高考物理知识讲解 力的合成与分解 (提高)
- 格式:doc
- 大小:895.07 KB
- 文档页数:13
作者:一气贯长空高考物理:《力的合成与分解》知识点及例题!一、共点力的合成1、合成的方法(1)作图法(2)计算法:根据平行四边形定则作出示意图,然后利用解三角形的方法求出合力,是解题的常用方法.2、运算法则(1)平行四边形定则:求两个互成角度的共点力F1、F2的合力,可以用表示F1、F2的有向线段为邻边作平行四边形,平行四边形的对角线就表示合力的大小和方向,如图1甲所示.(2)三角形定则:求两个互成角度的共点力F1、F2的合力,可以把表示F1、F2的线段首尾顺次相接地画出,把F1、F2的另外两端连接起来,则此连线就表示合力的大小和方向,如图乙所示.3、重要结论(1)两个分力一定时,夹角θ越大,合力越小.(2)合力一定,两等大分力的夹角越大,两分力越大.(3)合力可以大于分力,等于分力,也可以小于分力.合力大小的范围(1)两个共点力的合成|F1-F2|≤F合≤F1+F2,即两个力大小不变时,其合力随夹角的增大而减小.当两力反向时,合力最小,为|F1-F2|;当两力同向时,合力最大,为F1+F2.(2)三个共点力的合成①三个力共线且同向时,其合力最大,为F1+F2+F3.②任取两个力,求出其合力的范围,如果第三个力在这个范围之内,则三个力的合力的最小值为零,如果第三个力不在这个范围内,则合力的最小值为最大的一个力减去另外两个较小力的和的绝对值.二、力分解的两种常用方法1、力的效果分解法:(1)根据力的实际作用效果确定两个实际分力的方向;(2)再根据两个实际分力的方向画出平行四边形;(3)最后由平行四边形和数学知识求出两分力的大小.2、正交分解法(1)定义:将已知力按互相垂直的两个方向进行分解的方法.(2)建立坐标轴的原则:以少分解力和容易分解力为原则(即尽量多的力在坐标轴上).例题:风洞是进行空气动力学实验的一种重要设备.一次检验飞机性能的风洞实验示意图如图所示,AB代表飞机模型的截面,OL是拉住飞机模型的绳.已知飞机模型重为G,当飞机模型静止在空中时,绳恰好水平,此时飞机模型截面与水平面的夹角为θ,则作用于飞机模型上的风力大小为( )。
2021年高考物理100考点最新模拟题千题精练第二部分相互作用专题2.5.力的合成与分解(提高篇)一.选择题1.(2020河北石家庄质检)如图所示,平直滑梯静止放置在水平面上,一质量为m 的小女孩以一定的初速度v 沿滑梯斜面(与地面夹角为θ)下滑,若小女孩与滑梯斜面间的动摩擦因数μ=tan θ,则下列说法中正确的是( )A.若此刻加一竖直向下的恒力作用在小女孩身上,小女孩一定会加速下滑B.若此刻对小女孩施加一水平向左的推力,则小女孩将加速下滑C.若此刻对小女孩施加一水平向左的推力,则小女孩将匀速下滑D.若此刻平行滑梯斜面向下对小女孩施加恒定推力,则小女孩将加速下滑【参考答案】D【名师解析】由小女孩与滑梯斜面间的动摩擦因数μ=tan θ,可得mg sinθ=μmg cosθ,可知质量为m 的小女孩以一定的初速度v 沿滑梯斜面匀速下滑。
若此刻加一竖直向下的恒力F作用在小女孩身上,仍然有(mg+F)sinθ=μ(mg+F)cosθ,小女孩仍然匀速下滑,选项A错误;若此刻对小女孩施加一水平向左的推力,将增大对滑梯的正压力,导致摩擦力增大,则小女孩将减速下滑或处于静止状态,选项BC错误;若此刻平行滑梯斜面向下对小女孩施加恒定推力,则小女孩将加速下滑,选项D正确。
2. (2020高考仿真冲刺卷)如图所示,一长木板静止在倾角为θ的斜面上,长木板上一人用力推长木板上的物块,使物块与长木板间的摩擦力刚好为零,已知人、物块、长木板的质量均为m,且整个过程未发生移动.人、物块与长木板间的动摩擦因数均为μ1,长木板与斜面间的动摩擦因数为μ2,重力加速度为g,则下列说法正确的是()A.斜面对长木板的摩擦力大小为mgsin θB.斜面对长木板的支持力大小为3μ2mgcos θC.长木板对人的摩擦力大小为2μ1mgcos θD.长木板对人的摩擦力大小为2mgsin θ【参考答案】D【名师解析】对人,物块,长木板三者整体研究,斜面对它们的摩擦力为静摩擦力,其大小为f=3mgsin θ,故A,B 错误;对人,物块整体研究,由于物块与长木板间的摩擦力刚好为零,因此长木板对人的静摩擦力大小为f′=2mgsin θ,故C错误,D正确.3.(2019广东佛山模拟)图甲是由两圆杆构成的“V”形槽,它与水平面成倾角θ放置。
