电动机保护继电器的选择与整定计算
- 格式:docx
- 大小:18.10 KB
- 文档页数:3
选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。
热元件整定值等于电动机额定电流,整定20A答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。
I=P/(√3*U*cosφ*η)=10/(1.732*0.38*0.85*0.95)≈20A、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。
解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW)电流此主题相关图片如下:答:电动机电流29安培。
2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。
解:已知U=380V,P=10KW,cosφ=0.85,η=0.95电流此主题相关图片如下:选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。
热元件整定值等于电动机额定电流,整定20A答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。
3、一台三相交流异步电动机,其型号规格为Y112M-4,4KW;额定电压380V、△接法;cosφ=0.8;η=0.85.计算该电动机的额定电流和保护用的熔体规格和热继电器的动作电流整定值是多少?解:电动机的额定电流为此主题相关图片如下:保护用的熔体规格为Ir=(1.5~2.5)I=(1.5~2.5)×8.9A=13.4~22.3A热继电器的电流整定值IZ=1.0×I=1.0×8.9=8.9A答:该电动机的额定电流为8.9A,保护用的熔体规格可选20A,热继电器的保护整定值应调在8.9A4、一台三相异步电动机额定电压380V;额定电流28A;cosφ=0.85;η=0.9.计算电动机的功率是多少?交流接触器应选多大规格?保护用熔断器的熔体应选多大?解:电动机功率为P=3UeIe cosφη=3×0.38×28×0.85×0.9≈14KW保护用的熔体规格为Ir=(1.5~2.5)Ie=(1.5~2.5)×28=42~70A交流接触器的电流规格为Icj=(1.3~2)Ie=(1.3~2)×28=36.4~56A答:电动机的功率14KW;交流接触器可选CJ20型40A;保护用的熔体可选60A。
6KV厂用电动机保护定值的整定计算厂用电动机保护定值的整定计算是确定电动机保护装置动作的阈值,以保护电动机免受潜在的危害。
定值的设置应根据电动机的额定电流、额定功率、过载能力、运行条件和保护设备的特性来确定。
本文将详细介绍如何计算6KV厂用电动机保护定值的整定。
首先,需要了解一些基本概念和参数。
一台电动机的三相电流不应超过其额定电流的一定倍数,通常为 1.15倍。
当电动机过载或发生故障时,电流会超过额定电流。
此时,电动机保护装置应及时动作,切断电流,以避免损坏电动机。
电动机保护装置通常使用热继电器或电子继电器来实现过载保护。
热继电器的额定电流范围通常为电动机额定电流的0.7至1倍,而电子继电器可以根据具体情况进行调整。
整定电动机保护定值的计算需要以下几个步骤:1.确定额定电流和额定功率:额定电流是电动机在额定工作条件下的电流值,通常以安培(A)为单位。
额定功率是电动机在额定工作条件下的功率值,通常以千瓦(kW)为单位。
2.确定过载能力:过载能力是指电动机短时间内可以承受的额外负荷。
正常情况下,电动机应能承受额定功率的1.15倍的负载。
3.确定运行条件:包括环境温度、冷却方式、额定电压、起动方式等。
环境温度直接影响电动机的散热能力,需要根据具体情况进行调整。
4.确定保护设备特性:包括热继电器或电子继电器的额定电流范围和动作时间特性。
根据保护设备的规格书或技术资料,了解其额定电流范围和动作时间曲线。
5.根据以上参数,计算电动机的保护定值。
