9.6 几何中的应用
- 格式:ppt
- 大小:1.22 MB
- 文档页数:38
§9.6 双曲线考纲展示1.了解双曲线的定义、几何图形和标准方程,知道它的简单几何性质.2.了解圆锥曲线的简单应用、了解双曲线的实际背景、了解双曲线在刻画现实世界或解决实际问题中的作用.3.理解数形结合的思想. 考点1 双曲线的定义 第1步 回顾基础 一、自读自填 双曲线的定义平面内与两个定点F 1,F 2的________等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线.这两个定点叫做________,两焦点间的距离叫做________.集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0. (1)当________时,P 点的轨迹是双曲线; (2)当________时,P 点的轨迹是两条射线; (3)当________时,P 点不存在. 二、连接教材(1)已知双曲线两个焦点分别为F 1(-5,0),F 2(5,0).双曲线上一点P 到F 1,F 2距离之差的绝对值等于6,则双曲线的标准方程为________.(2)双曲线的方程为x 2-2y 2=1,则它的右焦点坐标为________. 三、易错问题双曲线的定义:关注定义中的条件.(1)动点P 到两定点A (0,-2),B (0,2)的距离之差的绝对值等于4,则动点P 的轨迹是________. (2)动点P 到点A (-4,0)的距离比到点B (4,0)的距离多6,则动点P 的轨迹是________. 第2步 自主练透典题1 (1)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________.(2)已知F 是双曲线x 24-y 212=1的左焦点,A (1,4),P 是双曲线右支上的动点,则|PF |+|P A |的最小值为________.点石成金 双曲线定义的应用主要有两个方面:一是判定平面内动点与两定点的轨迹是否为双曲线,进而根据要求可求出曲线方程;二是在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系. 考点2 双曲线的标准方程与性质第1步 回顾基础 一、自读自填双曲线的标准方程和几何性质x ≤-a 或 y ≤-a 或 (1)若实数k 满足0<k <9,则曲线x 225-y 29-k =1与曲线x 225-k -y 29=1的( )A .焦距相等B .实半轴长相等C .虚半轴长相等D .离心率相等(2)设双曲线x 2a 2-y 29=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为________.三、易错问题双曲线的标准方程:关注实轴的位置.双曲线的渐近线方程为y =±3x ,虚轴长为23,则双曲线方程为________.四、通性通法求双曲线的标准方程:待定系数法.对称轴为坐标轴,经过点P (3,2),Q (-6,7)的双曲线是________. 第2步 多角探明考情聚焦 双曲线的标准方程和几何性质是每年高考命题的热点,尤其是渐近线与离心率问题,考查的力度比较大. 主要有以下几个命题角度: 角度一求双曲线的标准方程典题2 (1)过双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( ) A.x 24-y 212=1 B.x 27-y 29=1 C.x 28-y 28=1 D.x 212-y 24=1 (2)设双曲线与椭圆x 227+y 236=1有共同的焦点,且与椭圆相交,一个交点的坐标为(15,4),则此双曲线的标准方程是________. 点石成金 求双曲线标准方程的一般方法(1)待定系数法:设出双曲线方程的标准形式,根据已知条件,列出参数a ,b ,c 的方程,并求出a ,b ,c 的值.与双曲线x 2a 2-y 2b 2=1有相同渐近线时,可设所求双曲线方程为x 2a 2-y 2b 2=λ(λ≠0).(2)定义法:依定义得出距离之差的等量关系式,求出a 的值,由定点位置确定c 的值. 角度二已知离心率求渐近线方程典题3 若双曲线x 2a 2-y 2b 2=1的离心率为3,则其渐近线方程为( )A.y =±2xB.y =±2xC.y =±12xD.y =±22x 角度三已知渐近线求离心率典题4 已知双曲线的一条渐近线方程为2x -y =0,则该双曲线的离心率为________. 角度四由离心率或渐近线方程求双曲线方程典题5 下列双曲线中,焦点在y 轴上且渐近线方程为y =±2x 的是( ) A.x 2-y 24=1B.x 24-y 2=1 C.y 24-x 2=1 D.y 2-x 24=1角度五利用渐近线与已知直线位置关系求离心率范围典题6 已知双曲线x 2a 2-y 2b 2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A.(1,5)B.(1, 5 』C.(5,+∞)D.『5,+∞)点石成金 解决有关渐近线与离心率关系问题的两个注意点(1)已知渐近线方程y =mx ,若焦点位置不明确要分|m |=b a 或|m |=ab 讨论.(2)注意数形结合思想在求渐近线夹角、离心率范围中的应用.考点3 直线与双曲线的位置关系第1步 师生共研典题7 若双曲线E :x 2a 2-y 2=1(a >0)的离心率等于2,直线y =kx -1与双曲线E 的右支交于A ,B 两点. (1)求k 的取值范围;(2)若|AB |=63,点C 是双曲线上一点,且OC =m (OA +OB ),求k ,m 的值.点石成金 研究直线与双曲线位置关系问题的通法:将直线方程代入双曲线方程,消元,得关于x 或y 的一元二次方程.当二次项系数等于0时,直线与双曲线相交于某支上一点,这时直线平行于一条渐近线;当二次项系数不等于0时,用判别式Δ来判定. 第2步 跟踪训练已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),求双曲线E 的方程.第3步 课堂归纳 方法技巧1.双曲线标准方程的求法(1)当已知双曲线的焦点不明确而又无法确定时,其标准方程可设为x 2m -y 2n =1(mn >0),这样可避免讨论和复杂的计算;也可设为Ax 2+By 2=1(AB <0),这种形式在解题时更简便; (2)当已知双曲线的渐近线方程bx ±ay =0,求双曲线方程时,可设双曲线方程为b 2x 2-a 2y 2=λ(λ≠0),据其他条件确定λ的值;(3)与双曲线x 2a 2-y 2b 2=1有相同的渐近线的双曲线方程可设为x 2a 2-y 2b 2=λ(λ≠0),据其他条件确定λ的值.2.已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程.3.双曲线为等轴双曲线⇔双曲线的离心率e =2⇔双曲线的两条渐近线互相垂直(位置关系).4.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a.5.过双曲线焦点F 1的弦AB 与双曲线交在同支上,则AB 与另一个焦点F 2构成的△ABF 2的周长为4a +2|AB |.易错防范1.在运用双曲线的定义解题时,应特别注意定义中的条件“差的绝对值”,弄清是指整条双曲线还是双曲线的某一支.2.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b2=1(a >0,b >0)的渐近线方程是y =±a bx .3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.4.要牢记在双曲线中c 2=a 2+b 2,离心率e >1这两点是不同于椭圆的.——★ 参 考 答 案 ★——考点1 双曲线的定义 第1步 回顾基础 一、自读自填『答案』距离的差的绝对值 双曲线的焦点 双曲线的焦距 (1)a <c (2)a =c (3)a >c二、连接教材 (1)『答案』x 29-y 216=1『解析』由已知可知,双曲线的焦点在x 轴上,且c =5,a =3,∴b =4, 故所求方程为x 29-y 216=1.(2)『答案』⎝⎛⎭⎫62,0『解析』将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32, ∴c =62,故右焦点坐标为⎝⎛⎭⎫62,0. 三、易错问题 (1)『答案』两条射线『解析』因为||P A |-|PB ||=4=|AB |,所以动点P 的轨迹是以A ,B 为端点,且没有交点的两条射线. (2)『答案』双曲线的右支,即x 29-y 27=1(x ≥3)『解析』依题意有|P A |-|PB |=6<8=|AB |,所以动点P 的轨迹是双曲线,但由|P A |-|PB |=6知, 动点P 的轨迹是双曲线的右支,即x 29-y 27=1(x ≥3).第2步 自主练透 典题1(1)『答案』x 2-y 28=1(x ≤-1) 『解析』如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|.根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小), 其中a =1,c =3,则b 2=8. 故点M 的轨迹方程为x 2-y 28=1(x ≤-1). (2)『答案』9 『解析』如图所示,设双曲线的右焦点为E ,则E (4,0).由双曲线的定义及标准方程得|PF |-|PE |=4, 则|PF |+|P A |=4+|PE |+|P A |.由图可得,当A ,P ,E 三点共线时, (|PE |+|P A |)min =|AE |=5, 从而|PF |+|P A |的最小值为9. 考点2 双曲线的标准方程与性质 第1步 回顾基础 一、自读自填『答案』坐标轴 原点 (-a,0) (a,0) (0,-a ) (0,a ) a 2+b 2 2a 2b 二、连接教材 (1) 『答案』A『解析』由0<k <9,易知两曲线均为双曲线且焦点都在x 轴上,由25+9-k =25-k +9,得两双曲线的焦距相等,故选A. (2)『答案』a『解析』双曲线x 2a 2-y 29=1的渐近线方程为3x ±ay =0,与已知方程比较可得a =2.三、易错问题 『答案』x 2-y 23=1或y 29-x 23=1 『解析』当实轴在x 轴上时,设双曲线的方程为x 2a 2-y 2b 2=1(a >0,b >0).由已知可知ba=3,b =3,所以a 2=1,即所求方程为x 2-y 23=1.当实轴在y 轴上时,设双曲线的方程为y 2a 2-x 2b 2=1(a >0,b >0).由已知可得b =3,ab =3,所以a 2=9,即所求方程为y 29-x 23=1. 