2024高考物理力的合成与分解专题讲解在物理学中,力的合成与分解是一个重要的概念,特别是在解决力学问题时,它们被广泛应用。
本文将针对2024年高考物理题中与力的合成与分解相关的题目进行专题讲解,帮助同学们更好地理解和掌握这一知识点。
一、力的合成1. 什么是力的合成?力的合成是指当一个物体受到多个力的作用时,这些力的作用效果相当于一个合力的作用效果。
合力的大小和作用方向取决于这些力的大小和作用方向。
2. 力的合成的几何方法力的合成可以通过几何方法进行求解。
当多个力作用在同一个物体上时,可以使用力的几何图示来求得合力。
(示意图)如图所示,假设物体受到A、B两个力的作用,我们可以将它们按照比例画在一个力的几何图示中,然后连接起来。
连接起来的线段表示了合力的大小和作用方向。
3. 力的合成的数学方法力的合成也可以通过数学方法进行求解。
当多个力的大小和方向已知时,可以使用向量相加的方法获得合力的大小和方向。
(数学公式)如上图所示,假设物体受到A、B两个力的作用,力A的大小为F_A,方向为α,力B的大小为F_B,方向为β。
我们可以使用向量相加的方法,通过以下公式计算出合力的大小和方向:F = √(F_A^2 + F_B^2 + 2F_A・F_B・cos(α - β))4. 力的合成的应用力的合成在解决力学问题时具有广泛的应用。
例如,在斜面上放置一个物体,可以通过将重力分解为平行于斜面和垂直于斜面的分力,从而获得物体在斜面上的加速度。
二、力的分解1. 什么是力的分解?力的分解是指将一个力分解成多个力的过程。
通过力的分解,可以将一个力分解成与坐标轴方向垂直的两个力,使得问题的处理更加简单。
2. 力的分解的方法力的分解可以通过几何方法或数学方法进行求解。
几何方法是通过画力的几何图示,将一条力分解成两条力;数学方法则是通过向量的分解,将一个力分解成与坐标轴方向垂直的两个力。
3. 力的分解的应用力的分解在解决力学问题时也有广泛的应用。
7.弹力1.产生条件:(1)物体间直接接触;(2)接触处发生形变(挤压或拉伸)。
2.弹力的方向:弹力的方向与物体形变的方向相反,具体情况如下:(1)轻绳只能产生拉力,方向沿绳指向绳收缩的方向.(2)弹簧产生的压力或拉力方向沿弹簧的轴线。
(3)轻杆既可产生压力,又可产生拉力,且方向沿杆。
3.弹力的大小弹力的大小跟形变量的大小有关。
○1弹簧的弹力,由胡克定律F=kx,k为劲度系数,由本身的材料、长度、截面积等决定,x为形变量,即弹簧伸缩后的长度L与原长Lo的差:x=|L-L0|,不能将x当作弹簧的长度L○2一般物体所受弹力的大小,应根据运动状态,利用平衡条件和牛顿运动定律计算,例2小车的例子就说明这一点。
【例1】下列关于力的说法中,正确的是( )A.只有相互接触的两物体之间才会产生力的作用B.力是不能离开物体而独立存在的,一个力既有施力物体,又有受力物体C.一个物体先对别的物体施加力后,才能受到反作用力D.物体的施力和受力是同时的【例2】关于物体的重心,以下说法正确的是A.物体的重心一定在该物体上B.形状规则的物体,重心就在其中心处C.用一根悬线挂起的物体静止时,细线方向一定通过物体的重心D.重心是物体上最重的一点【例3】如图所示,小车上固定一根折成α角的曲杆,杆的另一端一固定一质量为m的球,则当小车静止时和以加速度a向右加速运动时杆对球的弹力大小及方向如何?(4)面与面、点与面接触的压力或支持力的方向总垂直于接触面,指向被压或被支持的物体,如图所示,球和杆所受弹力的示意图。
摩擦力摩擦力有滑动摩擦力和静摩擦力两种,它们的产生条件和方向判断是相近的。
.1.产生的条件:(1)相互接触的物体间存在压力;(2)接触面不光滑;(3)接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力)。
注意:不能绝对地说静止物体受到的摩擦力必是静摩擦力,运动的物体受到的摩擦力必是滑动摩擦力。