以热继电器保护为例,定值计算公式如下:定值=额定电流×过载能力/热继电器额定电流上限可以采用逐步试算的方法进行计算:1.假设电动机的额定电流为100A,过载能力为1.15倍,热继电器的额定电流范围为70A至100A。
2.计算定值的上限:定值上限=100A×1.15/100A=1.153.选择一个保护定值,例如14.确定热继电器的动作时间特性曲线,根据电动机的起动方式、负载类型和运行条件选择合适的曲线。
计算电动机电流热继电器及整定值1、有一台三相异步电动机额定电压为380伏,容量为14千瓦,功率因数为0.85,效率为0.95,计算电动机电流。
解:已知U=380(V),cosφ=0.85,η=0.95,P=14(KW)电流此主题相关图片如下:答:电动机电流29安培。
2、有一台三相异步电动机额定电压为380伏,容量为10千瓦,功率因数为0.85,效率为0.95,选择交流接触器、热继电器及整定值。
解:已知U=380V,P=10KW,cosφ=0.85,η=0.95电流此主题相关图片如下:选择交流接触器KM=Ie×(1.3~2)=26~40(A),选CJ10-40的接触器选择热继电器FR=Ie×(1.1~1.5)=22~25(A),选JR16-20/30热元件22A的热继电器。
热元件整定值等于电动机额定电流,整定20A答:电动机电流为20A,选40A的交流接触器,选额定电流30A热元件22A的热继电器,整定值20A。
3、一台三相交流异步电动机,其型号规格为Y112M-4,4KW;额定电压380V、△接法;cosφ=0. 8;η=0.85.计算该电动机的额定电流和保护用的熔体规格和热继电器的动作电流整定值是多少?解:电动机的额定电流为此主题相关图片如下:保护用的熔体规格为Ir=(1.5~2.5)I=(1.5~2.5)×8.9A=13.4~22.3A热继电器的电流整定值IZ=1.0×I=1.0×8.9=8.9A答:该电动机的额定电流为8.9A,保护用的熔体规格可选20A,热继电器的保护整定值应调在8.9A4、一台三相异步电动机额定电压380V;额定电流28A;cosφ=0.85;η=0.9.计算电动机的功率是多少?交流接触器应选多大规格?保护用熔断器的熔体应选多大?解:电动机功率为P=3UeIe cosφη=3×0.38×28×0.85×0.9≈14KW保护用的熔体规格为Ir=(1.5~2.5)Ie=(1.5~2.5)×28=42~70A交流接触器的电流规格为Icj=(1.3~2)Ie=(1.3~2)×28=36.4~56A答:电动机的功率14KW;交流接触器可选CJ20型40A;保护用的熔体可选60A。
电动机整定计算及保护设置电动机整定计算及保护设置是指在电动机运行过程中,根据其负载情况和运行环境,对电动机的参数进行合理设置,以确保电动机的安全运行和正常工作。
本文将以三相异步电动机为例,介绍电动机整定计算及保护设置的主要内容。
一、电动机整定计算1.额定电流(Ir)的计算额定电流是指电动机在额定工作状态下的电流值。
根据电动机的额定功率(P)、额定电压(U)和功率因数(cosφ),可以通过公式计算得到额定电流:Ir = P / (√3 × U × cosφ)。
2.起动过电流(Im)的计算起动过电流是指电动机在空载状态下启动时的电流峰值。
一般来说,起动过电流的峰值约为电动机额定电流的5-7倍。
具体的计算公式根据电动机的型号和特性而定。
3.过载保护电流(Ie)的计算过载保护电流是指电动机在长时间过负荷运行时,达到过载保护装置动作的电流值。
一般来说,过载保护电流的设定值应该略大于电动机额定电流。
具体的计算公式根据电动机的特性而定。
4. 短路保护电流(Isc)的计算短路保护电流是指电动机在出现短路故障时,电流达到保护装置动作的阈值。
一般来说,短路保护电流的设定值应该略小于电动机额定电流。
具体的计算公式根据电动机的特性而定。
5.温度保护设备的整定温度保护设备一般采用热继电器或PT100温度传感器来监测电动机的温度。
根据电动机的额定功率和运行环境,可以确定合适的温度保护设备整定温度值。
一般来说,温度保护设备的整定温度应该略高于电动机的额定绝缘温度。
