(完整版)同底数幂的乘法、幂的乘方、积的乘方提高练习
- 格式:pdf
- 大小:11.85 KB
- 文档页数:2
专题11 同底数幂的乘法、幂的乘方、积的乘方考点一 同底数幂相乘 考点二 同底数幂乘法的逆用考点三 幂的乘方运算 考点四 幂的乘方的逆用考点五 幂的混合运算 考点六 积的乘方运算考点七 积的乘方的逆用考点一 同底数幂相乘 例题:(2022·河南平顶山·七年级期末)计算:44a a ⋅=______.【答案】8a【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行运算即可.【详解】解:448a a a ⋅=,故答案为:8a .【点睛】此题考查同底数幂的乘法,解题关键在于掌握运算法则并熟练计算.【变式训练】 1.(2022·湖南·新化县东方文武学校七年级期中)5a a -⋅=________________.【答案】6a -【分析】根据同底数的乘法进行计算即可求解.【详解】解:56a a a -⋅=-,故答案为:6a -.【点睛】本题考查了同底数幂相乘,掌握运算法则是解题关键.2.(2022·湖南省岳阳开发区长岭中学七年级期中)计算:2323m m ⋅= ____________.【答案】56m【分析】根据同底数幂乘法来进行计算求解.【详解】解:2323523236m m m m +⋅=⨯⨯=.答案为:56m .【点睛】本题主要考查了同底数幂乘法的运算法则,理解同底数幂相乘,底数不变,指点数相加是解答关键.3.(2022·山东·北辛中学七年级阶段练习)()()34--b a a b ⋅=_____.【答案】()7b a -【分析】根据同底数幂乘法的计算法则求解即可.【详解】解:()()34b a a b -⋅- ()()34b a b a =-⋅- ()7b a =-,故答案为:()7b a -.【点睛】本题主要考查了同底数幂乘法,熟知同底数幂乘法底数不变,指数相加减是解题的关键.考点二 同底数幂乘法的逆用例题:(2022·广东·高州市第一中学附属实验中学七年级阶段练习)已知 32m =,35n =,则3m n +=____【答案】10【分析】根据同底数幂的乘法的逆运算可得答案.【详解】解:32m =,35n =,3332510m n m n +∴=⨯=⋅=,故答案为:10.【点睛】本题考查了同底数幂的乘法的逆运算,解题的关键是掌握相应的运算法则.【变式训练】1.(2022·江苏·江阴市青阳初级中学七年级阶段练习)已知3,4a b x x ==,a b x +的值是_______.【答案】12【分析】根据同底数幂相乘的逆运算,即可求解.【详解】解:∵3,4a b x x ==,∵3412a b a b x x x +=⋅=⨯=.故答案为:12【点睛】本题主要考查了同底数幂相乘的逆运算,熟练掌握m nm n a a a a (其中m ,n 为正整数)是解题的关键.2.(2022·江苏·南师附中新城初中黄山路分校七年级期中)若5m a =,2n a =,则2m n a +=______.【答案】20【分析】根据m n a a a =m n +(m ,n 是正整数)可得22m n m n m n n a a a a a a +==,再代入5m a =,2n a =计算即可.【详解】解:2252220m n m n m n n a a a a a a +===⨯⨯=,故答案为:20.【点睛】此题主要考查了同底数幂的乘法,关键是掌握同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.考点三 幂的乘方运算例题:(2022·湖南永州·七年级期中)计算()42=x ______. 【答案】8x【分析】根据幂的乘方法则求解即可.【详解】解:()42248x x x ⨯==. 故答案为:8x .【点睛】本题考查了幂的运算法则,掌握幂的乘方法则是解本题的关键.【变式训练】 1.(2022·福建·晋江市南侨中学八年级阶段练习)当24m =时,则8m =_____【答案】64【分析】先将8改成32,再用幂的乘方公式将8m 化为()32m ,最后将24m =代入计算即可;也可以利用24m =求出m ,代入8m 计算.【详解】解法一:∵24m =,∵()()33338222464m m m m =====. 解法二:∵2242m ==,∵2m =,∵28864m ==.故答案为:64.【点睛】本题考查幂的乘方公式,掌握幂的乘方公式是解题的关键.由于数字的特殊性导致m 的值可求,但解法一适用范围更广更需掌握.2.(2022·河北·顺平县腰山镇第一初级中学一模)已知2m =8n =4,则m =_____,2m+3n =_____.【答案】 2 16【分析】先求得m ,n 的值,再代入代数式计算即可.【详解】∵()33822nn n ==,242=, ∵32222m n ==,∵32m n ==,∵322422216m n ++===,故答案为:2;16.【点睛】本题考查了同底数幂的乘法和乘方,熟练掌握运算性质是解题的关键. 3.(2022·江西抚州·七年级期中)已知:23m =,325n =,则52m n +=______.【答案】15【分析】利用同底数幂的乘法法则的逆运算及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【详解】解:∵23m =,53225n n ==,∵552223515m n m n +=⨯=⨯=;故答案为:15.【点睛】本题主要考查幂的乘方,同底数幂的乘法的逆运算,解答的关键是对相应的运算法则的掌握.考点四 幂的乘方的逆用例题:(2022·广东·佛山市顺德区勒流育贤实验学校七年级期中)已知93m =,274n =,则233m n +=( ) A .24B .36C .48D .12【答案】D【分析】利用幂的乘方的法则对已知条件进行整理,再利用同底数幂的乘法的法则对所求的式子进行运算即可.【详解】解:∵93m =,274n =,∵233m =,334n =∵2323333m n m n +=⨯34=⨯ 12=.故选:D .【点睛】本题主要考查同底数幂的乘法,幂的乘方,解答的关键是熟记相应的运算法则并灵活运用.【变式训练】 1.(2021·河北·石家庄市藁城区尚西中学八年级阶段练习)已知5x a =,250xy a ,则y a =( ) A .10B .5C .2D .40 【答案】C【分析】逆向运用同底数幂的乘法法则可得22xy x y a a a ,再根据幂的乘方运算法则求解即可. 【详解】解:∵5x a =,250xy a , ∵22250x y x y x y a a a a a ,∵2550y a ,∵25052y a .故选:C .【点睛】本题考查了同底数幂的乘法以及幂的乘方.掌握幂的运算法则是解答本题的关键.2.(2021·浙江·嵊州市马寅初初级中学七年级期中)已知3181a =,4127b =,619c =,则a ,b ,c 的大小关系是( )A .a b c >>B .a c b >>C .a b c <<D .b c a >>【答案】A【分析】根据幂的乘方是逆运算将各数的底数变为相同的数字,进而比较即可.【详解】解:∵3181a ==962=3124,4127b ==3123,619c ==3122,∵a >b >c ,故选:A .【点睛】此题考查了幂的乘方的运算法则,熟记法则是解题的关键.考点五 幂的混合运算例题:(2022·安徽阜阳·八年级期末)计算:()()4273342a a a a -⋅-÷; 【答案】0【分析】先计算积的乘方与幂的乘方,再计算同底数除法,然后计算整式的减法即可得.【详解】解:原式273121616a a a a ⋅-÷=991616a a -=0=.【点睛】本题考查了积的乘方与幂的乘方,再计算同底数除法,等知识点,熟练掌握各运算法则是解题关键.【变式训练】 1.(2021·上海市民办新复兴初级中学七年级期末)计算:()()23222n n n a a a ⎡⎤-⋅+-⎣⎦. 