例例33::求求半半球球体体被被截截后后的的俯俯视视图图和和左左视视图图。。
两水个平侧面平截面圆截球圆的球截的交截线 交的线投的影投,影在,俯在视侧图视上图为 上部为分部圆分弧圆,弧在,侧在视俯图视上 图积上聚积为聚直为线直。线。
半球体被截后的视图和立体图。
6.1.36.切2.3割切体割的体尺的寸尺标寸注标注
PV
PV
θ
PV
PV
θ
PV
垂直于轴线 θ= 90°
圆
倾斜于轴线 θ>α
椭圆
平行于轴线 θ= 0°
双曲线
平行于一条素线 过锥顶
θ=α
直线(三角形)
抛物线
直线
例1::圆圆锥锥被被正垂正面垂截面断截,断, 完成三完视成图三。视图。
1' 7‘ (8') 3‘(4’) 6' (6 ') 9‘ (10') 2'
1、相贯线的主要性质
表面性 相贯线位于两基本体的表面上。
封闭性
相贯线一般是封闭的空间折线(通常 由直线和曲线组成)或空间曲线。
共有性
相贯线是两基本表面的共有线。
其作图实质是找出相贯的两基本体表面的若干共有 点的投影。
2、求相贯线常用的三种方法: 利用积聚性求相贯线
辅助平面法
辅助球面法 3、作图过程
2 4
3
(a) 截平面与上、下底面平行,截面为正五边形
(b) 截平面截断五条棱,截面为五边形 (c) 截平面截断六条棱, 截面为六边形 (e) 截平面截断三条棱, 截面为三边形
(d) 截平面截断四条棱, 截面为四边形 (f) 截平面与侧棱平行, 截面为矩形
例2:补全六棱柱被截切后的俯视图和左视图。