四、通性通法 『答案』5x 233-y 211=1『解析』由于不能确定双曲线的焦点在哪个轴上, 故可设双曲线方程为Ax 2+By 2=1(AB <0). ∵所求双曲线经过P (3,2),Q (-6,7),∴⎩⎪⎨⎪⎧9A +4B =1,36A +49B =1,解得A =533,B =-111.故所求双曲线方程为5x 233-y 211=1.第2步 多角探明 角度一典题2 (1)『答案』A『解析』由双曲线方程知右顶点为(a,0), 设其中一条渐近线方程为y =ba x ,可得点A 的坐标为(a ,b ).设右焦点为F (c,0),由已知可知c =4,且|AF |=4,即(c -a )2+b 2=16, 所以有(c -a )2+b 2=c 2,又c 2=a 2+b 2,则c =2a ,即a =c2=2,所以b 2=c 2-a 2=42-22=12. 故双曲线的方程为x 24-y 212=1,故选A.(2)『答案』y 24-x 25=1『解析』解法一:椭圆x 227+y 236=1的焦点坐标是(0,±3),设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0),根据定义知2a =|(15-0)2+(4-3)2-(15-0)2+(4+3)2|=4,故a =2.又b 2=32-a 2=5, 故所求双曲线的方程为y 24-x 25=1.解法二:椭圆x 227+y 236=1的焦点坐标是(0,±3).设双曲线方程为y 2a 2-x 2b 2=1(a >0,b >0),则a 2+b 2=9,又点(15,4)在双曲线上,所以16a 2-15b 2=1, 解得a 2=4,b 2=5.故所求双曲线的方程为y 24-x 25=1.解法三:设双曲线的方程为x 227-λ+y 236-λ=1(27<λ<36),由于双曲线过点(15,4),故1527-λ+1636-λ=1, 解得λ1=32,λ2=0(舍去). 故所求双曲线方程为y 24-x 25=1.角度二典题3 『答案』B『解析』在双曲线中离心率e =ca =1+⎝⎛⎭⎫b a 2 =3,可得ba=2,故所求的双曲线的渐近线方程是y =±2x . 角度三典题4 『答案』5或52『解析』根据双曲线的渐近线方程知b a =2或ab =2.则e =1+⎝⎛⎭⎫b a 2=5或52. 角度四典题5 『答案』C『解析』由双曲线焦点在y 轴上,排除选项A ,B ,选项C 中双曲线的渐近线方程为y =±2x ,故选C. 角度五利用渐近线与已知直线位置关系求离心率范围 典题6 『答案』C『解析』∵双曲线的一条渐近线方程为y =b a x ,则由题意得b a>2, ∴e =c a =1+⎝⎛⎭⎫b a 2 >1+4= 5.即双曲线离心率的取值范围为(5,+∞).考点3 直线与双曲线的位置关系第1步 师生共研典题7 解:(1)由⎩⎪⎨⎪⎧ c a =2,a 2=c 2-1,得⎩⎪⎨⎪⎧a 2=1,c 2=2, 故双曲线E 的方程为x 2-y 2=1.设A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx -1,x 2-y 2=1, 得(1-k 2)x 2+2kx -2=0.①∵直线与双曲线右支交于A ,B 两点,∴⎩⎪⎨⎪⎧k >1,Δ=(2k )2-4(1-k 2)×(-2)>0, 即⎩⎨⎧k >1,-2<k <2,∴1<k < 2.故k 的取值范围为(1,2).(2)由①得x 1+x 2=2k k 2-1,x 1x 2=2k 2-1, ∴|AB |=1+k 2·(x 1+x 2)2-4x 1x 2=2(1+k 2)(2-k 2)(k 2-1)2=63, 整理得28k 4-55k 2+25=0,∴k 2=57或k 2=54. 又1<k <2,∴k =52, ∴x 1+x 2=45,y 1+y 2=k (x 1+x 2)-2=8. 设C (x 3,y 3),由OC =m (OA +OB ),得(x 3,y 3)=m (x 1+x 2,y 1+y 2)=(45m,8m ).∵点C 是双曲线上一点, ∴80m 2-64m 2=1,得m =±14.故k =52,m =±14. 第2步 跟踪训练解:设双曲线E 的标准方程为x 2a 2-y 2b2=1(a >0,b >0), 由题意知c =3,a 2+b 2=9, 设A (x 1,y 1),B (x 2,y 2),则有⎩⎨⎧ x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式作差,得y 1-y 2x 1-x 2=b 2x 1+x 2a 2y 1+y 2=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1, 所以将4b 2=5a 2代入a 2+b 2=9得a 2=4,b 2=5.所以双曲线E 的标准方程是x 24-y 25=1.。
ABCD1A 1C 1B E科 目 数学 年级 高三 备课人 高三数学组第 课时9.2立体几何大题11、(2013新课标)如图,直棱柱111ABC A B C -中,,D E 分别是1,AB BB 的 中点,122AA AC CB AB ===. (Ⅰ)证明:1//BC 平面1A CD ; (Ⅱ)求二面角1D A C E --的正弦值.【答案】2、(2013湖南)如图5,在直棱柱1111//ABCD A BC D AD BC -中,,90,,1BAD AC BD BC ∠=⊥=,13AD AA ==.(I)证明:1AC B D ⊥; (II)求直线111B C ACD 与平面所成角的正弦值.【答案】解(Ⅰ) AC BB ABCD BD ABCDBB D C B A ABCD ⊥⇒⊂⊥∴-111111,面且面是直棱柱 D B AC BDB D B BDB AC B BB BD BD AC 11111,,⊥∴⊂⊥∴=⋂⊥,面。
面且又 . (证毕)(Ⅱ)。
的夹角与平面的夹角即直线与平面直线θ111111,////ACD AD ACD C B AD BC C B ∴ 轴正半轴。
为轴正半轴,为点,量解题。
设原点在建立直角坐标系,用向X AD Y AB A()BDAC y BD y AC y C y B D D A ⊥-== ),0,,3(),0,,1()0,,1(),0,,0(),3,0,3(),0,0,3(,00,01,则,设).3,0,3(),0,3,1(.30,003012==∴=⇒>=+-⇒=⋅AD AC y y y BD AC ),,(),,(的一个法向量平面则的法向量为设平面303,313-.0,111==⇒⎪⎩⎪⎨⎧=⋅=⋅AD n ACD AD n AC n n ACD7213733|,cos |sin 003,313-1=⋅=><=⇒==∴AD n AD n ACD θ),,(),,(的一个法向量平面72111夹角的正弦值为与平面所以ACD BD .3、(2013 北京)如图,在三棱柱ABC -A 1B 1C 1中,AA 1C 1C 是边长为4的正方形,平面ABC ⊥平面AA 1C 1C ,AB=3,BC=5.(Ⅰ)求证:AA 1⊥平面ABC ;(Ⅱ)求二面角A 1-BC 1-B 1的余弦值;(Ⅲ)证明:在线段BC 1存在点D,使得AD ⊥A 1B ,并求1BDBC 的值.【答案】解:(I)因为AA 1C 1C 为正方形,所以AA 1 ⊥AC.因为平面ABC⊥平面AA 1C 1C,且AA 1垂直于这两个平面的交线AC,所以AA 1⊥平面ABC.(II)由(I)知AA 1 ⊥AC,AA 1 ⊥AB. 由题知AB=3,BC=5,AC=4,所以AB⊥AC. 如图,以A 为原点建立空间直角坐标系A-xyz ,则B(0,3,0),A 1(0,0,4),B 1(0,3,4),C 1(4,0,4),设平面A 1BC 1的法向量为,,)x y z n =(,则1110A B A C ⎧⋅=⎪⎨⋅=⎪⎩n n ,即34040y z x -=⎧⎨=⎩,令3z =,则0x =,4y =,所以(0,4,3)n =.同理可得,平面BB 1C 1的法向量为(3,4,0)m =,所以16cos 25⋅==n m n,m |n ||m |. 由题知二面角A 1-BC 1-B 1为锐角,所以二面角A 1-BC 1-B 1的余弦值为1625. (III)设D (,,)x y z 是直线BC1上一点,且1BD BC λ=. 所以(,3,)(4,3,4)x y z λ-=-.解得4x λ=,33y λ=-,4z λ=.所以(4,33,4)AD λλλ=-. 由1·0AD A B =,即9250λ-=.解得925λ=. 因为9[0,1]25∈,所以在线段BC 1上存在点D, 使得AD⊥A 1B. 此时,1925BD BC λ==.4、(2013江苏)本小题满分10分.如图,在直三棱柱111A B C ABC-中,AC AB ⊥,2==AC AB ,41=AA ,点D 是BC 的中点(1)求异面直线B A 1与D C 1所成角的余弦值 (2)求平面1ADC 与1ABA 所成二面角的正弦值.【答案】本题主要考察异面直线.二面角.空间向量等基础知识以及基本运算,考察运用空间向量解决问题的能力.解:(1)以{}1,,AA AC AB 为为单位正交基底建立空间直角坐标系xyz A -,则)0,0,0(A )0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C ∴)4,0,2(1-=B A ,)4,1,1(1--=B A∴10103182018,cos 111111==∙>=<DC B AD C B A D C B A ∴异面直线B A 1与D C 1所成角的余弦值为10103 (2))0,2,0(=AC 是平面1ABA 的的一个法向量设平面1ADC 的法向量为),,(z y x m =,∵)0,1,1(=AD ,)4,2,0(1=AC 由1,AC m AD m ⊥⊥∴⎩⎨⎧=+=+0420z y y x 取1=z ,得2,2=-=x y ,∴平面1ADC 的法向量为)1,2,2(-=m设平面1ADC 与1ABA 所成二面角为θ∴32324,cos cos =⨯-=∙=><=mAC m AC m AC θ, 得35sin =θ ∴平面1ADC 与1ABA 所成二面角的正弦值为355、(2013年新课标1)如图,三棱柱ABC-A 1B 1C 1中,CA=CB,AB=A A 1,∠BA A 1=60°.(Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC⊥平面AA 1B 1B,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值.