【答案】0【分析】先根据幂的乘方计算,计算同底数幂,最后合并,即可求解.【详解】解:原式426660n n n n n a a a a a =⋅-=-=.【点睛】本题主要考查了幂的混合运算,熟练掌握相关幂的运算法则是解题的关键.2.(2022·江苏·七年级专题练习)计算:(1)()3242a a a ⋅+-; (2)()()()345222a a a ⋅÷-; (3)432()()()p q q p p q -÷-⋅-.【答案】(1)0(2)4a -(3)3()p q --【分析】(1)根据同底数幂的乘法和幂的乘方以及合并同类项的计算法则求解即可;(2)根据幂的乘方和同底数幂的除法计算法则求解即可;(3)根据同底数幂的乘除法计算法则求解即可.(1)解:()3242a a a ⋅+- ()66a a =+-66a a =-0=;(2)解:()()()345222a a a ⋅÷- ()6810a a a =⋅÷-4a =-;(3)解:432()()()p q q p p q -÷-⋅-432()()()q p q p q p =-÷-⋅-3()q p =-()3p q =--.【点睛】本题主要考查了幂的混合运算,熟知相关计算法则是解题的关键.考点六 积的乘方运算 例题:(2022·湖南·测试·编辑教研五七年级期末)计算()232x y 的结果是( )A .8x 6 y 2B .4 x 6 y 2C .4 x 5 y 2D .8 x 5 y 2【答案】B【分析】根据幂的乘方、积的乘方进行运算即可.【详解】解:()()22323226422x y x y x y ==. 故选B .【点睛】本题主要考查了幂的乘方、积的乘方等知识点,掌握相关运算法则是解答本题的关键.【变式训练】 1.(2022·安徽·合肥新华实验中学七年级期中)计算423(3)a b -的结果是( )A .1269a b -B .7527a b -C .1269a bD .12627a b - 【答案】D【分析】根据积的乘方运算法则,进行计算即可解答.【详解】解:126423(73)2b a a b --=,故选:D .【点睛】本题考查了积的乘方,熟练掌握积的乘方运算法则是解题的关键.2.(2021·黑龙江·哈尔滨顺迈学校八年级阶段练习)下列计算正确的是( )A .3332b b b ⋅=B .()326ab ab = C .()2510a a = D .()2349a a a ⋅= 【答案】C【分析】分别根据同底数幂的乘法法则幂的乘方与积的乘方运算法则逐一判断即可.【详解】解:A 、33632b b b b ⋅=≠,故本选项不合题意;B 、()32366ab a b ab =≠,故本选项不合题意; C 、()2510a a =,故本选项符合题意; D 、()234109a a a a ⋅=≠,故本选项不合题意; 故选:C .【点睛】本题主要考查同底数幂的乘法、幂的乘方与积的乘方运算,熟记幂的运算法则是解答本题的关键.考点七 积的乘方的逆用 例题:(2021·河南·鹤壁市外国语中学八年级开学考试)计算:(1)已知()3240n a =,求6n a 的值; (2)已知n 为正整数,且27n x =,求()()223234nn x x -的值. 【答案】(1)25(2)2891【分析】(1)由积的乘方公式解题;(2)由积的乘方公式解得()()223234n n x x -23229()4()n n x x =-,再利用整体代入法解题.(1)解:()3322n a =3=40n a 3=5n a ∴322()=5n a ∴6=25n a ∴.(2)()()223234n n x x -26434n n x x =-23229()4()n n x x =-27n x =∴原式3229747(634)72891=⨯-⨯=-⨯=.【点睛】本题考查积的乘方、幂的乘方等知识,是重要考点,难度一般,掌握相关知识是解题关键.【变式训练】1.(2021·江苏·南京钟英中学七年级阶段练习)若m n a a =(0a >且1a ≠,m 、n 是正整数),则m n =.利用上面结论解决下面的问题:(1)如果528162x x ÷⋅=,求x 的值;(2)如果212224x x +++=,求x 的值;(3)若53m x =-,425m y =-,用含x 的代数式表示y .【答案】(1)4x =;(2)2x =;(3)265y x x =---【分析】(1)先,将底数都化为2,再利用同底数幂的乘除法法则计算;(2)利用积的乘方逆运算解答;(3)利用等式的性质及幂的乘方逆运算将式子变形为35m x +=,24255m m y -==,即可得到x 与y 的关系式,由此得到答案.【详解】解:(1)∵528162x x ÷⋅=,∵3452222x x ÷⋅=,∵1345x x -+=,解得4x =;(2)∵212224x x +++=,∵2222224x x ⋅+⋅=,2(42)24x +=,2242x ==,2x =;(3)∵53m x =-,425m y =-,∵35m x +=,24255m m y -==,∵243)(x y +-=,∵223)654(x y x x +=--=--.【点睛】此题考查整式的乘法公式:同底数幂相乘、同底数幂相除、积的乘方以及幂的乘方的计算法则,熟记法则及其逆运算是解题的关键.2.(2020·吉林·长春市第十三中学校七年级期中)已知222()ab a b =,333()ab a b =, 444()ab a b =. (1)当1a =,2b =-时,5()ab = ,55a b = .(2)当1a =-,10b =时,6()ab = ,66a b = .(3)观察(1)和(2)的结果,可以得出结论:()n ab = (n 为正整数).一、选择题1.(2022·湖南·新田县云梯学校七年级阶段练习)下列运算正确的是( )A .235x x x +=B .3412a a a ⋅=C .44(2)8x x =D .()2362x y x y -= 【答案】D【分析】根据同底数幂的乘法、积的乘方与幂的乘方、合并同类项法则逐项判断即可得.【详解】解:A 、2x 与3x 不是同类项,无法合并,故错误;n m,即可求解.9,3159,315n m,n m.解得:3,5故选:B【点睛】本题考查了积的乘方的运用,关键是检查学生能否正确运用法则进行计算,题目比较好,但是一【点睛】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.三、解答题9.(2022·福建·晋江市南侨中学八年级阶段练习)计算:(1)322··x x x x + (2)34a a a +()()42242a a +-【答案】(1)2x 4(2)6a 8【分析】(1)先计算同底数幂的乘法,然后合并同类项计算即可;(2)先计算同底数幂的乘法,幂的乘方及积的乘方,然后合并同类项计算即可.(1)解:原式44x x =+42x =; (2)原式8884a a a =++86a =.【点睛】题目主要考查整式的加减运算,同底数幂的乘法,幂的乘方及积的乘方,熟练掌握运算法则是解题关键.10.(2022·重庆市第十一中学校七年级期中)计算:(1)()()3222332x x x x x ⋅⋅+-; (2)()()321422m m a a a +⎡⎤-+⋅⎢⎥⎣⎦. 【答案】(1)0;(2)3321648m m a a ++-+.【分析】(1)利用同底数幂的乘法法则、幂的乘方法则即可求解;(2)利用积的乘方法则、同底数幂的乘法法则即可求解.(1)解:原式=6662x x x +-6622x x =-0=;(2)解:原式=33264(24)m m a a a +-+⨯⋅42x,,()42)a a --()2 33b ⎛-+-⎝)63278b a b -102+≥,(14.(2022·山东济南·七年级期中)我们定义:三角形 =ab •ac ,五角星 =z •(xm •yn );(1)求 的值;(2)若 =4,求 的值.