二、电动机保护设置1.过负荷保护过负荷保护是电动机的关键保护措施之一、可以通过热继电器、过负荷继电器或电流保护装置来实现。
过负荷保护装置的动作电流应该略大于电动机的额定电流。
2.短路保护短路保护是电动机的重要保护措施之一、可以通过熔断器、短路继电器或短路保护装置来实现。
短路保护装置的额定电流应该略小于电动机的短路保护电流。
3.过温保护过温保护主要通过热继电器、PT100温度传感器或热敏电阻来实现。
热继电器选用计算(一)一般方法保护长期工作或间断长期工作的电动机时热继电器的选用计算方法是:(1)一般情况下,按电动机的额定电流选取,使热继电器的整定值为(0.95—1.05)I N,I N为电动机的额定工作电流),或选取整定范围的中值为电动机的额定工作电流。
(2)保护Y—Δ起动电动机,当热继电器的3个热元件分别串接在Δ联结的各相绕组内,热继电器的整定电流应按电动机的额定电流整定。
(3)保护并联电容器的补偿型电动机,只有有功电流流经热继电器,热继电器的整定电流可按下式近似进行整定:式中 It——热继电器整定电流.A;I N——电动机额定电流,A;cosφ——电动机功率因数。
(二)作图法用于保护反复短时工作电动机的热继电器,每小时允许的操作次数,与电动机的起动过渡过程、通电持续率及负载电流等因素有关。
复合加热的热继电器,在反复短时工作下每小时允许的操作次数,可按图1所示的速查曲线选用。
间接加热的热继电器每小时允许的操作次数,比按图1速查曲线选用的次数稍高。
当电动机每小时的操作次数较高时,可选用带速饱和电流互感器的热继电器。
图3—1及其应用方法是根据下列公式绘制和确定的。
反复短时工作允许操作频率为式中 f。
——允许操作频率,次/h;Kc——计算系数,Kc=0.8—0.9;ts——电动机起动时间,s:Ks——电动机起动电流倍数(即其起动电流与其额定电流之比);K L——电动机负载电流倍数(即其负载电流与其额定电流之比):K1——热继电器额定整定电流与电动机额定电流之比:TD——通电持续率。
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待您的好评与关注!)。
继电保护整定计算公式1、负荷计算(移变选择)S k de g P N(4-1)S caCOS wm式中S ea -- 一组用电设备的计算负荷, kVA ;ZP N--具有相同需用系数K de的一组用电设备额定功率之和, kW。
综采工作面用电设备的需用系数K de可按下式计算k de 0.4 0.6 P max(4-2)P N式中P max--最大一台电动机额定功率,kW ;COS wm-- —组用电设备的加权平均功率因数2、高压电缆选择:(1 )向一台移动变电站供电时,取变电站一次侧额定电流,即..S N 103(4-13)I ca I 1NV3U1N式中S N—移动变电站额定容量,kV ?A ;U 1N—移动变电站一次侧额定电压,V ;I lN —移动变电站一次侧额定电流,(2)向两台移动变电站供电时,最大长时负荷电流l ea为两台移动变电站一次侧额定电流之和,即I I I(S N1_S N2)_103(4-14)I ca I1N1 I1N2 3 U1N(3 )向3台及以上移动变电站供电时,最大长时负荷电流l ca为式中I ca —长时最大工作电流,A ;I N —电动机的额定电流,A ; U N —电动机的额定电压,V ; P N —电动机的额定功率, kW ; cos N —电动机功率因数;caP N 103-3U NK sc COS wm wm(4-15 )式中I ca —最大长时负荷电流,A ;P N —由移动变电站供电的各用电设备额定容量总和, kW ;U N —移动变电站一次侧额定电压, V ; K sc —变压器的变比;COS wm 、n wm —加权平均功率因数和加权平均效率。
(4)对向单台或两台高压电动机供电的电缆,一般取电动机的额定电流之和;对向一 个采区供电的电缆, 应取采区最大电流; 而对并列运行的电缆线路, 则应按一路故障情况加 以考虑。