【答案】(Ⅰ)取AB 中点E,连结CE,1A B ,1A E ,∵AB=1AA ,1BAA ∠=060,∴1BAA ∆是正三角形,∴1A E ⊥AB, ∵CA=CB, ∴CE⊥AB, ∵1CE A E ⋂=E,∴AB⊥面1CEA ,∴AB⊥1AC ;(Ⅱ)由(Ⅰ)知EC⊥AB,1EA ⊥AB,又∵面ABC⊥面11ABB A ,面ABC∩面11ABB A =AB,∴EC⊥面11ABB A ,∴EC⊥1EA ,∴EA,EC,1EA 两两相互垂直,以E 为坐标原点,EA 的方向为x 轴正方向,|EA |为单位长度,建立如图所示空间直角坐标系O xyz -, 有题设知A(1,0,0),1A (0,3,0),C(0,0,3),B(-1,0,0),则BC =(1,0,3),1BB =1AA =(-1,0,3),1A C =(0,-3,3),设n =(,,)x y z 是平面11CBB C 的法向量,则100BC BB ⎧∙=⎪⎨∙=⎪⎩n n ,即3030x z x y ⎧+=⎪⎨+=⎪⎩,可取n =(3,1,-1), ∴1cos ,A C n =11|A C A C ∙n |n ||105,∴直线A 1C 与平面BB 1C 1C 所成角的正弦值为1056、(2013江西)如图,四棱锥P ABCD-中,PA ,ABCD E BD ⊥平面为的中点,G PD 为的中点,3,12DAB DCB EA EB AB PA ∆≅∆====,,连接CE 并延长交AD 于F . (1) 求证:AD CFG ⊥平面;(2) 求平面BCP 与平面DCP 的夹角的余弦值.【答案】解:(1)在ABD ∆中,因为E 是BD 的中点,所以1EA EB ED AB ====,故,23BAD ABE AEB ππ∠=∠=∠=,因为DAB DCB ∆≅∆,所以EAB ECB ∆≅∆, 从而有FED FEA ∠=∠,故,EF AD AF FD ⊥=,又因为,PG GD =所以FG ∥PA . 又PA ⊥平面ABCD ,所以,GF AD ⊥故AD ⊥平面CFG . (3) 以点A 为坐标原点建立如图所示的坐标系,则33(0,0,0),(1,0,0),(,,0),(0,3,0)22A B C D ,(4)3(0,0,)2P ,故1333333(0),(,),(,,0)2222222BC CP CD ==--=-,,,设平面BCP 的法向量111(1,,)n y z =,则111130223330222y y z ⎧+=⎪⎪⎨⎪--+=⎪⎩ ,解得113323y z ⎧=-⎪⎪⎨⎪=⎪⎩,即132(1,,)33n =-. 设平面DCP 的法向量222(1,,)n y z =,则22233223330222y y z ⎧-+=⎪⎪⎨⎪--+=⎪⎩,解得2232y z ⎧=⎪⎨=⎪⎩,即2(1,3,2)n =.从而平面BCP 与平面DCP 的夹角的余弦值为1212423cos 41689n n n n θ⋅===⋅.【课后反思】。
课 题:9.6.1空间向量的直角坐标及其运算教学目的:1.掌握空间右手直角坐标系的概念,会确定一些简单几何体(正方体、长方体)的顶点坐标; 2.掌握空间向量坐标运算的规律;3.会根据向量的坐标,判断两个向量共线或垂直; 4.会用中点坐标公式解决有关问题。
教学重点:空间右手直角坐标系,向量的坐标运算。
教学难点:空间向量的坐标的确定及运算。
授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:本节有两个知识点:向量和点的直角坐标及向量的坐标运算、夹角和距离公式。
这一小节,我们在直角坐标系下,使向量运算完全坐标化。
去掉基底,使空间一个向量对应一个三维数组,这样使向量运算更加方便。
在上一小节已学习向量运算的基础上,把向量运算完全坐标化,对学生已不会感到抽象和困难。
在第2个知识点中,我们给出空间解析几何两个最基本的公式:夹角和距离公式。
在这个知识点中,作为向量坐标计算的例题,还顺便证明了直线与平面垂直的“性质定理”。
通过解一些立体几何的应用题,就可为学生今后进一步学习空间解析几何、高维向量和矩阵打下基础。
要求学生理解空间向量坐标的概念,掌握空间向量的坐标运算,掌握两点的距离公式。
掌握直线垂直于平面的性质定理。
教学过程:一、复习引入:1.平面向量的坐标表示分别取与x 轴、y 轴方向相同的两个单位向量i 、j作为基底。
任作一个向量a,由平面向量基本定理知,有且只有一对实数x 、y ,使得j y i x a+=把),(y x 叫做向量a的(直角)坐标,记作),(y x a =,其中x 叫做a 在x 轴上的坐标,y 叫做a在y 轴上的坐标,特别地,)0,1(=i,)1,0(=j ,)0,0(0= 。
2.平面向量的坐标运算若),(11y x a =,),(22y x b = ,则b a +),(2121y y x x ++=,b a -),(2121y y x x --=,),(y x a λλλ=。
§9.6双曲线考试要求 1.了解双曲线的定义、几何图形和标准方程,以及它们的简单几何性质.2.通过圆锥曲线与方程的学习,进一步体会数形结合的思想.1.双曲线的定义(1)定义:平面内与两个定点F1,F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.(2)符号表示:||MF1|-|MF2||=2a(常数)(0<2a<|F1F2|).(3)焦点:两个定点F1,F2.(4)焦距:两焦点间的距离,表示为|F1F2|.2.双曲线的标准方程和简单几何性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≤-a或x≥a,y∈R y≤-a或y≥a,x∈R对称性对称轴:坐标轴;对称中心:原点顶点A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)轴实轴:线段A1A2,长:2a;虚轴:线段B1B2,长:2b,实半轴长:a,虚半轴长:b离心率e=ca∈(1,+∞)渐近线y=±ba x y=±ab xa,b,c的关系c2=a2+b2(c>a>0,c>b>0)微思考1.平面内与两定点F1,F2的距离之差的绝对值等于常数2a的动点的轨迹一定为双曲线吗?为什么?提示 不一定.当2a =|F 1F 2|时,动点的轨迹是两条射线; 当2a >|F 1F 2|时,动点的轨迹不存在;当2a =0时,动点的轨迹是线段F 1F 2的中垂线.2.与椭圆标准方程相比较,双曲线标准方程中,a ,b 只限制a >0,b >0,二者没有大小要求,若a >b >0,a =b >0,0<a <b ,双曲线哪些性质受影响? 提示 离心率受到影响.∵e =ca=1+⎝⎛⎭⎫b a 2,故当a >b >0时,1<e <2;当a =b >0时,e =2(亦称等轴双曲线);当0<a <b 时,e > 2.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.( × )(2)双曲线方程x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x m ±yn =0.( √ )(3)等轴双曲线的渐近线互相垂直,离心率等于 2.( √ )(4)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1.( √ ) 题组二 教材改编2.若双曲线x 2a 2-y 2b 2=1(a >0,b >0)的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( ) A. 5 B .5 C. 2 D .2答案 A解析 由题意知焦点到其渐近线的距离等于实轴长,双曲线的渐近线方程为x a ±yb =0,即bx ±ay=0, ∴2a =bca 2+b 2=b .又a 2+b 2=c 2,∴5a 2=c 2.∴e 2=c 2a 2=5,∴e = 5. 3.已知a >b >0,椭圆C 1的方程为x 2a 2+y 2b 2=1,双曲线C 2的方程为x 2a 2-y 2b2=1,C 1与C 2的离心率之积为32,则C 2的渐近线方程为( ) A .x ±2y =0 B.2x ±y =0 C .x ±2y =0 D .2x ±y =0答案 A解析 椭圆C 1的离心率为a 2-b 2a ,双曲线C 2的离心率为a 2+b 2a ,所以a 2-b 2a ·a 2+b 2a=32,即a 4=4b 4,所以a =2b ,所以双曲线C 2的渐近线方程是y =±12x ,即x ±2y =0. 4.经过点A (4,1),且对称轴都在坐标轴上的等轴双曲线方程为________. 答案 x 215-y 215=1解析 设双曲线的方程为x 2a 2-y 2a 2=±1(a >0),把点A (4,1)代入,得a 2=15(舍负), 故所求方程为x 215-y 215=1.题组三 易错自纠5.(2020·阜阳模拟)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线经过点(2,6),则该双曲线的离心率为( ) A .2 B. 2 C .3 D. 3 答案 A解析 双曲线x 2a 2-y 2b 2=1()a >0,b >0的一条渐近线为y =ba x 过第一象限,所以点()2,6在渐近线y =b a x 上,可得6=2×b a ,所以ba =3,所以e =ca=a 2+b 2a 2=1+⎝⎛⎭⎫b a 2=1+3=2.6.(2020·哈尔滨师范大学青冈实验中学模拟)双曲线x 29-y 216=1上一点P 到焦点F 1(-5,0)的距离为7,则点P 到焦点F 2(5,0)的距离为________. 答案 13解析 在双曲线x 29-y 216=1中,a =3,由题意得|PF 1|=7,由双曲线的定义可得||PF 1|-|PF 2||=2a =6,即|7-|PF 2||=6,解得|PF 2|=13或|PF 2|=1,又|PF 2|≥c -a =2, 所以|PF 2|=13.题型一 双曲线的定义及应用例1 (1)(2020·滨州质检)x 2+(y -3)2-x 2+(y +3)2=4表示的曲线方程为( ) A.x 24-y 25=1(x ≤-2) B.x 24-y 25=1(x ≥2) C.y 24-x 25=1(y ≤-2) D.y 24-x 25=1(y ≥2) 答案 C 解析x 2+(y -3)2的几何意义为点M (x ,y )到点F 1(0,3)的距离,x 2+(y +3)2的几何意义为点M (x ,y )到点F 2(0,-3)的距离,则x 2+(y -3)2-x 2+(y +3)2=4表示点M (x ,y )到点F 1(0,3)的距离与到点F 2(0,-3)的距离的差为4,且4<|F 1F 2|,所以点M 的轨迹是以F 1,F 2为焦点的双曲线的下支,且该双曲线的实半轴长a =2,半焦距c =3,所以b 2=c 2-a 2=5,则x 2+(y -3)2-x 2+(y +3)2=4表示的曲线方程为y 24-x 25=1(y ≤-2),故选C.(2)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,PF 1——→·PF 2——→=0,则△F 1PF 2的面积为________. 