【分析】(1)直接根据新定义的公式,代入即可求解;(2)由条件可得出算式233=4x y ,根据同底数幂的乘法得出+2y 3=4x ,再根据题意得出所求的代数式是2(981)x y ,根据幂的乘方和积的乘方可得242[(3)(3)]x y ,即为+222(3)x y 代入即可求出答案.(1)解:由题意可得,=31×32=33=27;(2)解:∵=4,∵233=4x y∵+2y 3=4x ,∵=2(981)x y=242[(3)(3)]x y=2222[(3)(3)]x y=222[(33)]x y=+222(3)x y=2×24=2×16=32.【点睛】本题属于自定义题,考查了幂的运算法则的运用,解题的关键是正确识别自定义公式,和灵活运用积的乘方法则.15.(2022·江苏·滨海县振东初级中学七年级阶段练习)阅读下列各式:(ab )2=a 2b 2,(ab )3=a 3b 3,(ab )4=a 4b 4…16.(2022·江苏·南外雨花分校七年级阶段练习)算一算:(1)()()2228233m m m m ⋅⋅-; (2)()()53253a b ⎡⎤⋅⎢⎥⎣⎦; (3)()()453t t t -⋅-⋅-;(4)已知24m n a a ==,,求32m n a +的值;(5)已知2328162x ⨯⨯=,求x 的值.【答案】(1)102m(2)7530a b(3)12t(4)128(5)6【分析】)(1)运用同底数幂乘法公式和幂的乘方公式运算,再合并即可;(2)运用幂的乘方和积的乘方公式运算即可;(3)先确定符号,再用同底数幂乘法公式运算即可;(4)逆用同底数幂乘法公式和幂的乘方公式,再整体代入即可;(5)将等式两边转化成同底数幂,再让指数相等得到一个一元一次方程,解之即可.(1)解:原式1046101010332m m m m m m ⋅===--;(2)原式()()()5551561567530a b a b a b =⋅=⋅=; (3)原式34512t t t t =⋅⋅=;(4)∵24m n a a ==,,∵()()3232323224816128m n m n m n a a a a a +=⋅=⋅⨯=⨯==; (5)∵2328162x ⨯⨯=,即()34232222x⨯⨯=, ∵352322x +=,∵3523x +=,解得:6x =.【点睛】本题考查了同底数幂乘法公式,积的乘方公式,幂的乘方公式,灵活掌握这三个公式正逆用是解题的关键.。
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
同底数幂的乘法、幂的乘方与积的乘方复习1、同底数幂的乘法法则:a a a m n m n ·=+(m ,n 都是正整数).同底数幂相乘,底数不变,指数相加。
注意:①底数a 可以是任意有理数,也可以是单项式、多项式、相反数。
②逆用n m n m aa a +=+2、幂的乘方法则:()a am n mn =(m ,n 都是正整数)。
即:幂的乘方,底数不变,指数相乘。
逆用:m n n m mn a a a )()(==3. 积的乘方法则:()ab a b n n n =·(n 为正整数)即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
逆用:mm m ab b a )(=练习:一、填空题1.=_____, =____,111010m n +-⨯456(6)-⨯-23·(-2)4=___,x·(-x)4·x 7=_____1000×10m-3=_______, =_________31010010100100100100001010⨯⨯+⨯⨯-⨯⨯2. a 2·(a 3)4·a=______.3.若成立,则m= ,n= ()159382b a b a n m m =+4. ①若,则m=___ __;34m aa a =②若,则a=__ _ _;416a x x x =③若,则y=___ ;2345y xxx x x x =④若,则x=__ ___; 25()x a a a -=⑤若644×83=2x ,则x =_________.5. ①若x 2n =4,则x 6n =_____;②a 12=(__)6=(__)3 ;③若,则x=____ ;1216x +=④若x n =2,y n =3,则(xy)3n =_______;6. 一个正方体的边长是11102.⨯cm ,则它的表面积是_________.二、选择题7.下面计算正确的是()A .; B .; 326bb b =336x x x +=C .; D .426a a a +=56mm m=8. 81×27可记为( )A.;B.;C.;D.3973631239.若,则下面多项式不成立的是( ) x y ≠A ; B.22()()y x x y -=-33()()y x x y -=--C.; D .22()()y x x y --=+222()x y x y +=+10.下列说法中正确的是( )A. 和 一定是互为相反数n a -()n a -B. 当n 为奇数时, 和相等n a -()n a -C. 当n 为偶数时, 和相等n a -()n a -D. 和一定不相等n a -()n a -三、计算题11、(1) (2) (3)86)101()101(∙3)(a a -∙- (4)-(a 3-m )2423)()(x x x -∙∙-(5) (-2x 5y 4z) 5 (6)0.12516×(-8)17(7) ()199×(-2)1995133512、⑴25)32()32(y x y x +∙+⑵ 32)()(a b b a -∙-(3)2323()()()()x y x y y x y x -⋅-⋅-⋅-(4)2344()()2()()x x x x x x -⋅-+⋅---⋅13、(1)已知10a =5,10b =6,求102a+3b 的值.(2)x n =5,y n =3,求 (x 2y)2n 的值。
(完整版)同底数幂乘法、除法及配套练习题(很全哦)1同底数幂的乘法教学任务分析教学目标:1、经历探索同底数幂乘法运算性质的过程,发展符号感和推理意识。
2、能用符号语言和文字语言表述同底数幂乘法的运算性质,会根据性质计算同底数幂的乘法。
教学重点:同底数幂的乘法运算法则。
教学难点:同底数幂的乘法运算法则的灵活运用。
教学方法:创设情境—主体探究—应用提高。
教学过程设计一、复习旧知a n表示的意义是什么?其中a、n、a n分别叫做什么?a n= a×a×a×…a(n个a相乘)25表示什么?10×10×10×10×10 可以写成什么形式? 10×10×10×10×10 = .式子103×102的意义是什么?答:这个式子中的两个因式有何特点?答:二、探究新知1、探究算法(让学生经历算一算,说一说)让学生演算详细的计算过程,并引导学生说出每一步骤的计算依据。
103×102=(10×10×10)×(10×10)(乘方意义)=10×10×10×10×10(乘法结合律)=105(乘方意义)2、寻找规律请同学们先认真计算下面各题,观察下面各题左右两边,底数、指数有什么关系?①103×102=②23×22= ③a3×a2=提问学生回答,并以“你是如何快速得到答案的呢?”引导学生归纳规律:底数不变,指数相加。
3、定义法则①、你能根据规律猜出答案吗?猜想:a m·a n=?(m、n都是正整数)师:口说无凭,写出计算过程,证明你的猜想是正确的。
a m·a n=(aa…a)·(aa…a)(乘方意义)m个a n个a= aa…a (m+n)个a (乘法结合律)=a m+n(乘方意义)即:a m·a n= a m+n(m、n都是正整数)②、让学生通过辨别运算的特点,用自己的语言归纳法则A、a m·a n是什么运算?——乘法运算B、数a m、a n形式上有什么特点?——都是幂的形式C、幂a m、a n有何共同特点?——底数相同D、所以a m·a n叫做同底数幂的乘法。
