母树3.5m处,操纵机械手回转马达对准母树。
然后,单片机控制系统控制机械手大、小臂同时柔性升起达到~定高度,采摘爪张开并摆动,对准要采集的树枝,大小臂同时运动,使采摘爪沿着树枝生长方向趋近I 5-2m,然后采摘爪的梳齿夹拢果技,大小臂带动采集爪按原路向后返回,梳下枝上的球果-完成一次采摘。
这种机器人效率是500k∥天,是人工的30一50倍。
而且,采摘时对母树的破坏较小,采净率矧川。
2、蘑菇采摘机器人:吉林工qk大学的周云山等人研究了蘑菇_={壬摘机器人。
该系统主要由蘑菇传送带、摄像机、采摘机器手、二自由度气动伺服机构、机器手抓取控制系统和计算机等组成。
汁算机视觉系统为蘑菇采摘机器提供分类所需的尺寸、面积信息,并且引导机器手准确抵达待采摘蘑菇的中心位置,防止因对不准造成抓取失败或损伤蘑菇il”。
3、草莓采摘机器人:中国农业大学的张铁中等人针对我国常见的温室罩垄作栽培的草莓设计了3种采摘机器人。
分别采用桥架式、4自由度』毛门式和3自由度直角坐标形式的机械手进行跨行收获,通过彩色CCD传感系统获取彩色图像,经过图像处理进行目标草莓的识别和定位,进而控制末端执行器进行收获。
同时,对草莓的生物特性、成熟度、多个草莓遮挡等实际问题进行了研究,为草莓采摘提供设计依据和理论基础{161。
4、番茄采摘机器人:南京农业大学的张瑞合、姬长英等人在番茄采摘中运用双目立体视觉技术对红色番茄进行定位,将图像进行灰度变换,而后对图像的二维直方图进彳亍腐蚀、膨胀以去除小团块,提取背景区边缘,然后用拟合曲线实现彩色图像的分割,将番茄从背景中分离出来。
对目标进行标定后,用面积匹配实现共轭图像中目标的配准。
运用体视成像原理,从两幅二维图像中恢复目标的三维坐标。
通过分析实验数据得出的结论为.当目标与摄像机的距离为300mm-400mm 时,深度误差可控制在3%4%t”I。
5、黄瓜采摘机器人:中国农业大学汤修映等人研制了6自由度黄瓜采摘机器人,采用基于RGB三基色模型的G分量来进行图像分割,在特征提取后确定出黄瓜果实的采摘点,未端执行器的活动刃口平移接近固定刃口,通过简单的开合动作剪切掉黄瓜。
同时,提出了新的适合机器人自动化采摘的斜栅网架式黄瓜栽培模式。
6、节果采摘机器人:中国农业大学的孙明等人为苹果采摘机器人开发了一套果实识别机器视觉系统,并成功研究了一种使二值图像的像素分割J下确率大于80%的彩色图像处王甲技术。
通过对果实、叶、茎等的色泽信号浓度频率谱图的分析,求}l{闽值,然后运用此值对彩色图像进行二值化处理l。
引。
1.2.3果树采摘机器人的特点1、采摘对象的非结构性和不确定性果实的生长是随着时fHJ和空问而变化的。
生长的环境是变化的,直接受土地、季节和天气等自然条件的影响。
这就要求果树采摘机器人不但要具有与生物体柔性相对应的处理功能,而且还要能够顺应多变的自然环境,在视觉、知识推理和判断等方面具有很高的智能性。
2、采摘对象的娇嫩性和复杂性果实具有软弱易伤的特性,必须细心轻柔地对待和处理;并且其形状复杂,生长发育程度不一,导致相互差异很大。
果蔬采摘机器人一般是采摘、移动协调进行,行走轨迹不是连接出发点和终点的最短距离,而是具有狭窄的范围、较长的距离以及遍及整个果园表面等特点。
3、具备良好的通用性和可编程性因为果树采摘机器人的操作对象具有多样性和可变性,这就要求采摘机器人具有良好的通用性和可编程性。
只要改变部分软、硬件,就能进行多种作业。
4、操作对象的特殊性和价格的实惠性农民是果树采摘机器人的主要操作者,他们不具有相关的机电理论知识,因此要求果树采摘机器人必须具有高可靠性和操作简单的特点;另外,农业生产以个体经营为主,如果价格太高,就很难普及。