答案 2解析 不妨设点P 在双曲线的右支上, 则|PF 1|-|PF 2|=2a =22,∵PF 1——→·PF 2——→=0,∴PF 1——→⊥PF 2——→, ∴在△F 1PF 2中,有|PF 1|2+|PF 2|2=|F 1F 2|2, 即|PF 1|2+|PF 2|2=16,∴|PF 1|·|PF 2|=4, ∴12F PF S △=12|PF 1|·|PF 2|=2.思维升华 在“焦点三角形”中,常利用正弦定理、余弦定理,结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|·|PF 2|的联系.跟踪训练1 (1)(2020·广东普宁华侨中学模拟)过双曲线x 2-y 24=1的左焦点F 1作一条直线l交双曲线左支于P ,Q 两点,若|PQ |=10,F 2是双曲线的右焦点,则△PF 2Q 的周长是________. 答案 24解析 由题意,得|PF 2|-|PF 1|=2,|QF 2|-|QF 1|=2. ∵|PF 1|+|QF 1|=|PQ |=10, ∴|PF 2|+|QF 2|-10=4, ∴|PF 2|+|QF 2|=14.∴△PF 2Q 的周长是|PF 2|+|QF 2|+|PQ |=14+10=24.(2)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为________________. 答案x 2-y 28=1(x ≤-1) 解析 如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件, 得|MC 1|-|AC 1|=|MA |, |MC 2|-|BC 2|=|MB |, 因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|, 即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 2,C 1的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).题型二 双曲线的标准方程1.(2020·合肥调研)已知双曲线的渐近线为y =±22x ,实轴长为4,则该双曲线的方程为( )A.x 24-y 22=1 B.x 24-y 28=1或y 24-x 28=1 C.x 24-y 28=1 D.x 24-y 22=1或y 24-x 28=1 答案 D解析 设双曲线方程为x 22m -y 2m =1(m ≠0),又2a =4,∴a 2=4, 当m >0时,2m =4,m =2; 当m <0时,-m =4,m =-4.故所求双曲线方程为x 24-y 22=1或y 24-x 28=1.2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( ) A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 答案 B 解析 由y =52x ,可得b a =52.① 由椭圆x 212+y 23=1的焦点为(3,0),(-3,0),可得a 2+b 2=9.② 由①②可得a 2=4,b 2=5. 所以C 的方程为x 24-y 25=1.故选B.3.已知双曲线E 与双曲线x 24-y 29=1共渐近线且经过点P (2,35),则双曲线E 的标准方程为________,顶点坐标为________. 答案 y 236-x 216=1 (0,6),(0,-6)解析 根据题意,设所求双曲线的方程为x 24-y 29=λ(λ≠0),又由双曲线经过点P (2,35),得44-459=λ,即λ=-4,所以双曲线的方程为x 24-y 29=-4,其标准方程为y 236-x 216=1,顶点坐标为(0,6),(0,-6).4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,点P (2,3)在双曲线上,且|PF 1|,|F 1F 2|,|PF 2|成等差数列,则该双曲线的标准方程为________. 答案 x 2-y 2=1解析 ∵|PF 1|,|F 1F 2|,|PF 2|成等差数列, ∴|PF 1|+|PF 2|=4c .∵点P 位于第一象限,∴|PF 1|-|PF 2|=2a , ∴|PF 1|=2c +a ,|PF 2|=2c -a ,∴cos ∠PF 2F 1=4c 2+(2c -a )2-(2c +a )24c (2c -a )=c -2a2c -a,又点P (2,3)在双曲线上,∴sin ∠PF 2F 1=32c -a ,∴⎝ ⎛⎭⎪⎫c -2a 2c -a 2+3(2c -a )2=1,化简得(c -2a )2+3=(2c -a )2,即c 2-a 2=b 2=1,又4a 2-3b 2=1,∴a 2=1,∴双曲线的标准方程为x 2-y 2=1.思维升华 求双曲线的标准方程的方法(1)定义法:由题目条件判断出动点轨迹是双曲线,由双曲线定义,确定2a ,2b 或2c ,从而求出a 2,b 2,写出双曲线方程.(2)待定系数法:先确定焦点在x 轴上还是y 轴上,设出标准方程,再由条件确定a 2,b 2的值,即“先定型,再定量”,如果焦点位置不好确定,可将双曲线方程设为x 2m 2-y 2n 2=λ(λ≠0),再根据条件求λ的值.题型三 双曲线的简单几何性质 命题点1 渐近线和离心率例2 (1)(2019·江苏)在平面直角坐标系xOy 中,若双曲线x 2-y 2b2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是____________. 答案 y =±2x解析 因为双曲线x 2-y 2b2=1(b >0)经过点(3,4),所以9-16b2=1,得b =2,所以该双曲线的渐近线方程是y =±2x .(2)(2020·全国Ⅲ)设双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,则C 的离心率为________. 答案3解析 双曲线的一条渐近线方程为y =2x ,则b =2a . ∴双曲线的离心率e =ca=a 2+b 2a= 3. [高考题改编] 渐近线方程为x ±y =0的双曲线的离心率是( ) A.22B .1 C. 2 D .2答案 C解析 因为双曲线的渐近线方程为x ±y =0,所以无论双曲线的焦点在x 轴上还是在y 轴上,都满足a =b ,所以c =2a ,所以双曲线的离心率e =ca= 2.(3)(2020·全国Ⅰ)已知F 为双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为________. 答案 2解析 如图,A (a ,0).由BF ⊥x 轴且AB 的斜率为3,知点B 在第一象限,且B ⎝⎛⎭⎫c ,b2a , 则k AB =b 2a-0c -a =3,即b 2=3ac -3a 2.又∵c 2=a 2+b 2,即b 2=c 2-a 2, ∴c 2-3ac +2a 2=0,∴e 2-3e +2=0. 解得e =2或e =1(舍去).故e =2.命题点2 双曲线的简单几何性质的综合应用例3 (1)已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1——→·MF 2——→<0,则y 0的取值范围是( ) A.⎝⎛⎭⎫-33,33 B.⎝⎛⎭⎫-36,36 C.⎝⎛⎭⎫-223,223 D.⎝⎛⎭⎫-233,233 答案 A解析 因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1——→·MF 2——→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33. (2)(2020·潍坊模拟)已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,过F 1的直线l与双曲线的左支交于点A ,与右支交于点B ,若|AF 1|=2a ,∠F 1AF 2=2π3,则122AF F ABF S S等于( )A .1 B.12 C.13 D.23答案 B解析 如图所示,由双曲线定义可知|AF 2|-|AF 1|=2a .又|AF 1|=2a ,所以|AF 2|=4a ,因为∠F 1AF 2=23π,所以12AF F S=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×2a ×4a ×32=23a 2. 由双曲线定义可知|BF 1|-|BF 2|=2a , 所以|BF 1|=2a +|BF 2|,又知|BF 1|=2a +|BA |, 所以|BA |=|BF 2|,又∠F 1AF 2=23π,所以△BAF 2为等边三角形,边长为4a , 所以2ABF S =34|AB |2=34×(4a )2=43a 2, 所以122AF F ABF S S=23a 243a 2=12.故选B. 思维升华 (1)求双曲线的渐近线或离心率的方法 ①求出a ,b ,c 直接求离心率,写渐近线方程.②列出a ,b ,c 的各次方程(或不等式),然后解方程或不等式.(2)双曲线性质的综合应用要充分注意与平面几何知识的联系,善于发现条件中的相等或不等关系.跟踪训练2 (1)已知抛物线y 2=4x的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( ) A. 2 B. 3 C .2 D. 5 答案 D解析 由题意,可得F (1,0),直线l 的方程为x =-1,双曲线的渐近线方程为y =±ba x .将x =-1代入y =±b a x ,得y =±ba ,所以点A ,B 的纵坐标的绝对值均为ba .由|AB |=4|OF |可得2ba=4,即b =2a ,b 2=4a 2, 故双曲线的离心率e =ca=a 2+b 2a 2= 5.(2)设双曲线x 29-y 216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________. 答案3215解析 a 2=9,b 2=16,故c =5.∴A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5),代入双曲线方程解得B ⎝⎛⎭⎫175,-3215. ∴S △AFB =12|AF |·|y B |=12×2×3215=3215.课时精练1.已知双曲线x 2m -y 2m +6=1(m >0)的虚轴长是实轴长的2倍,则双曲线的标准方程为( )A.x 22-y 24=1 B.x 24-y 28=1 C .x 2-y 28=1 D.x 22-y 28=1 答案 D解析 由题意,得2m =m +6,解得m =2,所以双曲线的标准方程为x 22-y 28=1.2.