同底数幕的乘法、幕的乘方、积的乘方提高练习•选择题(共10小题,每题4分)A . 0 B. - 2a8C.- a16 D . - 2a167.若3a=5, 3b=10,则3a+b的值是( )1 . 计算: m6?m3的结果(A . 10B . 20 C. 50 D. 40m18B. m9C. m3D. m28 .化简(-x)3? (- x)2的结果正确的是()2. F列运算正确的是(3a2- a2=3 (a2) 3i 5=aA . - x6B . x6C. - x5D . x59 .计算:(-a2) 3( ) 13. (x2) 3?x+x5?x2= _____________ .14 .若3x+4y - 3=0,则8x「2?16y+1= _____ .15 .若a x=2 , a y=3,则a2x+y= ____________ .16 .计算-22°14X(丄)2015的值是__________________三、比较大小:(共3小题,每题3分) 1、2100和375的大小C. a3?a69=a (2a2) 2=4a2a6B. - a6 C . a5D . - a53 . 化简a2?(- a) 4的结果是(10 .计算(-2a2b)3的结果是(6.-a B . a C . a D. - a 计算3n? (-9)?3n+2 的结果是(-32n-2 B .-3n+4C. - 32n+4若a m=4,n、a =3,则a m+n的值为(212 B .7 C . 1 D . 12A.4.A. D. 5.A.计算a5? (- a) 3-a8的结果等于(_3n+66 3A. - 6a bc c 6, 3C . 8a b6 3B. - 8a b5 3D. - 8a b55 , 44 33 厶2、3 4 5 的大小。
二.填空题(共6小题,每题4分)2 311. (-^)2? (- 2)3= ___________ .12 .已知a2?a x - 3=a6,那么x= _____________3、215310与215310的大小。
新北师大版七年级年级下册第一章幂的运算训练题一、单选题1、下列运算:①(-x 2)3=-x 5;②3xy -3yx =0;③3100·(-3)100=0;④m ·m 5·m 7=m 12;⑤3a 4+a 4=3a 8 ⑥(x 2)4=x 16.其中正确的有( );A .1个B .2个C .3个D .4个2、计算(-a 2)3的结果是( )A .-a 5 B .a 6 C .-a 6D .a 53、下列各式计算正确的是( )A .(x 2)3=x 5 B .(x 3)4=x 12C .()3131n n x x ++= D .x 5·x 6=x 30 4、我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么4⊗8为( )A .32B .1032C .1012D .12105、如果32m n x x x -=,则n 等于( )A .m -1 B .m +5 C .4-mD .5-m6、m 9可以写成( )A .m 4+m 5 B .m 4·m 5 C .m 3·m 3 D .m 2+m 77、下列几个算式:①a 4·a 4=2a 4;②m 3+m 2=m 5;③x ·x 2·x 3=x 5;④n 2+n 2=n 4.其中计算正确的有( )A .0个 B .1个 C .2个 D .3个8、计算(-2)2008+(-2)2009等于( )A .-22008 B .-2 C .-1 D .220089、在222( )y=y m m y -+中,括号内应填的代数式是( )A .y mB .4m y +C .2m y +D .3m y +10、设a m =8,a n =16,则a m+n =( )A .24 B .32 C .64 D .12811、如果23m=26,那么m 的值为( )A .2 B .4 C .6 D .812、下列各式能用同底数幂乘法法则进行计算的是( )A .(x+y )2(x-y )2 B .(x+y )2(-x-y ) C .(x+y )2+2(x+y )2 D .(x-y )2(-x-y )13、若22a+3•2b-2=210,则2a+b 的值是( )A .8 B .9 C .10 D .1114、下列各式中,计算结果为x 7的是( )A .()()25x x -⋅- B .()25x x -⋅ C .()()34x x -⋅- D .34x x + 15、计算(﹣x 2)•x 3的结果是( )A . x 3 B .﹣x 5 C .x 6 D .﹣x 6 16、计算323x x ÷的结果是( )A .22x B .23x C .3x D .3 17、如果()2893n =,则n 的值是( )A .4 B .2 C .3 D .无法确定 18、下列各式中,①428x x x =,②3262x x x =,③437a a a =,④5712a a a +=,⑤()()437a a a --=.正确的式子的个数是( ) A .1个;B .2个;C .3个;D .4个.19、若a 2m =25,则a -m 等于( ) A .15 B .-5 C .15或-15 D .162520、下列计算错误的有( )①a 8÷a 2=a 4; ②(-m )4÷(-m )2=-m 2; ③x 2n ÷x n =x n ; ④-x 2÷(-x )2=-1. A .1个 B .2个 C .3个 D .4个二、填空题21、计算:-a 2•(-a )2n+2=_______.(n 是整数).22、计算 0.125 2008×(﹣8)2009=______.23、计算:(1)(-a 5)5=________;(2)(-y 2)3·(-y 3)2=________;(3)(a 2)4·a 4=________;(4)=________. 24、计算:(1)-22×(-2)3=________;(2)a m ·a ·=________;(3)10m ×10000=________;(4)=________.25、一台电子计算机每秒可作1012次运算,它工作5×106秒可作________次运算.26、(1)=81,则x=________;(2)=n,用含n的代表式表示3x=________.27、(1)a3·a m=a8,则m=________;(2)2m=6,2n=5,则=________.28、(1)32×32-3×33=________;(2)x5·x2+x3·x4=________;(3)(a-b)·(b -a)3·(a-b)4=________;(4)100·10n·=________;(5)a m··a2m·a =________;(6)2×4×8×2n=________.29、(1)107×103=________;(2)a3·a5=________;(3)x·x2·x3=________;(4)(-a)5·(-a)3·(-a)=________;(5)b m·=________;(6)=________.30、已知a m+1×a2m-1=a9,则m=______.31、4m·4·16=_______.32、若x•x a•x b•x c=x2011,则a+b+c=______.33、计算:-32•(-3)3= ________(结果用幂的形式表示).34、已知10n=3,10m=4,则10n+m的值为______.35.计算:(-2)2013+(-2)2014=_______.三、解答题36、计算下列各题:(1)(-2)·(-2)2·(-2)3;(2)(-x)6·x4·(-x)3·(-x)2;(3);(4).37、已知,x+2y-4=0.