静摩擦力是保持相对静止的两物体之间的摩擦力,受静摩擦力作用的物体不一定静止。
第2讲力的合成与分解[课标要求]1.了解力的合成与分解;知道矢量和标量。
2.会应用平行四边形定则或三角形定则求合力。
3.能利用效果分解法和正交分解法计算分力。
考点一力的合成1.合力与分力(1)定义:如果一个力单独作用的效果跟几个力共同作用的效果相同,这个力就叫作那几个力的合力,那几个力就叫作这个力的分力。
(2)关系:合力和分力是等效替代的关系。
2.共点力:作用在物体的同一点,或作用线的延长线交于一点的力。
3.力的合成(1)定义:求几个力的合力的过程。
(2)运算法则①平行四边形定则:求两个互成角度的力的合力,可以用表示这两个力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,如图甲所示。
②三角形定则:把两个矢量首尾相连,从而求出合矢量的方法,如图乙所示。
自主训练1两个力的合成及合力的范围如图为两个大小不变、夹角θ变化的力的合力的大小F与θ角之间的关系图像(0≤θ≤2π),下列说法中正确的是()A.合力大小的变化范围是0≤F≤14NB.合力大小的变化范围是2N≤F≤10NC.这两个分力的大小分别为6N和8ND .这两个分力的大小分别为2N 和8N 答案:C解析:由题图可知,当两力夹角为π时,两力的合力为2N ,而当两力夹角为π2时,两力的合力为10N ,则这两个力的大小分别为6N 、8N ,故C 正确,D 错误;当两个力方向相同时,合力大小等于这两个力的大小之和14N ;当两个力方向相反时,合力大小等于这两个力的大小之差2N ,由此可见,合力大小的变化范围是2N ≤F ≤14N ,故A 、B 错误。
自主训练2作图法求合力(2023·浙江嘉兴模拟)如图所示,某物体同时受到共面的三个共点力作用,坐标纸小方格边长的长度对应1N 大小的力。
甲、乙、丙、丁四种情况中,关于三个共点力的合力大小,下列说法正确的是()A .甲图最小B .乙图为8NC .丙图为5ND .丁图为1N答案:D解析:由题图可知,F 甲=2N ,方向竖直向上;F 乙=45N ,方向斜向右下;F 丙=25N ,方向斜向左上;F 丁=1N ,方向竖直向上;则题图丁的合力最小,为1N ,故选D 。
力的合成与分解高考物理中的重要考点力的合成与分解是高考物理中的重要考点力的合成与分解是物理学中一个基本的概念,也是高考物理中的重要考点之一。
理解和掌握这个概念对于解决与力有关的物理问题至关重要。
本文将深入探讨力的合成与分解的概念、原理以及应用,帮助读者全面理解和掌握这一知识点。
一、力的合成力的合成指的是将多个力合成为一个力的过程。
在力的合成中,我们需要了解两个重要的概念:力的大小和方向。
1. 力的大小在合成力的过程中,力的大小是通过矢量相加的方法来计算的。
如果有两个力P1和P2,它们的大小分别为F1和F2,方向分别为θ1和θ2,则合成力的大小可以使用以下公式计算:F = √(F1^2 + F2^2 + 2F1F2cos(θ1 - θ2))其中,F为合成力的大小。
2. 力的方向在合成力的过程中,力的方向是通过矢量相加的方法来确定的。
如果有两个力P1和P2,它们的大小分别为F1和F2,方向分别为θ1和θ2,则合成力的方向可以通过以下公式计算:tanα = (F2sinθ2 + F1sinθ1) /(F2cosθ2 + F1cosθ1)其中,α为合成力与水平方向的夹角。
二、力的分解力的分解是将一个力分解为几个力的过程。
在力的分解中,我们需要了解两个重要的概念:水平分力和垂直分力。
1. 水平分力当一个力斜向上施加在一个物体上时,可以将该力分解为水平方向上的力和垂直方向上的力。
水平分力的计算可以使用以下公式:Fh = Fcosθ其中,Fh为水平分力的大小,F为合成力的大小,θ为合成力与水平方向的夹角。
2. 垂直分力当一个力斜向上施加在一个物体上时,可以将该力分解为水平方向上的力和垂直方向上的力。
垂直分力的计算可以使用以下公式:Fv = Fsinθ其中,Fv为垂直分力的大小,F为合成力的大小,θ为合成力与水平方向的夹角。
三、力的合成与分解的应用力的合成与分解在物理学中有广泛的应用。