已知方程x 2m 2+n -y 23m 2-n =1表示双曲线,且该双曲线两焦点间的距离为4,则n 的取值范围是( ) A .(-1,3) B .(-1,3) C .(0,3) D .(0,3)答案 A解析 ∵方程x 2m 2+n -y 23m 2-n=1表示双曲线,∴(m 2+n )·(3m 2-n )>0,解得-m 2<n <3m 2,由双曲线性质,知c 2=(m 2+n )+(3m 2-n )=4m 2, ∴焦距2c =2×2|m |=4,解得|m |=1, ∴-1<n <3.3.(2020·天津)设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),过抛物线y 2=4x 的焦点和点(0,b )的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为( ) A.x 24-y 24=1 B .x 2-y 24=1C.x 24-y 2=1 D .x 2-y 2=1答案 D解析 由题意知,抛物线的焦点坐标为(1,0), ∴直线l 的斜率k l =b -00-1=-b =-ba ,解得a =1.又∵ba ·(-b )=-1,∴b =a =1,∴双曲线C 的方程为x 2-y 2=1.4.已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2等于( )A.14B.35C.34D.45 答案 C解析 由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.5.(2019·全国Ⅲ)已知F 是双曲线C :x 24-y 25=1的一个焦点,点P 在C 上,O 为坐标原点.若|OP |=|OF |,则△OPF 的面积为( ) A.32 B.52 C.72 D.92 答案 B解析 由F 是双曲线x 24-y 25=1的一个焦点,知|OF |=3,所以|OP |=|OF |=3.不妨设点P 在第一象限,P (x 0,y 0),x 0>0,y 0>0,则⎩⎪⎨⎪⎧x 20+y 20=3,x 204-y 25=1,解得⎩⎨⎧x 20=569,y 20=259,所以P ⎝⎛⎭⎫2143,53,所以S △OPF =12|OF |·y 0=12×3×53=52.6.已知双曲线x 2a 2-y 22=1(0<a <2)的两条渐近线的夹角为π3,则双曲线的离心率为( )A.233B.263 C. 3 D .2答案 D解析 由双曲线方程可知渐近线方程为y =±2a x ,由两条渐近线夹角为π3,0<a <2,可知其中一条渐近线的倾斜角为π3,∴2a=3,∴a =63,c =a 2+b 2=263,∴e =ca =26363=2.7.(2020·惠州调研)设双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线为y =2x ,且一个焦点与抛物线y 2=4x 的焦点相同,则此双曲线的方程为( ) A.54x 2-5y 2=1 B .5y 2-54x 2=1C .5x 2-54y 2=1D.54y 2-5x 2=1 答案 C解析 因为抛物线的焦点为(1,0), 所以⎩⎪⎨⎪⎧c =1,ba =2,c 2=a 2+b 2,解得⎩⎨⎧a 2=15,b 2=45,所以双曲线方程为5x 2-54y 2=1.8.已知离心率为52的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,M 是双曲线C 的一条渐近线上的点,且OM ⊥MF 2,O 为坐标原点,若2OMF S =16,则双曲线的实轴长是( )A .32B .16C .84D .4 答案 B解析 由题意知F 2(c,0),不妨令点M 在渐近线y =ba x 上,由题意可知|F 2M |=bc a 2+b 2=b ,所以|OM |=c 2-b 2=a .由2OMF S=16,可得12ab =16,即ab =32,又a 2+b 2=c 2,c a =52,所以a =8,b =4,c =45,所以双曲线C 的实轴长为16.故选B.9.(2020·北京)已知双曲线C :x 26-y 23=1,则C 的右焦点的坐标为________;C 的焦点到其渐近线的距离是________. 答案 (3,0)3解析 由x 26-y 23=1,得c 2=a 2+b 2=9,解得c =3,焦点在x 轴上, 所以双曲线C 的右焦点坐标为(3,0). 双曲线的一条渐近线方程为y =36x , 即x -2y =0,所以焦点(3,0)到渐近线的距离为 d =31+(-2)2= 3.10.(2020·焦作模拟)已知左、右焦点分别为F 1,F 2的双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线与直线l :x -2y =0互相垂直,点P 在双曲线C 上,且|PF 1|-|PF 2|=3,则双曲线C 的焦距为________. 答案 3 5解析 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的渐近线为y =±bax ,一条渐近线与直线l :x -2y =0相互垂直,可得ba =2,即b =2a ,由双曲线的定义可得2a =|PF 1|-|PF 2|=3, 可得a =32,b =3,即有c =a 2+b 2=94+9=352, 即焦距为2c =3 5.11.如图,F 1和F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该双曲线左支的两个交点,且△F 2AB 是等边三角形,则双曲线的离心率为________.答案3+1解析 设|F 1F 2|=2c ,连接AF 1(图略),∵△F 2AB 是等边三角形,且F 1F 2是⊙O 的直径, ∴∠AF 2F 1=30°,∠F 1AF 2=90°, ∴|AF 1|=c ,|AF 2|=3c ,2a =3c -c , ∴e =c a =23-1=3+1.12.(2020·广安邻水实验中学模拟)已知双曲线C :x 2a 2-y 2b 2=1()a >0,b >0的左、右焦点分别为F 1,F 2,O 为原点,若以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,且|F 1P |=3|OP |,则C 的渐近线方程为________. 答案 y =±3x解析 根据双曲线C :x 2a 2-y 2b 2=1()a >0,b >0的左、右焦点分别为F 1,F 2,O 为原点,以F 1F 2为直径的圆与C 的渐近线的一个交点为P ,如图所示,则|F 1O |=|OP |=c ,|F 1P |=3|OP |=3c ,所以在△POF 1中,由余弦定理可得cos ∠POF 1=|OP |2+|OF 1|2-|PF 1|22|OP |·|OF 1|=c 2+c 2-()3c 22×c ×c =-12.所以∠POF 1=2π3,则∠POF 2=π3,所以tan ∠POF 2=tan π3=3,则渐近线方程为y =±3x .13.(2020·长沙模拟)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),若存在过右焦点F 的直线与双曲线交于A ,B 两点,且AF →=3BF →,则双曲线离心率的最小值为( ) A. 2 B. 3 C .2 D .2 2 答案 C解析 因为过右焦点的直线与双曲线C 相交于A ,B 两点,且AF →=3BF →,故直线与双曲线相交只能交于左、右两支,即点A 在左支,点B 在右支,设A (x 1,y 1),B (x 2,y 2),右焦点F (c,0),因为AF →=3BF →,所以c -x 1=3(c -x 2),3x 2-x 1=2c ,因为x 1≤-a ,x 2≥a ,所以-x 1≥a,3x 2≥3a ,故3x 2-x 1≥4a ,即2c ≥4a ,ca≥2,即e ≥2.所以双曲线离心率的最小值为2.14.(2020·张家口模拟)过双曲线x 2a 2-y 2b 2=1(b >a >0)的右顶点A 作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B ,C ,若A ,B ,C 三点的横坐标成等比数列,则双曲线的离心率为________. 答案10解析 由题意可知,经过右顶点A 的直线方程为y =-x +a ,联立⎩⎪⎨⎪⎧y =b a x ,y =-x +a ,解得x =a 2a +b. 联立⎩⎪⎨⎪⎧y =-b a x ,y =-x +a ,解得x =a 2a -b .因为b >a >0,所以a 2a -b <0,且a 2a +b>0,又点B 的横坐标为等比中项,所以点B 的横坐标为a 2a -b ,则a ·a 2a +b =⎝ ⎛⎭⎪⎫a 2a -b 2,解得b =3a ,所以双曲线的离心率e =ca=a 2+b 2a=10.15.将离心率为e 1的双曲线C 1的实半轴长a 和虚半轴长b (a ≠b )同时增加m (m >0)个单位长度,得到离心率为e 2的双曲线C 2,则( ) A .对任意的a ,b ,e 1>e 2B .当a >b 时,e 1>e 2;当a <b 时,e 1<e 2C .对任意的a ,b ,e 1<e 2D .当a >b 时,e 1<e 2;当a <b 时,e 1>e 2 答案 D解析 依题意得,e 1=a 2+b 2a=1+⎝⎛⎭⎫b a 2,e 2=(a +m )2+(b +m )2a +m=1+⎝ ⎛⎭⎪⎫b +m a +m 2. 因为b a -b +m a +m =ab +bm -ab -am a (a +m )=m (b -a )a (a +m ),由于m >0,a >0,b >0,所以当a >b 时,0<b a <1,0<b +m a +m<1,b a <b +m a +m ,⎝⎛⎭⎫b a 2<⎝ ⎛⎭⎪⎫b +m a +m 2,所以e 1<e 2;当a <b 时,b a >1,b +m a +m>1,b a >b +ma +m ,所以⎝⎛⎭⎫b a 2>⎝ ⎛⎭⎪⎫b +m a +m 2,所以e 1>e 2.所以当a >b 时,e 1<e 2;当a <b 时,e 1>e 2.16.(2020·长沙雅礼中学模拟)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 左支上一点,A (0,66),当△APF 周长最小时,点P 的坐标为________. 答案 (-2,26)解析 如图,由双曲线C 的方程可知a 2=1,b 2=8,∴c 2=a 2+b 2=1+8=9, ∴c =3,∴左焦点E (-3,0), 右焦点F (3,0), ∵|AF |=32+(66)2=15,∴当△APF 的周长最小时,|P A |+|PF |最小. 由双曲线的性质得|PF |-|PE |=2a =2, ∴|PF |=|PE |+2,又|PE |+|P A |≥|AE |=|AF |=15,当且仅当A ,P ,E 三点共线且点P 在线段AE 上时,等号成立,∴△APF 的周长为|AF |+|AP |+|PF |=15+|PE |+|AP |+2≥15+15+2=32.直线AE 的方程为y =26x +66,将其代入到双曲线方程得x 2+9x +14=0,解得x =-7(舍去)或x =-2,由x =-2,得y =26(负值已舍), ∴点P 的坐标为(-2,26).。