求:的值.38、计算:(1)(a-b)2(a-b)3(b-a)5;(2)(a-b+c)3(b-a-c)5(a-b+c)6;(3)(b-a)m·(b-a)n-5·(a-b)5;(4)x3·x5·x7-x2·x4·x9.39、计算:(1)10×104×105+103×107;(2)m·m2·m4+m2·m5;(3)(-x)2·(-x)3+2x(-x)4;(4)103×10+100×102.40、计算:(1);(2)x m+15•x m﹣1(m是大于1的整数);(3)(﹣x)•(﹣x)6;(4)﹣m3•m4.41、为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.42、化简求值:(-3a b)-8(a)·(-b)·(-a b),其中a=1,b=-1.43、已知x6-b∙x2b+1=x11,且y a-1∙y4-b=y5,求a+b的值.44、计算:(1)-p 2·(-p )4·[(-p )3]5; (2)(m -n )2[(n -m )3]5; (3)25·84·162.45、判断下列计算是否正确,并简要说明理由.(1)(a 3)4=a 7; (2)a 3·a 4=a 12; (3)(a 2)3·a 4=a 9;(4)(a 2)6=a 12.46、阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014 将下式减去上式得2S-S=22014-1 即S=22014-1即1+2+22+23+24+…+22013=22014-1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).47、我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=.(1)试求123⊗和48⊗的值.(2)想一想,()a b c ⊗⊗是否与()a b c ⊗⊗的值相等?验证你的结论.如有侵权请联系告知删除,感谢你们的配合!。
❖ 知识点一:同底数幂的乘法大山坪一长方形草坪的长比宽多2米,如果草坪的长和宽都增加3米,则这个长方形草坪的面积将增加75平方米,这块草坪原来的长和宽各是多少米? 解:设这个长方形草坪的宽是x 米,则长为(x+2)米。
x ( x+2)+75=(x+3)(x+5)解这个方程需要用到整式的乘法。
思考: a n 表示的意义是什么?其中a 、n 、a n分 别叫做什么?概念:求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在n a 中,a 叫做底数,n 叫做指数.含义:n a 中,a 为底数,n 为指数,即表示a 的个数,n a 表示有n 个a 连续相乘.问题:25表示什么?10×10×10×10×10 可以写成什么形式?25= . 10×10×10×10×10 = .思考: 式子103×102的意义是什么?幂的运算知识讲解这个式子中的两个因数有何特点?先根据自己的理解,解答下列各题。
103×102 =23×22 =a3×a2 =思考:观察下面各题左右两边,底数、指数有什么关系?103×102 = 10() = 10();23×22 = 2() = 2();a3× a2 = a()= a()。
猜想: a m · a n=? (当m、n都是正整数)分组讨论,并尝试证明你的猜想是否正确。
a m·a n=(aa…a)(aa…a)=aa…a=a m+nm个a n个a (m+n)个a即:a m·a n =a m+n (当m、n都是正整数)猜想是正确的!同底数幂的乘法:a m·a n =a m+n (当m、n都是正整数)同底数幂相乘,底数______,指数________。
运算形式(同底、乘法)运算方法(底不变、指数相加)如 43×45=43+5=48想一想:a m·a n·a p= (m、n、p都是正整数)问题:光在真空中的速度大约是3×105千米/秒,太阳系以外距离地球最近的恒星是比邻星,它发出的光到达地球大约需要4.22年。
同底数幂的乘除法、积的乘方、幂的乘方专项练习一、同底数幂的乘法:n m a a a n m n m ,(+=⋅是正整数)1。
公式及其推广:m n p m n p a a a a ++=p n m ,,(是正整数)2.公式顺用:例1、计算(1) 21n n n a a a ++ (2)232)()(x x x -⋅⋅- (3)432111()()()101010-- (4)34(2)(2)(2)x y x y y x --- (5)2132()()()n n a a a ++---练习(1)若,1032x x x m m =-则整式=+-1322m m (2)若,1282)8(22-=⋅-⋅+n n 则=n(3)n 为正整数=-+-+n n 212)2(2)2(,3。
公式的逆用例2。
若,64412=+a 解关于x 的方程)1(532-=+x x a 二、幂的乘方:p n m a a a p n m mn n m ,,(])[(,)(=是正整数)1.公式的应用例3.计算:(1)34()x - (2)34[()]x -练习:计算下列各题253(1)()x x - 2844(2)()()x x 2332222(3)()()(2)y y y y +-2.公式的逆用例4.(1)已知,3,2==n n y x 求n n y x )()(23的值;(2)已知,310,210==b a 求b a 3210+的值;(3)若,0352=-+y x 求y x 324⋅的值; (4)若,)()(963131y x y x n m =⋅+-求n m +的值.三、积的乘方:n c b a abc b a ab n n n n n n n ()(,)(==是正整数)1.公式的顺用例5.计算:(1)52)(b x - 322(2)(2)()ab ab 23(3)3()x x --练习:计算2233(1)()()(5)ab a b ab -- 122(2)()()n n n c d c d -2。
辅导用练习题(三)内部使用请勿外传一、选择题1、计算n m a a ⋅3)(的结果是( )A 、n m a +3B 、n m a +3C 、)(3n m a +D 、mn a 32、下列运算正确的是( )A 、954a a a =+B 、33333a a a a =••C 、954632a a a =⨯D 、()743a a =- 3、在①[]325)(a a -⋅-;①34)(a a -⋅;①2332)()(a a ⋅-;①[]34a --中,计算结果为12a -的有( )A 、①和①B 、①和①C 、①和①D 、①和①4、计算20022003)2()5.0(-⋅的结果是 ( )A 、 5.0-B 、 5.0C 、 1D 、 25、计算:100101)2()2(-+- 的结果是 ( )A 、B 、C 、D 、A 、1002-B 、 2-C 、 2D 、 10026、的结果是11001000+⋅x x ( )A 、12100000+xB 、2510+xC 、2210+xD 、3510+x8、下面计算:52510251275105225257252;;;)(;)(;)(x y x x y x x y x x x x x x x ======中,其中错误的结果的个数是 ( )A 、 5 个B 、 4 个C 、 3 个D 、 2 个9、已知n 28232=⨯,则n 的值为 ( )A 、 18B 、8C 、7D 、1110、若()1520=-x ,则x 的取值是( ) A 、25>x B 、x≥—25 C 、 x >—25 D 、x≠25 11、下面计算中,正确的是( )A 、3338)2(n m mn -=-B 、5523)()(n m n m n m +=++C 、 69323)(b a b a -=--D 、262461)31(b a b a =- 12、若n m y x y x y x n n m m 34,992213-=⋅++-则等于( )A 、8B 、9C 、10D 、无法确定13、若小圆的直径等于大圆直径的一半,则小圆的面积是大圆面积的( )A 、21B 、41C 、81D 、16114、如果,)21)((++x m x 的乘积中不含关于X 的一次项,则m 应取 ( ) A 、2 B 、2- C 、21 D 、21- 15、20032002)3()3(-+-所得的结果是 ( )A 、3-B 、200232⨯-C 、1-D 、20023-16、n ab b a ,0,≠互为相反数,且为正整数,则下列两数互为相反数的是( )A 、n n b a 与B 、n n b a 22与C 、1212--n n b a 与D 、2222))(----n n b a 与(17、下列计算错误的是( )A 、(- a )·(-a )2=a 3B 、(- a )2·(-a )2=a 4C 、(- a )3·(-a )2=-a 5D 、(- a )3·(-a )3=a 618、计算(a 3)2+a 2·a 4的结果为( )A 、2a 9B 、2a 6C 、 a 6+a 8D 、a 1219、若62(810)(510)(210)10a M ⨯⨯⨯=⨯,则M 、a 的值可为( )A 、M=8,a=8B 、M=2,a=9C 、M=8,a=10D 、M=5,a=1020、三个连续奇数,若中间一个为n,则它们的积为( )A.6n 2-6nB.4n 3-nC.n 3-4nD.n 3-n21、设多项式A 是个三项式,B 是个四项式,则A×B 的结果的多项式的项数一定是( )A.多于7项B.不多于7项C.多于12项D.不多于12项22、当n 为偶数时,()()m n a b b a -⋅-与()m n b a +-的关系是( )A.相等B.互为相反数C.当m 为偶数时互为相反数,当m 为奇数时相等D.当m 为偶数时相等,当m 为奇数时为互为相反数23、.若234560a b c d e <,则下列等式正确的是( )A.abcde>0B.abcde<0C.bd>0D.bd<024、已知a<0,若33n a a -⋅的值大于零,则n 的值只能是( )A.奇数B.偶数C.正整数D.整数25、()2233y x -的值是( )A .546y x -B .949y x -C .649y xD .646y x -26、若()391528m m n a b a b +=成立,则( )A .m=3,n=2B .m=n=3C .m=6,n=2D .m=3,n=527、计算()2323xy y x -⋅⋅的结果是( )A .y x 105⋅B .y x 85⋅C .y x 85⋅-D .y x 126⋅28、若N=()432b a a ⋅⋅,那么N 等于( )A .77b aB .128b aC .1212b aD .712b a29、已知3,5==a a y x ,则a y x +的值为( )A .15B .35C .a 2D .以上都不对30、若()()b a b a b a m n n m 5321221=-++,则m+n 的值为( )A .1B .2C .3D .-331、()23220032232312⎪⎭⎫⎝⎛-•-•⎪⎭⎫ ⎝⎛--y x y x 的结果等于( )A .y x 10103B .y x 10103-C .y x 10109D .y x 10109-32、如果单项式y x b a 243--与y x b a +331是同类项,那么这两个单项式的积进()A .y x 46B .y x 23-C .y x 2338- D .y x 46-33、 ,当时,m 等于( )A. 29B. 3C. 2D. 534、 若,则等于( )A. 12B. 16C. 18D. 21635、81×27可记为( ) A.39; B.73; C.63; D.12336、若x y ≠,则下面多项式不成立的是( )()a a a x m3556·=x =5x y n n ==23,()xy n3A.22()()y x x y -=-;B.33()()y x x y -=--C.22()()y x x y --=+;D.222()x y x y +=+37、下列说法中正确的是( )A. n a -和()n a -一定是互为相反数 ;B. 当n 为奇数时, n a -和()n a -相等C. 当n 为偶数时, n a -和()n a -相等;D. n a -和()n a -一定不相等38、若(x x -2+m )(x -8)中不含x 的一次项,则m 的值为( )A 、8B 、-8C 、0D 、8或-839、1405=a ,2103=b ,2802=c ,则a 、b 、c 的大小关系是( )A 、c b a <<B 、c a b <<C 、b a c <<D 、a b c <<40、若142-=y x ,1327+=x y ,则y x -等于( )A 、-5B 、-3C 、-1D 、1 41、()()1666---+n n 的值为( )A 、0B 、1或- 1C 、()16-+nD 、不能确定42、若三角形的三边长分别为a 、b 、c ,满足03222=-+-b c b c a b a ,则这个三角形是( )A 、直角三角形B 、等边三角形C 、锐角三角形D 、等腰三角形二、填空题1、 2、3、 4、 5、6、若,(n ,y 是正整数),则7、若,则8、计算:)3()6(12b a b a n n -⋅-= _______9、计算: ________)21(2________)2(12223=⎥⎦⎤⎢⎣⎡--=--)()(ab (3)111010m n +-⨯= 23x x x m n m n -+=··()()()x y y x x y --=--37·()()()()[]x y y x x y p n m ----=··2310010101034⨯⨯⨯=()()-+-=22101100()()a a n n y3=y =a a a n n 21218-+=·n =(4)456(6)-⨯-= (5)32m ·3m = (6)23·(-2)4=(7)x·(-x)4·x 7= (8)1 000×10m -3= (9)(0.125)1999·(-8)1999=______(10)234x x xx +=______(1125()()x y x y ++=______(11)31010010100100100100001010⨯⨯+⨯⨯-⨯⨯=___________(12)(-23x 2y 3)2=_______(13)a 2·(a 3)4·a=_______(14)(3a 2)3+(a 2)2·a 2=________(15)(-3xy)·(-x 2z)·6xy 2z=_________(16)2(a+b)2·5(a+b)3·3(a+b)5=_________(17)(2x 2-3xy+4y 2)·(-xy)=_________(18)()()322223ab bc a -⋅-=___________(19)(-0.125)2=_________(20){-2[-(a m )2]3}2=________10、已知(x 3)5=-a 15b 15,则x=_______11、化简(a 2m ·a n+1)2·(-2a 2)3所得的结果为12、( )5=(8×8×8×8×8)(a·a·a·a·a)13、若4a =2a+3,则(a–4)2003 =14、(-2)100×(21)101的结果为__________ 15、当n 是奇数时,(-a 2)n =16、计算:()()()=---a a a 22 17、已知9121a a a m m =⋅-+,则m=__________.18、若._______________,,3,423====+n m n n m x x x x 则19、已知有理数a 、b 、c 满足│a -1│+│a+b│+│a+b+c -2│=0,则代数式(-①3-ab).(-a 2c).6ab 2的值为_______20、已知(3x+1)(x -1)-(x+3)(5x -6)=x 2-10x+m,则m=_____21、已知ax 2+bx+1与2x 2-3x+1的积不含x 3的项,也不含x 的项,那么a=①_______-,b=_____.22、123221123221()()n n n n n n n a a a b a b ab b b a a b a b ab b ----------+++++-+++++=_____23、如果2(2)(3)x x x px q -+=++,那么______,______p q ==24、观察下列各式(x -1)(x+1)=x 2-1、 (x -1)(x 2+x+1)=x 3-1、(x -1)(x 3+x 2+x+1)=x 4-1 根据规律可得(x -1)(x n -1+……+x +1)= (其中n 为正整数)25、如果a≠b ,且(a p )3·b p+q =a 9b 5 成立,则p=____,q=_____。