以下是力的合成与分解的一些具体应用:1. 航空航天在航空航天领域中,合成力的概念常常用于计算飞机的推力与阻力之间的平衡。
高一物理《力的分解与合成》知识点讲解力的分解与合成是物理学中一个重要的概念,它有助于我们理解多个力合成为一个力的效果,以及一个力如何分解为多个力的效果。
以下是对该知识点的讲解。
1. 力的分解力的分解是指将一个力分解为多个力的效果。
这样做有助于我们更好地理解和分析力的作用。
在力的分解中,我们常使用正交分解法和图解法。
1.1 正交分解法正交分解法是将一个力分解为两个分力,其中一个与给定方向垂直,另一个与给定方向平行。
这种方法常用于解决斜面问题和倾斜物体问题。
在正交分解时,我们可以根据三角函数关系来计算力的分解分量。
1.2 图解法图解法是通过绘制矢量图来展示力的分解。
我们可以使用比例尺来确定力的大小和方向。
通过观察图示,我们可以清楚地看到力的分解效果。
图解法常用于解决平面力系统和多个力合成问题。
2. 力的合成力的合成是指将多个力合成为一个力的效果。
这有助于我们将多个力简化为一个力进行分析。
力的合成有两种常见方法:向量法和平行四边形法。
2.1 向量法向量法是通过将多个力的矢量相加或相减来求得合成结果。
在向量法中,我们需要将各个力的大小和方向用矢量表示,然后按照矢量相加或相减的规则进行计算。
最终的合成力的大小和方向由向量相加或相减的结果得出。
2.2 平行四边形法平行四边形法是通过构造平行四边形来展示力的合成。
我们可以使用比例尺来确定力的大小和方向,并用图示表达力的合成效果。
通过观察平行四边形的对角线,我们可以得到合成力的大小和方向。
力的分解与合成是物理学中非常实用的技巧。
通过运用这些技巧,我们可以更好地分析和解决力的问题,提高问题解决的效率。
以上是对高一物理《力的分解与合成》知识点的简要讲解。
希望对您的学习有所帮助!。
第3讲 力的合成与分解整合教材·夯实必备知识一、力的合成(必修一第三章第4节) 1.合力与分力2.力的合成定义求几个力的合力的过程运算法则平行四边形定则用表示这两个分力的有向线段为邻边作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向。
三角 形定则 把两个矢量的首尾顺次连接起来,第一个矢量的起点到第二个矢量的终点的有向线段为合矢量。
二、力的分解(必修一第三章第4节)1.力的分解是力的合成的逆运算,遵循的法则:平行四边形定则或三角形定则。
2.分解方法(1)按力产生的效果分解;(2)正交分解法。
【质疑辨析】角度1合力与分力(1)合力和分力可以同时作用在一个物体上。
(×)(2)几个力的共同作用效果可以用一个力来替代。
(√)角度2平行四边形定则(3)两个力的合力一定比分力大。
(×)(4)当一个分力增大时,合力一定增大。
(×)(5)一个力只能分解为一对分力。
(×)(6)两个大小恒定的力F1、F2的合力的大小随它们夹角的增大而减小。
(√)(7)互成角度的两个力的合力与分力间一定构成封闭的三角形。
(√)精研考点·提升关键能力考点一共点力的合成(核心共研)【核心要点】1.求合力的方法作图法作出力的图示,结合平行四边形定则,用刻度尺量出表示合力的线段的长度,再结合标度算出合力大小计算法根据平行四边形定则作出力的示意图,然后利用勾股定理、三角函数、正弦定理等求出合力2.合力范围的确定(1)两个共点力的合力大小的范围:|F1-F2|≤F≤F1+F2。
①两个力的大小不变时,其合力随夹角的增大而减小。
②当两个力反向时,合力最小,为|F1-F2|;当两个力同向时,合力最大,为F1+F2。
(2)三个共点力的合力大小的范围①最大值:三个力同向时,其合力最大,为F max=F1+F2+F3。
②最小值:若任意两个力的大小之和大于或等于第三力,则三个力的合力最小值为零,否则合力最小值等于最大的力减去另外两个力。