2020年高三理科数学一轮讲义案第九章9.6《双曲线》最新考纲了解双曲线的定义、几何图形和标准方程,知道其简单的几何性质(范围、对称性、顶点、离心率、渐近线).知识梳理1.双曲线的定义平面内与两个定点F 1,F 2(|F 1F 2|=2c >0)的距离差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫双曲线.这两个定点叫双曲线的焦点,两焦点间的距离叫焦距.其数学表达式:集合P ={M |||MF 1|-|MF 2||=2a },|F 1F 2|=2c ,其中a ,c 为常数且a >0,c >0:(1)若a <c ,则集合P 为双曲线;(2)若a =c ,则集合P 为两条射线;(3)若a >c ,则集合P 为空集.2.双曲线的标准方程和几何性质标准方程x 2a 2-y 2b 2=1(a >0,b >0)y 2a 2-x 2b 2=1(a >0,b >0)图形性质范围x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a对称性对称轴:坐标轴;对称中心:原点顶点A 1(-a ,0),A 2(a ,0)A 1(0,-a ),A 2(0,a )渐近线y =±b axy =±a bx离心率e =ca,e ∈(1,+∞)实虚轴线段A 1A 2叫做双曲线的实轴,它的长度|A 1A 2|=2a ;线段B 1B 2叫做双曲线的虚轴,它的长度|B 1B 2|=2b ;a 叫做双曲线的实半轴长,b 叫做双曲线的虚半轴长a ,b ,c 的关系c 2=a 2+b 2[微点提醒]1.过双曲线的一个焦点且与实轴垂直的弦的长为2b 2a .2.离心率e =ca =a 2+b 2a=1+b 2a2.3.等轴双曲线的渐近线互相垂直,离心率等于2.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)平面内到点F 1(0,4),F 2(0,-4)距离之差的绝对值等于8的点的轨迹是双曲线.()(2)平面内到点F 1(0,4),F 2(0,-4)距离之差等于6的点的轨迹是双曲线.()(3)方程x 2m -y 2n=1(mn >0)表示焦点在x 轴上的双曲线.()(4)双曲线x 2m 2-y 2n 2=λ(m >0,n >0,λ≠0)的渐近线方程是x m ±yn=0.()(5)若双曲线x 2a 2-y 2b 2=1(a >0,b >0)与x 2b 2-y 2a 2=1(a >0,b >0)的离心率分别是e 1,e 2,则1e 21+1e 22=1(此条件中两条双曲线称为共轭双曲线).()解析(1)因为||MF 1|-|MF 2||=8=|F 1F 2|,表示的轨迹为两条射线.(2)由双曲线的定义知,应为双曲线的一支,而非双曲线的全部.(3)当m >0,n >0时表示焦点在x 轴上的双曲线,而m <0,n <0时则表示焦点在y 轴上的双曲线.答案(1)×(2)×(3)×(4)√(5)√2.(选修2-1P62A6改编)经过点A (3,-1),且对称轴都在坐标轴上的等轴双曲线方程为________________.解析设双曲线方程为:x 2-y 2=λ(λ≠0),把点A (3,-1)代入,得λ=8,故所求双曲线方程为x 28-y 28=1.答案x 28-y 28=13.(选修2-1P61A1改编)已知双曲线x 2-y 216=1上一点P 到它的一个焦点的距离等于4,那么点P 到另一个焦点的距离等于________.解析设双曲线的焦点为F 1,F 2,|PF 1|=4,则||PF 1|-|PF 2||=2,故|PF 2|=6或2,又双曲线上的点到焦点的距离的最小值为c -a =17-1,故|PF 2|=6.答案64.(2018·浙江卷)双曲线x 23-y 2=1的焦点坐标是()A.(-2,0),(2,0)B.(-2,0),(2,0)C.(0,-2),(0,2)D.(0,-2),(0,2)解析由题可知双曲线的焦点在x 轴上,又c 2=a 2+b 2=3+1=4,所以c =2,故焦点坐标为(-2,0),(2,0).答案B5.(2017·全国Ⅲ卷)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.解析由题意可得3a =35a =5.答案56.(2018·北京卷)若双曲线x 2a 2-y 24=1(a >0)的离心率为52,则a =________.解析由题意可得,a 2+4a 2=,即a 2=16,又a >0,所以a =4.答案4考点一双曲线的定义及应用【例1】(1)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=()A.14B.35C.34D.45(2)(2019·西安调研)已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,则动圆圆心M 的轨迹方程为____________.解析(1)由x 2-y 2=2,知a =b =2,c =2.由双曲线定义知,|PF 1|-|PF 2|=2a =22,又|PF 1|=2|PF 2|,∴|PF 1|=42,|PF 2|=22,在△PF 1F 2中,|F 1F 2|=2c =4,由余弦定理,得cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|·|PF 2|=34.(2)如图所示,设动圆M 与圆C 1及圆C 2分别外切于A 和B .根据两圆外切的条件,得|MC 1|-|AC 1|=|MA |,|MC 2|-|BC 2|=|MB |,因为|MA |=|MB |,所以|MC 1|-|AC 1|=|MC 2|-|BC 2|,即|MC 2|-|MC 1|=|BC 2|-|AC 1|=2,所以点M 到两定点C 1,C 2的距离的差是常数且小于|C 1C 2|=6.又根据双曲线的定义,得动点M 的轨迹为双曲线的左支(点M 与C 2的距离大,与C 1的距离小),其中a =1,c =3,则b 2=8.故点M 的轨迹方程为x 2-y 28=1(x ≤-1).答案(1)C (2)x 2-y 28=1(x ≤-1)规律方法 1.利用双曲线的定义判定平面内动点的轨迹是否为双曲线,进而根据要求可求出曲线方程;2.在“焦点三角形”中,常利用正弦定理、余弦定理,经常结合||PF 1|-|PF 2||=2a ,运用平方的方法,建立与|PF 1|,|PF 2|的联系.【训练1】(1)(2018·赣南五校联考)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,左、右焦点分别为F 1,F 2,点A 在双曲线C 上,若△AF 1F 2的周长为10a ,则△AF 1F 2的面积为()A.215a 2 B.15a 2C.30a 2D.15a 2(2)(2019·长春质检)双曲线C 的渐近线方程为y =±233x ,一个焦点为F (0,-7),点A (2,0),点P 为双曲线第一象限内的点,则当点P 的位置变化时,△PAF 周长的最小值为()A.8B.10C.4+37D.3+317解析(1)由双曲线的对称性不妨设A 在双曲线的右支上,由e =ca=2,得c =2a ,∴△AF 1F 2的周长为|AF 1|+|AF 2|+|F 1F 2|=|AF 1|+|AF 2|+4a ,又△AF 1F 2的周长为10a ,∴|AF 1|+|AF 2|=6a ,又∵|AF 1|-|AF 2|=2a ,∴|AF 1|=4a ,|AF 2|=2a ,在△AF 1F 2中,|F 1F 2|=4a ,∴cos ∠F 1AF 2=|AF 1|2+|AF 2|2-|F 1F 2|22|AF 1|·|AF 2|=(4a )2+(2a )2-(4a )22×4a ×2a =14.又0<∠F 1AF <π,∴sin ∠F 1AF 2=154,∴S △AF 1F 2=12|AF 1|·|AF 2|·sin ∠F 1AF 2=12×4a ×2a ×154=15a 2.(2)由已知得双曲线方程为y 24-x 23=1,设双曲线的另一个焦点为F ′,则|PF |=|PF ′|+4,△PAF 的周长为|PF |+|P A |+|AF |=|PF ′|+4+|P A |+3,当F ′,P ,A 三点共线时,|PF ′|+|PA |有最小值,为|AF ′|=3,故△P AF 的周长的最小值为10.答案(1)B (2)B考点二双曲线的标准方程【例2】(1)(2017·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y23=1有公共焦点,则C 的方程为()A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1(2)(2018·天津卷)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为()A.x 24-y 212=1 B.x 212-y 24=1C.x 23-y 29=1 D.x 29-y 23=1解析(1)由题设知b a =52,①又由椭圆x 212+y 23=1与双曲线有公共焦点,易知a 2+b 2=c 2=9,②由①②解得a =2,b =5,则双曲线C 的方程为x 24-y 25=1.(2)由d 1+d 2=6,得双曲线的右焦点到渐近线的距离为3,所以b =3.因为双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,所以c a =2,所以a 2+b 2a 2=4,所以a 2+9a2=4,解得a 2=3,所以双曲线的方程为x 23-y 29=1.答案(1)B (2)C规律方法 1.利用待定系数法求双曲线标准方程的关键是:设出双曲线方程的标准形式,根据已知条件,列出关于参数a ,b ,c 的方程并求出a ,b ,c 的值.2.与双曲线x 2a 2-y 2b 2=1有相同渐近线时可设所求双曲线方程为x 2a 2-y 2b2=λ(λ≠0).【训练2】(1)(2018·海南二模)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成一个等边三角形,则双曲线C 的标准方程是()A.x 212-y 2=1 B.x 29-y 23=1C.x 2-y 23=1D.x 223-y 232=1(2)已知双曲线的渐近线方程为2x ±3y =0,且双曲线经过点P (6,2),则双曲线的方程为________________.