3、低压电缆主芯线截面的选择 1 )按长时最大工作电流选择电缆主截面 (1 )流过电缆的实际工作电流计算① 支线。
说明:1、绿色部分为帮助文件中增加的说明(还不完善需补充),斜体部分为编程说明,阴影部分为填入定值单的计算结果,黑颜色字体部分定值计算及整定书中显示, 阴影部分、手动输入部分、灵敏度、可靠系数、整定原则代号存入整定计算数据库2、上下文用词不太统一,需再修改3、继电器返回系数应在二次整定公式中出现,为使一、二次定值转换公式统一,将其调整在一次公式内4、接线系数统一放在一、二次定值转换公式内一、电机保护1、差动保护当电机容量大于2000KW时,对于中性点侧有引出线的电动机,应采用差动保护1.1、整定原则1:考虑二次回路断线时不致误动第一步:输入CT参数CT一次额定电流,CT二次额定电流,CT接线方式(星型,三角型)第二步:保护计算Idz=Kk*IeIdz.j=Idz*Kjx/n LH (1)Idz.p=Idz.j/In 或Idz.p=Idz.j/Ie(2)Kk:可靠系数,BCH-2型继电器去1.3,DL-11型继电器取1.5-2Ie:电动机额定电流(取自OTI设备参数)n LH:CT变比= CT一次额定电流/CT二次额定电流Kjx:二次接线系数,星型接线取1,三角星接线取1.732In:CT二次额定电流Idz:一次动作电流Idz.j:二次动作电流Idz.p:继电器动作电流倍数Idz.j取**Idz.p取**计算实际Kk按照Idz.j或Idz.p(如果有Idz.p,则按照它计算,如果没有则按照Idz.j)反算出Kk,如果Kk大于、等于规定值(1.3或1.5),则通过,如果小于则发出警告(Kk<**,是否调整Idz.j或Idz.p,否则进行下一步计算,是则调整Idz.j或Idz.p)第三步:灵敏度校验按照电动机内部发生两相不短路时,灵敏度大于2校验Klm=0.866* Id.min / IdzId.min:电动机内部三相短路电流最小值第四步:时限整定差动动作时限:范围注:DL-11型继电器躲不过电动机启动时的短时非周期分量电流,故保护要求带0.1 -0.2秒的时限去动作跳闸以下整定计算步骤,如果无特殊说明,按照1.1项步骤进行,二次电流Idz.j、Idz.p 按公式(1)(2)计算。
一、循环水泵(4台)Pe=450KW Ue=6.3KV cos∮=0.8 变比:nl=100/5=20Ie=Pe/√3×Ue×cos∮=450/(1.732×6.3×0.8)=51.55AIqd=8×Ie=8×51.5=412A(是否是循环水泵启动电流)Ie2=51.55/20=2.57A(1)速断保护(过流I段)Idzj=Kk×Iqd/nl=1.2×8Ie/nl=1.2×412/20=24.74A延时Tzd=0s(2) 过流保护(过流II段,该保护在电动机起动过程中被闭锁)Idzj=Kk×Ie/nl=1.4×Ie/nl=1.4×51.55/20=3.61A延时Tzd=0.5s(3) 过负荷Ig= Kk ×Ie2/0.85=1.05×2.57/0.85=3.18A延时Tzd=6s(4)负序电流Idzj=Kk×Ie/nl=0.4×51.55/20=1.03A延时Tzd=0.5s(5) 起动时间tqd=15s, 电机厂家核实(6) 低电压Udzj=0.5Ue=65V延时Tzd=9s二、引风机Pe=900KW Ue=6.3KV cos∮=0.8 nl=150/5=30Ie=Pe/√3×Ue×cos∮=560/(1.732×6.3×0.8)=108.5AIqd=8I=8×108.5=868A(1).