列主元素消去法求解方程组
- 格式:doc
- 大小:255.00 KB
- 文档页数:9
课程设计任务书前 言回顾普通解方程组的方法,一般都是先逐个削去未知变量,最终得到只有一个未知变量的方程,解之,把得到的值回代到消去变量过程中得到的方程组,逐个求出未知变量。
这种解线性方程组的基本方法就是这里要介绍的高斯消去法。
数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。
当用于一个矩阵时,高斯消元法会产生出一个“行梯阵式”。
高斯消元法可以用在电脑中来解决数千条等式及未知数。
高斯消元法可以用来找出一个可逆矩阵的逆矩阵。
用关联矩阵表述网络拓扑结构,并根据厂站拓扑结构和网络拓扑结构等概念简化了电力系统的拓扑结构。
根据广义乘法和广义加法的运算规则,将改进的高斯消元算法应用于电力系统拓扑结构分析中,并引入稀疏、分块处理等技术提高了上述拓扑分析的效率。
采用上述高斯消元算法对山东电网220kV 以上的变电站进行拓扑结构分析,结果表明了运用该高斯消元法进行网络拓扑分析的正确性和有效性。
用列主元素法,选取每列的绝对值最大的元素作为消去对象并作为主元素。
然后换行使之变到主元位子上,在进行消元计算。
设)()(k k b X A ,确定第k 列主元所在位置k i ,在交换k i 行和k 行后,在进行消元,并用MATLAB 软件进行求解。
目录摘要....................................................................................... 错误!未定义书签。
第1章绪论 ......................................................................... 错误!未定义书签。
第2章高斯消元法的算法描述 (2)2.1高斯消元法的原理概述 (2)c231730658" 2.1.1高斯消元法的消元过程 (2)c231730658" 2.1.2高斯消元法的回带过程 (3)c231730658" 2.1.3高斯消元法的复杂度分析 (4)c231730658" 2.2列主高斯消元法原理简介 (5)c231730658" 2.2.1列主高斯消元法的消元过程 (6)c231730658" 2.2.2列主高斯消元法的回带过程 (6)c231730658" 2.2.3列主高斯消元法的算法描述 (6)c231730662"第3章高斯消元法的物理应用 (9)3.1c231730663"电网模型的描述 (9)c231730658" 3.2电网模型的问题分析 (9)c231730658"3.3求解计算 (11)c231730693"参考文献 (13)摘 要用列主元素高斯消去法法,选取每列的绝对值最大的元素作为消去对象并作为主元素。
主题:列主元消去法和三角分解法之间的关系一、概述上线性代数领域中,列主元消去法和三角分解法是两种常用的矩阵求解方法。
它们都是用于解线性方程组的工具,但在实际应用中有着不同的特点和适用范围。
本文将通过对列主元消去法和三角分解法的理论基础、求解步骤和应用场景进行比较和分析,旨在探讨它们之间的关系。
二、列主元消去法的基本原理和步骤1. 列主元消去法概述列主元消去法是一种用于求解线性方程组的方法,其基本思想是通过逐步消元的方式将增广矩阵转化为上三角形矩阵,最终获得方程组的解。
其核心步骤包括选取主元、消元和回代。
2. 列主元消去法的求解步骤(1)选取主元:在每一列中选取绝对值最大的元素作为主元,以确保消元过程中不会出现除以零的情况。
(2)消元:通过一系列行变换操作,将矩阵转化为上三角形矩阵。
(3)回代:从最后一行开始,依次求解未知数的值。
三、三角分解法的基本原理和步骤1. 三角分解法概述三角分解法是一种将矩阵分解为下三角矩阵和上三角矩阵的求解方法,其基本思想是通过矩阵的分解降低方程组求解的复杂度。
2. 三角分解法的求解步骤(1)矩阵的LU分解:将系数矩阵A分解为下三角矩阵L和上三角矩阵U,使得A=LU。
(2)求解Ly=b:先通过前代法求解Ly=b,得到y。
(3)求解Ux=y:再通过回代法求解Ux=y,得到方程组的解x。