解析(1)由双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)过点(2,3),且实轴的两个端点与虚轴的一个端点组成-3b 2=1,=3,=1,=3,∴双曲线C 的标准方程是x 2-y 23=1.(2)由双曲线的渐近线方程为y =±23x ,可设双曲线方程为x 29-y 24=λ(λ≠0).因为双曲线过点P (6,2),所以69-44=λ,λ=-13,故所求双曲线方程为y 243-x 23=1.答案(1)C (2)y243-x 23=1考点三双曲线的性质多维探究角度1求双曲线的渐近线【例3-1】(一题多解)(2018·全国Ⅱ卷)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为()A.y =±2x B.y =±3x C.y =±22x D.y =±32x 解析法一由题意知,e =c a =3,所以c =3a ,所以b =c 2-a 2=2a ,即ba=2,所以该双曲线的渐近线方程为y =±ba x =±2x .法二由e =ca ==3,得b a =2,所以该双曲线的渐近线方程为y =±bax =±2x .答案A角度2求双曲线的离心率【例3-2】(1)(2018·全国Ⅲ卷)设F 1,F 2是双曲线C :x 2a 2-y 2b21(a >0,b >0)的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P .若|PF 1|=6|OP |,则C 的离心率为()A.5B.2C.3D.2(2)(2019·泰安联考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0),圆C 2:x 2+y 2-2ax +34a 2=0,若双曲线C 1的一条渐近线与圆C 2有两个不同的交点,则双曲线C 1的离心率的取值范围是()C.(1,2)D.(2,+∞)解析(1)不妨设一条渐近线的方程为y =b a x ,则F 2到y =ba x 的距离d =|bc |a 2+b2=b ,在Rt △F 2PO 中,|F 2O |=c ,所以|PO |=a ,所以|PF 1|=6a ,又|F 1O |=c ,所以在△F 1PO 与Rt △F 2PO 中,根据余弦定理得cos ∠POF 1=a 2+c 2-(6a )22ac=-cos ∠POF 2=-a c ,则3a 2+c 2-(6a )2=0,得3a 2=c 2,所以e =ca = 3.(2)由双曲线方程可得其渐近线方程为y =±b a x ,即bx ±ay =0,圆C 2:x 2+y 2-2ax +34a 2=0可化为(x -a )2+y 2=14a 2,圆心C 2的坐标为(a ,0),半径r =12a ,由双曲线C 1的一条渐近线与圆C 2有两个不同的交点,得|ab |a 2+b 2<12a ,即c >2b ,即c 2>4b 2,又知b 2=c 2-a 2,所以c 2>4(c 2-a 2),即c 2<43a 2,所以e =c a <233,又知e >1,所以双曲线C 1答案(1)C (2)A角度3与双曲线有关的范围(最值)问题【例3-3】已知M (x 0,y 0)是双曲线C :x 22-y 2=1上的一点,F 1,F 2是C 的两个焦点,若MF 1→·MF 2→<0,则y 0的取值范围是()-33,-36,-223,-233,解析因为F 1(-3,0),F 2(3,0),x 202-y 20=1,所以MF 1→·MF 2→=(-3-x 0,-y 0)·(3-x 0,-y 0)=x 20+y 20-3<0,即3y 20-1<0,解得-33<y 0<33.答案A规律方法 1.求双曲线离心率或其取值范围的方法(1)求a ,b ,c 的值,由c 2a 2=a 2+b 2a2=1+b 2a 2直接求e .(2)列出含有a ,b ,c 的齐次方程(或不等式),借助于b 2=c 2-a 2消去b ,然后转化成关于e 的方程(或不等式)求解.2.与双曲线有关的取值范围问题的解题思路(1)若条件中存在不等关系,则借助此关系直接变换转化求解.(2)若条件中没有不等关系,要善于发现隐含的不等关系或借助曲线中不等关系来解决.【训练3】(1)在平面直角坐标系xOy 中,双曲线C :y 2a 2-x 2b2=1(a >0,b >0)的一条渐近线与圆(x -2)2+(y -1)2=1相切,则C 的离心率为()A.43B.54C.169D.2516(2)(2019·安阳二模)已知焦点在x 轴上的双曲线x 28-m +y 24-m1,它的焦点到渐近线的距离的取值范围是________.解析(1)双曲线C 的渐近线方程为by ±ax =0,结合图形易知与圆相切的只可能是by -ax =0,又圆心坐标为(2,1),则|b -2a |a 2+b 2=1,得3a =4b ,所以9a 2=16b 2=16(c 2-a 2),则e 2=2516,又e >1,故e =54.(2)对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),它的一个焦点(c ,0)到渐近线bx -ay =0的距离为|bc |b 2+a 2=b .本题中,双曲线x 28-m +y 24-m =1即x 28-m -y 2m -4=1,其焦点在x -m >0,-4>0,解得4<m <8,则焦点到渐近线的距离d =m -4∈(0,2).答案(1)B (2)(0,2)[思维升华]已知双曲线的标准方程求双曲线的渐近线方程时,只要令双曲线的标准方程中“1”为“0”就得到两渐近线方程,即方程x 2a 2-y 2b 2=0就是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程.[易错防范]1.双曲线方程中c 2=a 2+b 2,说明双曲线方程中c 最大,解决双曲线问题时不要忽视了这个结论,不要与椭圆中的知识相混淆.2.求双曲线离心率及其范围时,不要忽略了双曲线的离心率的取值范围是(1,+∞)这个前提条件,否则很容易产生增解或扩大所求离心率的取值范围致错.3.双曲线x 2a 2-y 2b 2=1(a >0,b >0)的渐近线方程是y =±b a x ,y 2a 2-x 2b 2=1(a >0,b >0)的渐近线方程是y =±ab x .4.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.基础巩固题组(建议用时:40分钟)一、选择题1.(2019·郑州模拟)设双曲线x 2a 2-y 2b2=1(a >0,b >0)的虚轴长为2,焦距为23,则双曲线的渐近线方程为()A.y =±12xB.y =±22x C.y =±2xD.y =±2x解析因为2b =2,所以b =1,因为2c =23,所以c =3,所以a =c 2-b 2=2,所以双曲线的渐近线方程为y =±b a x =±22x .答案B2.(2019·重庆九校联考)双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的一个焦点为F ,过点F 作双曲线C 的一条渐近线的垂线,垂足为A ,且交y 轴于B ,若A 为BF 的中点,则双曲线的离心率为()A.2B.3C.2D.62解析由题易知双曲线C 的一条渐近线与x 轴的夹角为π4,故双曲线C 的离心率e 1= 2.答案A3.(一题多解)(2018·全国Ⅲ卷)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的离心率为2,则点(4,0)到C 的渐近线的距离为()A.2B.2C.322D.22解析法一由离心率e =ca=2,得c =2a ,又b 2=c 2-a 2,得b =a ,所以双曲线C 的渐近线方程为y =±x .由点到直线的距离公式,得点(4,0)到C 的渐近线的距离为41+1=2 2.法二离心率e =2的双曲线是等轴双曲线,其渐近线方程是y =±x ,∴点(4,0)到C 的渐近线的距离为41+1=2 2.答案D4.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为32,过右焦点F 作渐近线的垂线,垂足为M .若△FOM 的面积为5,其中O 为坐标原点,则双曲线的方程为()A.x 2-4y 251B.x 22-2y 25=1C.x 24-y 25=1 D.x 216-y 220=1解析由题意可知e =c a =32,可得b a =52,取一条渐近线为y =bax ,可得F 到渐近线y =ba x 的距离d =bc a 2+b2=b ,在Rt △FOM 中,由勾股定理可得|OM |=|OF |2-|MF |2=c 2-b 2=a ,由题意可得12ab =5,=52,=5,=2,=5,所以双曲线的方程为x 24-y 25=1.答案C5.(2019·呼和浩特质检)已知F 2,F 1是双曲线y 2a 2-x 2b2=1(a >0,b >0)的上、下两个焦点,过F 1的直线与双曲线的上下两支分别交于点B ,A ,若△ABF 2为等边三角形,则双曲线的渐近线方程为()A.y =±2x B.y =±22x C.y =±6xD.y =±66x 解析根据双曲线的定义,可得|BF 1|-|BF 2|=2a ,∵△ABF 2为等边三角形,∴|BF 2|=|AB |,∴|BF 1|-|AB |=|AF 1|=2a ,又∵|AF 2|-|AF 1|=2a ,∴|AF 2|=|AF 1|+2a =4a ,∵在△AF 1F 2中,|AF 1|=2a ,|AF 2|=F 1AF 2=120°,∴|F 1F 2|2=|AF 1|2+|AF 2|2-2|AF 1|·|AF 2|cos 120°,即4c 2=4a 2+16a 2-2×2a ×4a 28a 2,亦即c 2=7a 2,则b =c 2-a 2=6a 2=6a ,由此可得双曲线C 的渐近线方程为y =±66x .答案D 二、填空题6.(2018·沈阳模拟)直线l :y =2x +10过双曲线x 2a 2-y 2b2=1(a >0,b >0)一个焦点且与其一条渐近线平行,则双曲线方程为________________.解析由题意得一个焦点为F (-5,0),c =5,ba =2,又a 2+b 2=c 2,所以a 2=5,b 2=20,所以双曲线方程为x 25-y 220=1.答案x 25-y 220=17.设双曲线x 29-y216=1的右顶点为A ,右焦点为F .过点F 且平行于双曲线的一条渐近线的直线与双曲线交于点B ,则△AFB 的面积为________.解析a 2=9,b 2=16,故c =5.∴A (3,0),F (5,0),不妨设直线BF 的方程为y =43(x -5),代入双曲线方程解得∴S △AFB =12|AF |·|y B |=12·2·3215=3215.答案32158.