速断保护(过流I段)Idzj=Kk×Iqd/nl=1.2×8Ie/nl=1.2×868/30=34.72A延时Tzd=0s(2) 过流保护(过流II段,该保护在电动机起动过程中被闭锁)Idzj=Kk×Ie/nl=1.4×Ie/nl=1.4×108.5/30=5.06A延时Tzd=0.5s(3) 过负荷Ie2=108.5/30=5.06AIg= Kk ×Ie2/0.85=1.05×5.06/0.85=6.25A延时Tzd=6s(4)负序电流Idzj=Kk×Ie/nl=0.4×108.6/30=1.45A延时Tzd=0.5s(5) 起动时间tqd=20s 电机厂家核实(6) 低电压Udzj=0.5Ue=65V延时Tzd=9s高压电动机的几种常规保护一、电动机主要故障1、定子绕组相间短路、单相接地;2、一相绕组的匝间短路;3、电动机的过负荷运行;4、由供电母线电压降低或短路中断引起的电动机低电压运行;5、供电母线三相电压不平衡或一相断线引起电动机三相电流不平衡;6、由于机械故障、负荷过重、电压过低造成转子堵转的故障;二、电动机主要保护类型及实现的功能基于以上电动机运行过程中本身和供电母线、负荷变化等可能引起的电动机故障,电动机(尤其对于3~10K V 等级电机)可装设以下保护,以实现对电机的保护,或可称为电动机的主要保护。
继电保护整定计算一、计算原则通过保护整定计算,以求选择合理的继电保护设备和配置,达到快速、可靠、灵敏,从而有选择性地切除系统中的故障元件.原则如下:1.为了使继电保护装置正确地反映各种故障要求保护装置满足灵敏度要求.2.继电保护装置应保证在一定的保护范围内可靠动作.3.为了能以时间区分动作进程的先后,应有正确的配合级差△t一般取0.5S二、异步电动机的继电保护计算1.反时限过电流保护动作电流,按最大负荷电流计算=Kk·Kfx·Ifhmax/Kf·hlId22.反时限过电流保护中的速断动作电流Id2=Kk·Kfx·Kfg·Igd/hl 式中::继电器动作电流Id2Kk:可靠系数取1.2~1.25 (但速断取1.25~1.3)Kfx:接线系数电流互感器为星形接线Kfx=1;为三角形接线Kfx=1.732Ifhmax:最大负荷电流AKf:返回系数为0.8~0.85Hl:电流互感器变比Igd: 启动电流周期分量最大值(A)Kfg:非周期分量影响系数取1.83.灵敏系数校验:Kim=Idmib/hl·Id2式中: Idmib:二相短路电流Kim:灵敏系数﹥1.54.动作时限:笼型电动机在空载启动时启动电流持续约5S,带载启动时约10S~20S绕组式电动机电流持续时间约10S~15S5.启动电流值:单鼠笼电动机5~7倍额定电流双鼠笼电动机达3.5~4.5倍额定电流绕线式电动机达2~3倍额定电流三、定时限过电流保护整定计算:1.电流速断动作电流的整定值为:Id2≥Kk·Kfg·Igd/hl式中: Kk:可靠系数取1.5~1.8Igd: 启动电流周期分量最大值(A)2.电流速断灵敏度为: Kim=Idmib/hl·Id2Kim:灵敏系数﹥23.过负荷动作电流的整定: Id2≥Kk·Kfg·Id/Kf·hl式中:Id:电动机的额定电流Kk:可靠系数动作稳定取1.05;跳间取1.2Kf:返回系数取0.854.过负荷保护动作的时间为10S~20S;大于启动电流的持续时间四、差动保护整定计算1.电动机差动保护动作的电流:Id2=Kk·Id/hl式中: Kk:可靠系数1.25~1.3(如采用DL型取1.5~1.8)Id2:差动继电器动作电流2.确定工作匝数:Wg2f=AWo/Id2式中: Wg2f:计算工作匝数Awo:继电器因有的动作安匝60±4;计算时以60代入取Wg2f的整数使Wg2=Wcd+WphWg2:实际工作匝数Wcd:差动匝数Wph:平衡线圈匝数3.确定继电器平衡线圈位置取B—B′或C—C′抽头4.灵敏系数计算如下:Kim=Idmib/Id2·hlKim:灵敏系数大于2五、低中压保护整定计算1.允许自启动电动机动作电压值Ud2≤(0.6~0.65)·Ue/hl动作时限=0.5SUe:电网额定电压2.不允许自启动电动机动作电压值Ud2≤(0.4~0.5)·Ue/hl动作时限=0.5SUe:电网额定电压六、变压器保护1.速断保护 :Id2=Kk·Idmax/hlKk:可靠系数DL型为1.3~1.4;GL型为1.5~1.6Idmax:最大负荷电流此处一次动作电流必须大于(3~5)Ie;避免涌流误动作灵敏度Ks2≥2= Idmax/Id2·hl2.过流保护Id2=Kk·(1.5~3)·Ie/Kf·hlKk:可靠系数1.2~1.3Ie:变压器的一次电流Kf:返回系数;DL型为0.85;GL型为0.8灵敏度Ks2≥1.25~1.5= Idmax/Id2·hl3.