四、列主元消去法与三角分解法的关系比较1. 算法思想比较(1)列主元消去法是通过逐步消元将增广矩阵转化为上三角形矩阵,直接求解方程组的解。
(2)三角分解法是通过将矩阵分解为下三角矩阵和上三角矩阵,再进行前代和回代求解方程组的解。
2. 适用范围比较(1)列主元消去法适用于一般的线性方程组求解,能够处理任意形状的矩阵。
(2)三角分解法适用于特定类型的线性方程组求解,对称正定矩阵具有较好的稳定性,求解速度较快。
3. 数值稳定性比较(1)列主元消去法在计算过程中容易出现主元选取不当导致的数值不稳定性问题,需要进行主元选取和行变换的操作。
实验名称:列主元消去法解方程组1 引言我们知道,高斯消去法是一个古老的解线性方程组的方法。
而在用高斯消去法解Ax=b时,其中设A为非奇异矩阵,可能出现的情况,这时必须进行带行交换的高斯消去法。
但在实际计算中即使但其绝对值很小时,用作除数,会导致中间结果矩阵元素数量级严重增长和舍入误差的扩散,使得最后的结果不可靠。
因此,小主元可能导致计算的失败,我们应该避免采用绝对值很小的主元素。
为此,我们在高斯消去法的每一步应该在系数矩阵或消元后的低阶矩阵中选取绝对值最大的元素作为主元素,保持乘数,以便减少计算过程中舍入误差对计算解的影响。
一种方式是完全主元消去法,这种消去法是在每次选主元时,选择为主元素。
这种方法是解低阶稠密矩阵方程组的有效方法,但这种方法在选取主元时要花费一定的计算机时间。
实际计算中我们常采用部分选主元的的消去法。
列主元消去法即在每次选主元时,仅依次按列选取绝对值最大的元素作为主元素,且仅交换两行,再进行消元计算。
2 实验目的和要求运用matlab编写一个.m文件,要求用列主元消去法求解方程组(实现PA=LU):要求输出以下内容:(1)计算解x;(2) L,U;(3)整形数组IP(i)(i=1,2,…,n-1)(记录主行信息)3 算法原理与流程图(1)算法原理设有线性方程组Ax=b,其中设A为非奇异矩阵。
方程组的增广矩阵为第1步(k=1):首先在A的第一列中选取绝对值最大的元素,作为第一步的主元素:,然后交换(A,b)的第1行与第i1行元素,再进行消元计算。
设列主元素消去法已经完成第1步到第k-1步的按列选主元,交换两行,消元计算得到与原方程组等价的方程组第k步计算如下:对于k=1,2,…,n-1(1)按列选主元:即确定ik使(2)如果,则A为非奇异矩阵,停止计算。
(3)如果ik≠k,则交换[A,b]第ik行与第k行元素。
(4)消元计算消元乘数满足:(5)回代求解计算解在常数项b(n)内得到。
不定方程组的通解一、引言在数学中,方程是研究数量关系的基本工具之一。
方程可以分为线性方程和非线性方程两大类。
而不定方程组则是非线性方程组的一个重要分支。
不定方程组是指含有未知数的多个方程的集合,其解满足所有这些方程。
本文将介绍不定方程组的通解及其求解方法。
首先会对不定方程组进行定义和分类,并介绍一些常见的不定方程组问题。
然后会详细介绍如何求解一般形式的不定方程组,并给出具体示例。
最后会总结本文所介绍的内容,并展望不定方程组在数学中的应用。
二、定义和分类2.1 定义不定方程组是指含有未知数的多个方程的集合,其解满足所有这些方程。
2.2 分类根据未知数和系数之间的关系,不定方程组可以分为以下几类:2.2.1 线性不定方程组线性不定方程组是指所有未知数都只有一次幂,并且系数都是常数的情况。
例如:3x + 4y = 75x - 2y = 12.2.2 二次不定方程组二次不定方程组是指至少有一个未知数的平方项,并且系数可以是常数或者其他未知数的情况。
例如:x^2 + y^2 = 25x^2 - y = 72.2.3 指数不定方程组指数不定方程组是指至少有一个未知数的指数项,并且系数可以是常数或者其他未知数的情况。
例如:3^x + 4^y = 135^x - 2^y = 9三、求解方法3.1 线性不定方程组的通解求解方法线性不定方程组的通解求解方法主要有以下几种:3.1.1 列主元素消去法列主元素消去法是线性代数中常用的一种求解线性方程组的方法。
通过选取系数矩阵中每一列中绝对值最大的元素作为主元,然后进行消去操作,最终得到行简化阶梯形矩阵。