力的合成与分解【学习目标】1. 知道合力与分力的概念2. 知道平行四边形定则是解决矢量问题的方法,学会作图,并能把握几种特殊情形3. 知道共点力,知道平行四边形定则只适用于共点力4. 理解力的分解和分力的概念,知道力的分解是力的合成的逆运算5. 会用作图法求分力,会用直角三角形的知识计算分力6. 能区别矢量和标量,知道三角形定则,了解三角形定则与平行四边形定则的实质是一样的【要点梳理】要点一、力的合成要点诠释:1.合力与分力①定义:一个力产生的效果跟几个力的共同作用产生的效果相同,则这个力就叫那几个力的合力,那几个力叫做分力。
②合力与分力的关系。
a.合力与分力是一种等效替代的关系,即分力与合力虽然不同时作用在物体上,但可以相互替代,能够相互替代的条件是分力和合力的作用效果相同,但不能同时考虑分力的作用与合力的作用。
b.两个力的作用效果可以用一个力替代,进一步想,满足一定条件的多个力的作用效果也可由一个力来替代。
2.力的合成①定义:求几个力的合力的过程叫做力的合成。
②说明:力的合成的实质是找一个力去替代作用在物体上的几个已知的力,而不改变其作用效果的方法。
3.平行四边形定则①内容:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向,这个法则叫做平行四边形定则。
说明:平行四边形定则是矢量运算的基本法则。
②应用平行四边形定则求合力的三点注意a.力的标度要适当;b.虚线、实线要分清,表示分力和合力的两条邻边和对角线画实线,并加上箭头,平行四边形的另两条边画虚线;c.求合力时既要求出合力的大小,还要求出合力的方向,不要忘了用量角器量出合力与某一分力间的夹角。
要点二、共点力要点诠释:1.共点力:一个物体受到两个或更多个力的作用,若它们的作用线交于一点或作用线的延长线交于一点,这一组力就是共点力。
2.多个力合成的方法:如果有两个以上共点力作用在物体上,我们也可以应用平行四边形定则求出它们的合力:先求出任意两个力的合力,再求出这个合力跟第三个力的合力,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
力的合成与分解编稿:周军审稿:张金虎【考纲要求】1.知道力的合成与分解、合力与分力、平行四边形定则;2.会用作图法求共点力的合力;3.理解合力的大小与分力夹角的关系;4.会用作图法求分力,并且能用直角三角形及正交分解法求分力。
【考点梳理】考点一:合力与分力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的共同效果相同,这个力就叫做那几个力的合力,原来的几个力叫做分力.要点诠释:①合力与分力是针对同一受力物体而言.②一个力之所以是其他几个力的合力,或者其他几个力是这个力的分力,是因为这一个力的作用效果与其他几个力共同作用的效果相当,合力与分力之间的关系是一种等效替代的关系.考点二:共点力1.定义:一个物体受到的力作用于物体上的同一点或者它们的作用线交于一点,这样的一组力叫做共点力.(我们这里讨论的共点力,仅限于同一平面的共点力)要点诠释:一个具体的物体,其各力的作用点并非完全在同一个点上,若这个物体的形状、大小对所研究的问题没有影响的话,我们就认为物体所受到的力就是共点力.如图甲所示,我们可以认为拉力F、摩擦力F1及支持力F2都与重力G作用于同一点O.如图乙所示,棒受到的力也是共点力.2.共点力的合成:遵循平行四边形定则.3.两个共点力的合力范围合力大小的取值范围为:F1+F2≥F≥|F1-F2|.在共点的两个力F1与F2大小一定的情况下,改变F1与F2方向之间的夹角θ,当θ角减小时,其合力F逐渐增大;当θ=0°时,合力最大F=F1+F2,方向与F1与F2方向相同;当θ角增大时,其合力逐渐减小;当θ=180°时,合力最小F=|F1-F2|,方向与较大的力方向相同.4.三个共点力的合力范围①最大值:当三个分力同向共线时,合力最大,即F max=F1+F2+F3.②最小值:a.当任意两个分力之和大于第三个分力时,其合力最小值为零.b.当最大的一个分力大于另外两个分力的算术和时,其最小合力等于最大的一个力减去另外两个力的算术和的绝对值.要点三、矢量相加的法则要点诠释:(1)平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为邻边 作平行四边形,这两个邻边之间的对角线就表示合力的大小和方向(如左图所示)。