同底数幂的乘法、幂的乘方、积的乘方提高练习一.选择题(共10小题,每题4分)1.计算:m6•m3的结果()A.m18B.m9 C.m3D.m22.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.a3•a6=a9D.(2a2)2=4a23.化简a2•(﹣a)4的结果是()A.﹣a6B.a6C.a8D.﹣a84.计算3n•(﹣9)•3n+2的结果是()A.﹣32n﹣2 B.﹣3n+4 C.﹣32n+4D.﹣3n+6 5.若a m=4,a n=3,则a m+n的值为()A.212 B.7 C.1 D.126.计算a5•(﹣a)3﹣a8的结果等于()A.0 B.﹣2a8 C.﹣a16D.﹣2a167.若3a=5,3b=10,则3a+b的值是()A.10 B.20 C.50 D.408.化简(﹣x)3•(﹣x)2的结果正确的是()A.﹣x6B.x6C.﹣x5D.x59.计算:(﹣a2)3()A.a6B.﹣a6C.a5D.﹣a510.计算(﹣2a2b)3的结果是()A.﹣6a6b3B.﹣8a6b3C.8a6b3D.﹣8a5b3二.填空题(共6小题,每题4分)11.(﹣)2•(﹣2)3=.12.已知a2•a x﹣3=a6,那么x=.13.(x2)3•x+x5•x2=.14.若3x+4y﹣3=0,则8x﹣2•16y+1=.15.若a x=2,a y=3,则a2x+y=.16.计算﹣22014×()2015的值是.三、比较大小:(共3小题,每题3分)1、2100和375的大小2、355 444 533的大小。
3、151023⨯与151023⨯的大小。
第1页(共2页)四、解答题(共4小题,每题6分)1.已知,n为正整数,且x2n=7,求(3x3n)2﹣4(x2)2n的值.2.已知(a﹣2)2+|2b﹣1|=0,求a2013•b2012.3.一个长方形的长是4.2×104cm,宽是2×104cm,求此长方形的面积及周长.4.若2•8n•16n=222,求n的值.姓名:__________卷面分:(A:1分B:2分C:3分)选择题答案:1-5_________________(每题4分)6-10________________填空题答案:11_______ 12________(每题4分)13_______ 14________15_______ 16_________三:比较大小(每题3分)1、2100和375的大小2、355 444 533的大小3、151023⨯与151023⨯的大小第2页(共2页)。
新北师大版七年级年级下册第一章幂的运算训练题一、单选题1、下列运算:①(-x 2)3=-x 5;②3xy -3yx =0;③3100·(-3)100=0;④m ·m 5·m 7=m 12;⑤3a 4+a 4=3a 8 ⑥(x 2)4=x 16.其中正确的有( );A .1个B .2个C .3个D .4个2、计算(-a 2)3的结果是( )A .-a 5 B .a 6 C .-a 6 D .a 53、下列各式计算正确的是( )A .(x 2)3=x 5 B .(x 3)4=x 12C .()3131n n x x ++= D .x 5·x 6=x 30 4、我们约定a ⊗b =10a ×10b ,如2⊗3=102×103=105,那么4⊗8为( )A .32B .1032C .1012D .12105、如果32m n x x x -=,则n 等于( )A .m -1 B .m +5 C .4-m D .5-m6、m 9可以写成( )A .m 4+m 5 B .m 4·m 5 C .m 3·m 3 D .m 2+m 77、下列几个算式:①a 4·a 4=2a 4;②m 3+m 2=m 5;③x ·x 2·x 3=x 5;④n 2+n 2=n 4.其中计算正确的有( )A .0个 B .1个 C .2个 D .3个8、计算(-2)2008+(-2)2009等于( )A .-22008 B .-2 C .-1 D .220089、在222( )y=y m m y -+中,括号内应填的代数式是( )A .y mB .4m y +C .2m y +D .3m y +10、设a m =8,a n =16,则a m+n =( )A .24 B .32 C .64 D .12811、如果23m=26,那么m 的值为( )A .2 B .4 C .6 D .812、下列各式能用同底数幂乘法法则进行计算的是( )A .(x+y )2(x-y )2B .(x+y )2(-x-y )C .(x+y )2+2(x+y )2D .(x-y )2(-x-y )13、若22a+3•2b-2=210,则2a+b 的值是( )A .8 B .9 C .10 D .1114、下列各式中,计算结果为x 7的是( )A .()()25x x -⋅- B .()25x x -⋅ C .()()34x x -⋅- D .34x x + 15、计算(﹣x 2)•x 3的结果是( )A . x 3 B .﹣x 5 C .x 6 D .﹣x 616、计算323x x ÷的结果是( )A .22x B .23x C .3x D .317、如果()2893n =,则n 的值是( )A .4 B .2 C .3 D .无法确定 18、下列各式中,①428x x x =,②3262x x x =,③437a a a =,④5712a a a +=,⑤()()437a a a --=.正确的式子的个数是( ) A .1个;B .2个;C .3个;D .4个.19、若a 2m =25,则a -m 等于( ) A .15 B .-5 C .15或-15 D .162520、下列计算错误的有( )①a 8÷a 2=a 4; ②(-m )4÷(-m )2=-m 2; ③x 2n ÷x n =x n ;④-x 2÷(-x )2=-1. A .1个 B .2个 C .3个 D .4个二、填空题21、计算:-a 2•(-a )2n+2=_______.(n 是整数).22、计算 0.125 2008×(﹣8)2009=______.23、计算:(1)(-a 5)5=________;(2)(-y 2)3·(-y 3)2=________;(3)(a 2)4·a 4=________;(4)=________.24、计算:(1)-22×(-2)3=________;(2)a m ·a ·=________;(3)10m ×10000=________;(4)=________.25、一台电子计算机每秒可作1012次运算,它工作5×106秒可作________次运算.26、(1)=81,则x =________;(2)=n ,用含n 的代表式表示3x =________.27、(1)a3·a m=a8,则m=________;(2)2m=6,2n=5,则=________.28、(1)32×32-3×33=________;(2)x5·x2+x3·x4=________;(3)(a-b)·(b-a)3·(a-b)4=________;(4)100·10n·=________;(5)a m··a2m·a=________;(6)2×4×8×2n=________.29、(1)107×103=________;(2)a3·a5=________;(3)x·x2·x3=________;(4)(-a)5·(-a)3·(-a)=________;(5)b m·=________;(6)=________.30、已知a m+1×a2m-1=a9,则m=______.31、4m·4·16=_______.32、若x•x a•x b•x c=x2011,则a+b+c=______.33、计算:-32•(-3)3= ________(结果用幂的形式表示).34、已知10n=3,10m=4,则10n+m的值为______.35.