根据行简化阶梯形矩阵可以直接得到线性方程组的通解。
3.1.2 克拉默法则克拉默法则是一种利用行列式求解线性方程组的方法。
通过构造增广矩阵,并计算系数矩阵和常数向量的行列式,可以得到线性方程组的解。
3.1.3 矩阵求逆法矩阵求逆法是一种利用矩阵的逆求解线性方程组的方法。
通过将系数矩阵和常数向量构造成增广矩阵,然后求出系数矩阵的逆矩阵,最后将逆矩阵与常数向量相乘,可以得到线性方程组的解。
列主元素消去法列主元素消去法(Gauss-Jordan 消元法)是一种线性代数中常用的消元方法,用于求解线性方程组的解。
这种方法的基本思想是,将线性方程组的增广矩阵通过一系列的初等变换,化为一个阶梯矩阵或行简化阶梯矩阵,从而得到线性方程组的解。
具体步骤如下:构造增广矩阵,即将系数矩阵和常数矩阵组合成一个矩阵。
将增广矩阵转化为一个上三角矩阵(也叫阶梯矩阵)。
反向消元,将阶梯矩阵转化为一个行简化阶梯矩阵。
根据简化矩阵求解方程组。
这种方法的优点是计算简单、容易理解,且可避免误差的积累。
但是,如果矩阵的规模较大,运算量会很大,计算时间较长。
此时可以使用更高效的算法,如LU分解、QR分解等。
假设有一个 $n$ 个未知量和 $n$ 个方程的线性方程组,可以写成矩阵形式如下:$Ax = b$其中,$A$ 是一个 $n \times n$ 的系数矩阵,$x$ 是一个 $n \times 1$ 的未知量向量,$b$ 是一个 $n \times 1$ 的常数向量。
为了求解 $x$,可以将方程组的增广矩阵表示如下:$\begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1n} & b_{1} \ a_{21} & a_{22} & a_{23} & \cdots & a_{2n} & b_{2} \ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \ a_{n1} & a_{n2} & a_{n3} & \cdots & a_{nn} & b_{n} \end{bmatrix}$ 其中,$a_{ij}$ 表示矩阵的第 $i$ 行第 $j$ 列的元素。
高斯列主元消元法解线性方程组一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中,A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 0.230 -52.322 54.000 240.236 29.304 -117.818b ⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068)二、原理及步骤分析设nn ij R a A ⨯∈=][)1(,nn Rb b b b ∈=],,,[)1()2(2)1(1 。
若约化主元素),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。
如果在消元过程中发现某个约化主元0)(=k kk a , 则第K 次消元就无法进行。
此外,即使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。
为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。
相应过程为:(1)选主元:在子块的第一列中选择一个元)(k k i k a 使)(max k ik ni k kk i a a k ≤≤=并将第k 行元与第k i 行元互换。
高斯列主元素消去法是一种解线性方程组的常用方法,特别在数值分析和线性代数中应用广泛。
在Matlab中,我们可以使用该方法来解决大规模的线性方程组,包括矩阵的求解和矩阵的反转。
一、高斯列主元素消去法的基本原理高斯列主元素消去法是一种基于矩阵消元的方法,它通过一系列的矩阵变换将原始的线性方程组转化为上三角形式,然后再进行回代求解。
这个方法的核心就是通过矩阵的变换来简化原始的线性方程组,使得求解过程更加简单高效。
在Matlab中,我们可以利用矩阵运算和函数来实现高斯列主元素消去法,如`lu`分解函数和`\"`运算符等。
