梁的正应力
- 格式:ppt
- 大小:1000.00 KB
- 文档页数:23
§7-2 梁的正应力强度计算一、最大正应力在强度计算时,必须算出梁的最大正应力。
产生最大正应力的截面,称为危险截面。
对于等直梁,弯矩最大的截面就是危险截面。
危险截面上的最大应力处称为危险点,它发生在距中性轴最远的上、下边缘处。
对于中性轴是截面对称轴的梁,最大正应力的值为:maxmax max zM y I σ=令zz maxI W y =,则 maxmax zM W σ=式中z W 称为抗弯截面系数,是一个与截面形状和尺寸有关的几何量。
常用单位是m 3或mm 3。
z W 值越大,max σ就越小,它也反映了截面形状及尺寸对梁的强度的影响。
对高为h 、宽为b 的矩形截面,其抗弯截面系数为:32z z max /12/26I bh bh W y h ===对直径为d 的圆形截面,其抗弯截面系数为:43z z max /64/232I d d W y d ππ===对于中性轴不是截面对称轴的梁,例如图7-9所示的T 形截面梁,在正弯矩M 作用下梁下边缘处产生最大拉应力,上边缘处产生最大压应力,其值分别为:+1max z My I σ=2maxzMy I σ-=令z 11I W y =、z 22IW y =,则有: +max 1M W σ=max2M W σ-=maxσ-图7-9二、正应力强度条件为了保证梁能安全地工作,必须使梁截面上的最大正应力max σ不超过材料的许用应力,这就是梁的正应力强度条件。
现分两种情况表达如下:1、材料的抗拉和抗压能力相同,其正应力强度条件为:maxmax z[]M W σσ=≤ 2、材料的抗拉和抗压能力不同,应分别对拉应力和压应力建立强度条件:+maxmax 1[]M W σσ+=≤ max max2[]MW σσ--=≤ 根据强度条件可解决有关强度方面的三类问题:1)强度校核:在已知梁的材料和横截面的形状、尺寸(即已知[]σ、z W )以及所受荷载(即已知max M )的情况下,可以检查梁是否满足正应力强度条件。
姓名:班级:学号:实验报告纯弯曲梁的正应力实验一、实验目的:1.测定梁在纯弯曲时横截面上正应力大小和分布规律2.验证纯弯曲梁的正应力公式二、实验设备及工具:1.材料力学多功能试验台中的纯弯曲梁实验装置2.数字测力仪、电阻应变仪三、实验原理及方法:在纯弯曲条件下,根据平面假设和纵向纤维间无挤压的假设,可得到梁横截面上任意一点的正应力,计算公式:σ=My/I z为测量梁横截面上的正应力分布规律,在梁的弯曲段沿梁侧面不同高度,平行于轴线贴有应变片。
贴法:中性层一片,中性层上下1/4梁高处各一片,梁上下两侧各一片,共计五片。
采用增量法加载,每增加等量荷载△P(500N)测出各点的应变增量△ε,求的各点应变增量的平均值△ε实i,从而求出应力增量:σ实i=E△ε实i将实验应力值与理论应力值进行比较,已验证弯曲正应力公式。
四、原始数据:五、实验步骤:1.打开应变仪、测力仪电源开关2.连接应变仪上电桥的连线,确定第一测点到第五测点在电桥通道上的序号。
3. 检查测力仪,选择力值加载单位N或kg,按动按键直至显示N上的红灯亮起。
按清零键,使测力计显示零。
4.应变仪调零。
按下“自动平衡”键,使应变仪显示为零。
5.转动手轮,按铭牌指示加载,加力的学生要缓慢匀速加载,到测力计上显示500N,读数的学生读下5个测点的应变值,(注意记录下正、负号)。
用应变仪右下角的通道切换键来显示第5测点的读数。
以后,加力每次500N,到3000N 为止。
6.读完3000N应变读数后,卸下载荷,关闭电源。
六、实验结果及处理:1.各点实验应力值计算根据上表数据求得应变增量平均值△εPi,带入胡克定律计算各点实验值:σ实i=E△εPi×10-62.各点理论应力值计算载荷增量△P=500N弯矩增量△M=△P/2×a应力理论值计算σ理i=∆M∙YiI z(验证的就是它)3.绘出实验应力值和理论应力值的分布图以横坐标表示各测点的应力σ实和σ理,以纵坐标表示各测点距梁中性层的位置。