计算:(-2)2013+(-2)2014=_______.三、解答题36、计算下列各题:(1)(-2)·(-2)2·(-2)3;(2)(-x)6·x4·(-x)3·(-x)2;(3);(4).37、已知,x+2y-4=0.求:的值.38、计算:(1)(a-b)2(a-b)3(b-a)5;(2)(a-b+c)3(b-a-c)5(a-b+c)6;(3)(b-a)m·(b-a)n-5·(a-b)5;(4)x3·x5·x7-x2·x4·x9.39、计算:(1)10×104×105+103×107;(2)m·m2·m4+m2·m5;(3)(-x)2·(-x)3+2x(-x)4;(4)103×10+100×102.40、计算:(1);(2)x m+15•x m﹣1(m是大于1的整数);(3)(﹣x)•(﹣x)6;(4)﹣m3•m4.41、为了求1+2+22+23+…+22012的值,可令s=1+2+22+23+…+22012,则2s=2+22+23+24…+22013,因此2s﹣s=22013﹣1,所以1+2+22+23+…+22012=22013﹣1.仿照以上推理,计算1+5+52+53+…+52013的值.42、化简求值:(-3a b)-8(a)·(-b)·(-a b),其中a=1,b=-1.43、已知x6-b∙x2b+1=x11,且y a-1∙y4-b=y5,求a+b的值.44、计算:(1)-p2·(-p)4·[(-p)3]5;(2)(m-n)2[(n-m)3]5;(3)25·84·162.45、判断下列计算是否正确,并简要说明理由.(1)(a 3)4=a 7; (2)a 3·a 4=a 12; (3)(a 2)3·a 4=a 9;(4)(a 2)6=a 12.46、阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014 将下式减去上式得2S-S=22014-1 即S=22014-1即1+2+22+23+24+…+22013=22014-1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).47、我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=.(1)试求123⊗和48⊗的值.(2)想一想,()a b c ⊗⊗是否与()a b c ⊗⊗的值相等?验证你的结论.。
完整版)幂的运算经典习题幂的运算练一、同底数幂的乘法1、下列各式中,正确的是()A.m4m4=m8B.m5m5=2m25C.m3m3=m9D.y6y6=2y12正确答案为A。
2、102·107=10(2+7)=109.3、(x-y)5·(x-y)4=(x-y)9.4、若am=2,an=3,则am+n=2+3=5.5、a4·a=a5.6、在等式a3·a2·()=a11中,括号里面的代数式应当是a6.a·a3·am=a4+m,所以a4+m=a8,解得m=4.7、-t3·(-t)4·(-t)5=-t12.8、已知n是大于1的自然数,则(-c)n-1·(-c)n+1=-c2n。
9、已知xm-n·x2n+1=x11,且ym-1·y4-n=y7,则m=5,n=3.二、幂的乘方1、(-x2)4=x8.2、a4·a4=a8.3、(ab)2=a4b2.4、(-xk-1)2=x2k-2.5、(-xy2z3)5=-x5y10z15.6、计算(x4)3·x7的结果是x19.7、a8·(-a)3=-a5.8、(-an)2n=(-a)2n·n=an·n。
9、[-(-x)2]5=-x10.10、若ax=2,则a3x=23=8.三、积的乘方1)、(-5ab)2=25a2b2;2、-(3x2y)2=-9x4y2;3、-(1/abc3)3=-1/a3b3c9;4、(0.2x4y3)2=0.04x8y6;5、(-1.1xm y3m)2=1.21x2m y6m;6、(-0.25)11×411=-0.2511+4=-0.2515;7、-×(-0.125)1995=.四、同底数幂的除法1、(-a)4÷(-a)=-a3.2、a5÷a=a4.3、(ab)3÷(ab)=a3b3.4、xn+2÷x2=xn。
同底数幂的乘法、幂的乘方、积的乘方复习卷 2014。
9.班级___________姓名___________学号___________得分___________1.同底数幂的乘法知识点:法则:同底数幂相乘,____________________________________。
字母表示:m n a a = m n (、为正整数)逆用法则:=+n m a __________m n (、为正整数)练习:一.判断题1.325x x x += ( ) 2.5210x x x = ( ) 3.279a a a a =( ) 4.4442m m m = ( ) 5.57y y y y = ( )二.填空题:(1)53m m =_______ (2)26a a - =_______ (3)26()a a -=_______(4)5522+=________二.计算题(1)35(2)(2)(2)b b b +++ (2)23(2)(2)x y y x --(3)3534x x x x x + (4)[]234(21)(21)(21)(21)x x x x --+---三、 一种计算机每秒可做8410⨯次运算,它工作3310⨯秒共可做多少次运算?四、 解答题:(1)若53=a ,63=b ,求b a +3的值 (2)若62=-a m ,115=+b m ,求3++b a m 的值2.幂的乘方知识点:法则:幂的乘方,____________________________________。
字母表示:n m a )(= m n (、为正整数)逆用法则:)()()()(n m mn a a a==m n (、为正整数)练习:一.计算题 (1)(103)3 (2)(x 4)3 (3)43)(-x (4)[]43)(x -(5)(a 2)3·a 5 (6)(x 2)8·(x 4)4 (7) 1415()()m m b b +-=(8)3223()()x x -- (9)()=-+-2332)(a a (10) 3423()()x y x y ⎡⎤⎡⎤++⎣⎦⎣⎦二.解答题:(1)若52=n ,求n 28的值 (2)若63=a ,5027=b ,求a b +33的值(3)已知105,106a b ==,求2310a b +的值 (4)若0542=-+y x ,求y x 164⋅的值3.积的乘方知识点:法则:积的乘方,____________________________________.字母表示:m ab )(= m n (、为正整数)逆用法则:=m m b a _________ m n (、为正整数)练习:一.计算题(1)(—3x )3 (2) (—5ab)2 (3) (x ·y 2)2 (4) (-2x ·y 3z 2)4(5)a 3·a 4·a+(a 2)4+(-2a 4)2 (6)2(x 3)2·x 3—(3x 3)3+(5x )2·x 7二.用简便方法计算(1)2⨯1001001()2 (2)49⨯841()7 (3)201020092010)2.1()65()1(-⨯⨯-三、解答题(1)若13310052+++=⨯x x x , 求x 的值 (2)已知332=-b a ,求96b a 的值。