通过这些工具,我们能够快速地求解各种规模的线性方程组并得到准确的结果。
二、高斯列主元素消去法在Matlab中的实现在Matlab中,我们可以通过调用`lu`函数来实现高斯列主元素消去法。
该函数返回一个上三角矩阵U和一个置换矩阵P,使得PA=LU。
通过对U进行回代求解,我们可以得到线性方程组的解。
除了`lu`函数之外,Matlab还提供了一些其他的函数和工具来帮助我们实现高斯列主元素消去法,比如`\"`运算符和`inv`函数等。
通过这些工具的组合使用,我们能够更加灵活地进行线性方程组的求解,并且可以方便地处理特殊情况和边界条件。
三、高斯列主元素消去法的应用与局限性高斯列主元素消去法在实际应用中具有广泛的适用性,特别是对于大规模的线性方程组或者稀疏矩阵的求解。
通过Matlab中的工具和函数,我们可以快速地求解各种规模的线性方程组,并得到高精度的数值解。
然而,高斯列主元素消去法也存在一些局限性,比如对于奇异矩阵或者接近奇异矩阵的情况时,该方法的求解精度可能会下降。
在实际应用中,我们需要结合具体的问题和矩阵特性来选择合适的求解方法,以确保得到准确的结果。
四、个人观点和总结作为一种经典的线性方程组求解方法,高斯列主元素消去法在Matlab 中具有较好的实现和应用效果。
通过对其原理和实现细节的深入理解,我们能够更加灵活地应用该方法,并且能够更好地理解其适用性和局限性。
用高斯消元法和列主元消去法求解线性代数方程组(X*是方程组的精确解)1 高斯消去法1.1 基本思想及计算过程高斯(Gauss )消去法是解线性方程组最常用的方法之一,它的基本思想是通过逐步消元,把方程组化为系数矩阵为三角形矩阵的同解方程组,然后用回代法解此三角形方程组得原方程组的解。
为便于叙述,先以一个三阶线性方程组为例来说明高斯消去法的基本思想。
⎪⎩⎪⎨⎧=++II =++I =++III)(323034)(5253)(6432321321321x x x x x x x x x 把方程(I )乘(23-)后加到方程(II )上去,把方程(I )乘(24-)后加到方程(III )上去,即可消去方程(II )、(III )中的x 1,得同解方程组⎪⎩⎪⎨⎧=+-II -=-I =++III)(20223)(445.0)(64323232321x x x x x x x将方程(II )乘(5.03)后加于方程(III ),得同解方程组: ⎪⎩⎪⎨⎧-=-II -=-I =++III)(42)(445.0)(6432332321x x x x x x由回代公式(3.5)得x 3 = 2,x 2 = 8,x 1 = -13。
下面考察一般形式的线性方程组的解法,为叙述问题方便,将b i 写成a i , n +1,i = 1, 2,…,n 。
⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++1,3322111,223232221211,11313212111n n n nn n n n n n n n n n a x a x a x a x a a x a x a x a x a a x a x a x a x a(1-1)如果a 11 ≠ 0,将第一个方程中x 1的系数化为1,得)1(1,1)1(12)1(121+=+++n n n a x a x a x其中)0(11)0()1(1aa aijj=, j = 1, …, n + 1(记ij ij a a =)0(,i = 1, 2, …, n ; j = 1, 2, …, n + 1)从其它n –1个方程中消x 1,使它变成如下形式⎪⎪⎩⎪⎪⎨⎧=++=++=++++++)1(1,)1(2)1(2)1(1,2)1(22)1(22)1(1,1)1(12)1(121n n n nn n n n n n n n a x a x a a x a x a a x a x a x(1-2)其中n i a m a aij i ij ij ,,2)1(1)1( =⋅-=,1,,3,211)1(11+==n j a a m i i由方程(1-1)到(1-2)的过程中,元素11a 起着重要的作用,特别地,把11a 称为主元素。