已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,O 为坐标原点.P 是双曲线在第一象限上的点,直线PO ,PF 2分别交双曲线C 左、右支于M ,N .若|PF 1|=2|PF 2|,且∠MF 2N =60°,则双曲线C 的离心率为________.解析由题意,|PF 1|=2|PF 2|,由双曲线的定义可得,|PF 1|-|PF 2|=2a ,可得|PF 1|=4a ,|PF 2|=2a ,又|F 1O |=|F 2O |,|PO |=|MO |,得四边形PF 1MF 2为平行四边形,又∠MF 2N =60°,可得∠F 1PF 2=60°,在△PF 1F 2中,由余弦定理可得,4c 2=16a 2+4a 2-2·4a ·2a ·cos 60°,即4c 2=20a 2-8a 2,c 2=3a 2,可得c =3a ,所以e =c a = 3.答案3三、解答题9.(2019·安徽江南十校联考)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点P (4,-10).(1)求双曲线的方程;(2)(一题多解)若点M (3,m )在双曲线上,求证:MF 1→·MF 2→=0.(1)解∵e =2,∴可设双曲线的方程为x 2-y 2=λ(λ≠0).∵双曲线过点(4,-10),∴16-10=λ,即λ=6.∴双曲线的方程为x 2-y 2=6,即x 26-y 26=1.(2)证明法一由(1)可知,a =b =6,∴c =23,∴F 1(-23,0),F 2(23,0),∴k MF 1=m 3+23,k MF 2=m 3-23,k MF 1·k MF 2=m 29-12=-m 23.∵点M (3,m )在双曲线上,∴9-m 2=6,m 2=3,故k MF 1·k MF 2=-1,∴MF 1⊥MF 2.∴MF 1→·MF 2→=0.法二由(1)可知,a =b =6,∴c =23,∴F 1(-23,0),F 2(23,0),MF 1→=(-23-3,-m ),MF 2→=(23-3,-m ),∴MF 1→·MF 2→=(3+23)×(3-23)+m 2=-3+m 2,∵点M (3,m )在双曲线上,∴9-m 2=6,即m 2-3=0,∴MF 1→·MF 2→=0.10.设A ,B 分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点,双曲线的实轴长为43,焦点到渐近线的距离为 3.(1)求双曲线的方程;(2)已知直线y =33x -2与双曲线的右支交于M ,N 两点,且在双曲线的右支上存在点D ,使OM →+ON →=tOD →,求t 的值及点D 的坐标.解(1)由题意知a =23,∵一条渐近线为y =b ax ,即bx -ay =0.∴由焦点到渐近线的距离为3,得|bc |b 2+a 2= 3.又∵c 2=a 2+b 2,∴b 2=3,∴双曲线的方程为x 212-y 23=1.(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0),其中x 0≥23.又OM →+ON →=tOD →,即(x 1,y 1)+(x 2,y 2)=t (x 0,y 0),则x 1+x 2=tx 0,y 1+y 2=ty 0.将直线方程y =33x -2代入双曲线方程x 212-y 23=1得x 2-163x +84=0,其中Δ=(163)2-4×84>0,则x 1+x 2=163,y 1+y 2=33(x 1+x 2)-4=12.=433,-y 203=1.0=43,0=3.∴t =4,点D 的坐标为(43,3).能力提升题组(建议用时:20分钟)11.(2019·河南适应测试)已知F 1,F 2分别是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,P 是双曲线上一点,若|PF 1|+|PF 2|=6a ,且△PF 1F 2的最小内角为π6,则双曲线的渐近线方程为()A.y =±2xB.y =±12xC.y =±22xD.y =±2x解析不妨设P 为双曲线右支上一点,则|PF 1|>|PF 2|,由双曲线的定义得|PF 1|-|PF 2|=2a ,又|PF 1|+|PF 2|=6a ,所以|PF 1|=4a ,|PF 2|=2a .c >2a ,a >2a ,所以∠PF 1F 2为最小内角,故∠PF 1F 2=π6.由余弦定理,可得(4a )2+(2c )2-(2a )22·4a ·2c =32,即(3a -c )2=0,所以c =3a ,则b =2a ,所以双曲线的渐近线方程为y =±2x .答案D12.(2019·广东六校联考)已知点F 为双曲线E :x 2a 2-y 2b 2=1(a >0,b >0)的右焦点,直线y =kx (k >0)与E 交于不同象限内的M ,N 两点,若MF ⊥NF ,设∠MNF =β,且β∈π12,π6,则该双曲线的离心率的取值范围是()A.[2,2+6]B.[2,3+1]C.[2,2+6]D.[2,3+1]解析如图,设左焦点为F ′,连接MF ′,NF ′,令|MF |=r 1,|MF ′|=r 2,则|NF |=|MF ′|=r 2,由双曲线定义可知r 2-r 1=2a ①,∵点M 与点N 关于原点对称,且MF ⊥NF ,∴|OM |=|ON |=|OF |=c ,∴r 21+r 22=4c 2②,由①②得r 1r 2=2(c 2-a 2),又知S △MNF =2S △MOF ,∴12r 1r 2=2·12c 2·sin 2β,∴c 2-a 2=c 2·sin 2β,∴e 2=11-sin 2β,又∵β∈π12,π6,∴sin 2β∈12,32,∴e 2=11-sin 2β∈[2,(3+1)2].又e >1,∴e ∈[2,3+1].答案D13.(2018·北京卷)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.解析设椭圆的右焦点为F (c ,0),双曲线N 的渐近线与椭圆M 在第一象限内的交点为A ,由题意可知A 在椭圆M 上得,c 24a 2+3c 24b 2=1,∴b 2c 2+3a 2c 2=4a 2b 2,∵b 2=a 2-c 2,∴(a 2-c 2)c 2+3a 2c 2=4a 2(a 2-c 2),∴4a 4-8a 2c 2+c 4=0,∴e 4椭-8e 2椭+4=0,∴e 2椭∴e 椭=3+1(舍去)或e 椭=3-1,∴椭圆M 的离心率为3-1.∵双曲线的渐近线过点∴渐近线方程为y =3x ,∴n m =3,故双曲线的离心率e 双=m 2+n 2m 2=2.答案3-1214.已知椭圆C 1的方程为x 24+y 2=1,双曲线C 2的左、右焦点分别是C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点.(1)求双曲线C 2的方程;(2)若直线l :y =kx +2与双曲线C 2恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k的取值范围.解(1)设双曲线C 2的方程为x 2a 2-y 2b2=1(a >0,b >0),则a 2=3,c 2=4,再由a 2+b 2=c 2,得b 2=1.故C 2的方程为x 23-y 2=1.(2)将y =kx +2代入x 23-y 2=1,得(1-3k 2)x 2-62kx -9=0.由直线l 与双曲线C 2交于不同的两点,得-3k 2≠0,=(-62k )2+36(1-3k 2)=36(1-k 2)>0,∴k 2≠13且k 2<1.①设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=62k 1-3k 2,x 1x 2=-91-3k 2.∴x 1x 2+y 1y 2=x 1x 2+(kx 1+2)(kx 2+2)=(k 2+1)x 1x 2+2k (x 1+x 2)+2=3k 2+73k 2-1.又∵OA →·OB →>2,得x 1x 2+y 1y 2>2,∴3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.②由①②得13<k 2<1,1故k。
大一高等数学涵盖的知识点在大学的学习生涯中,高等数学作为一门重要的基础课程,对于理工科学生来说具有非常重要的地位。
它不仅是后续学习更深入数学课程的基础,同时也是培养学生逻辑思维和解决问题能力的重要途径。
那么,大一高等数学究竟涵盖了哪些知识点呢?本文将为你进行详细介绍。
1. 函数与极限1.1 实数与复数1.2 函数的概念与性质1.3 极限的概念与性质1.4 极限的运算法则1.5 无穷小与无穷大1.6 函数的连续性与间断点2. 导数与微分2.1 导数的概念与性质2.2 基本导数公式与求导法则2.3 高阶导数与隐函数求导2.4 微分的概念与近似计算2.5 幂指对数函数与常用初等函数的导数3. 积分与不定积分3.1 积分的概念与性质3.2 定积分与不定积分的关系3.3 基本积分公式与换元法3.4 分部积分与定积分的计算3.5 曲线的长度与曲线下的面积3.6 牛顿-莱布尼茨公式与定积分的应用4. 无穷级数与幂级数4.1 数项级数的概念与性质4.2 收敛级数与发散级数4.3 正项级数的比较判别法4.4 幂级数的概念与性质4.5 幂级数的收敛性与收敛半径 4.6 幂级数的计算与应用5. 二元函数与多元函数5.1 二元函数的概念与性质5.2 偏导数与全微分5.3 多元函数的极值与条件极值 5.4 二重积分与三重积分的概念 5.5 二重积分与三重积分的计算 5.6 二重积分与三重积分的应用6. 偏导数与多元函数的微分学6.1 偏导数的概念与性质6.2 多元函数的全微分与导数6.3 隐函数与参数方程的偏导数 6.4 多元复合函数与链式法则6.5 杂乱变量求导与全微分的应用6.6 多元函数的极值与条件极值7. 重积分与曲线积分7.1 三重积分的概念与性质7.2 三重积分的计算与柱坐标球坐标化 7.3 曲面积分与曲面方程7.4 曲面积分的计算与应用7.5 曲线积分的概念与计算7.6 曲线积分的应用与闭合路径8. 空间直角坐标系与向量8.1 空间直角坐标系的概念与性质8.2 空间向量的概念与运算8.3 空间向量与平面的位置关系8.4 空间点、直线与平面的投影8.5 空间点线面的平行与垂直关系8.6 空间点的中点、向量的夹角9. 三角函数与参数方程9.1 三角函数的定义、性质与图像9.2 反三角函数的定义与性质9.3 三角函数与指数函数的关系9.4 参数方程与极坐标方程9.5 曲线的切线与法线方程9.6 极限与导数的几何应用总结起来,大一高等数学的知识点非常丰富多样,涉及到函数与极限、导数与微分、积分与不定积分、无穷级数与幂级数、二元函数与多元函数、偏导数与多元函数的微分学、重积分与曲线积分、空间直角坐标系与向量以及三角函数与参数方程等内容。