过负荷=(1.2~1.4)·Ie·Kk/Kf·hlKk:可靠系数1.2~1.3Ie:变压器的一次电流Kf:返回系数;DL型为0.85;GL型为0.8灵敏度Ks2≥1.25~1.5 时限为10S~20S (发出信号)七、变压器二次侧中性线上装设零序电流保护Id2=Kk·0.25Ie/Ki 时限0.5S Kk:可靠系数1.2~1.3Ie:变压器的二次侧额定电流不平衡系数为0.25Ki:互感器的变比灵敏度Ks=Idmin/Id2≥1.5 低压干线未端单相短路校验八、线路保护(3-10KV)4.速断Id2=Kk·Idmax/hlKk:可靠系数DL=1.3 GL=1.5Idmax:被保护线路未端或下一段线路首端处分流最大运行方式时,三相短路电流周期分量的有效值当无网络数据时可概略地按下式计算Id=(0.4~0.5)Ie/X*Z·hl20.4~0.5:①线残余电压不低于50~60%来考虑X*Z:按线路额定电流归算①线上的供电系统总阻抗(标准值)Ie:线路额定电流=Kk·Idmax/Kf·hl2.过电流Id2Kk:可靠系数DL=1.4 GL=1.25Kf:返回系数0.85Ie:额定电流Idmax:线路的最大负荷电流、视负荷而定,取(2一3)Ie电流灵敏度﹕速断≥1.5保护安装处发短路时计算过流≥1.5后备保护首端发生短路时计算。
电动机保护继电器的选择与整定计算
1.电动机保护继电器的选择
无论哪一种电动机,对其保护的原理基本上都是以反映电动机内部故障时正序和零序电流急剧升高这一特征来设计的。
反映短路故障的装置一般是电流速断保护和单相接地保护。
电动机保护继电器的选择及其整定正确与否,直接影响到安全运行。
实践表明,由于保护继电器和定值没有根据现场实际情况选择和计算,造成电动机保护装置误动、拒动的情况时有发生。
本文简介电流速断保护的构成及其定值计算,供电工参考。
电动机内部发生金属多相短路时,理论上说电流幅值会趋向于无穷大,电流速断保护就是利用这一特征快速启动继电器,使故障电动机从电网中退出来。
由于电动机起动电流大小悬殊,因此,能够把短路电流和起动电流有效区分开来就成为电流速断保护继电器选择的关键。
现在通常采用DL电磁型电流继电器和GL感应型电流继电器。
使用DL型电流继电器构成速断保护时,当短路电流达到继电器的整定值后,继电器的动作时间与电流大小无关,因而切断故障速度快、灵敏度高,但不容易躲开电动机起动时的电流,往往在电动机过负荷或者起动时造成误动作。
感应型继电器构成速断保护时,动作时间与短路电流大小成反比,因而称为反时限继电器。
这种继电器具有瞬时动作元件作用于跳闸,延时动作元件作用于信号或跳闸,其动作可靠性好,能够较好地躲避起动电流和过负荷电流,并且能够把速断保护和过负荷保
护结合在一块,大大简化了保护接线。
但它也存在两相短路故障时动作时间较慢、调试较复杂、动作特性也不如前者稳定等缺点。
因此,在选择保护继电器时,对于空载起动和不易遭受过负荷的电动机宜采用DL型继电器,对于带载起动或者易遭受过负荷的电动机宜采用GL 型继电器。
2.保护继电器的整定计算
无论采用何种继电器构成电流速断保护,其整定的原则都是要躲开电动机起动时的起动电流和瞬间过负荷。
继电器一次动作电流的保护定值一般按下式计算:
I=KIS
式中:K—可靠系数。
对于DL型取1.4~1.6,对于GL型取1.8~2.0 IS—电动机起动电流,一般取额定电流的5~7倍,
在整定中,可靠系数和起动倍率如果掌握不好,往往容易造成继电器误动作或拒动,一般情况下,可按以下原则掌握。
可靠系数整定主要考虑两个因素。
一是电动机是否容易过负荷,容易过负荷的取大值;反之,则取小值。
二是电动机与继电器电流测量元件的电气距离。
我们知道,电动机发生金属对称性短路时,在电网电压不变的情况下,其电流衰减的幅值和时间取决于短路点与电流测量元件之间的阻抗。
阻抗大时,衰减的幅值和时间就快;反之,就慢。
而阻抗之大小与电动机连接电缆的长度、截面和材料等因素有关。
因此,对于重要的电动机,需要进行短路电流计算以确定可靠系数。
一般情
况下,电动机连接电缆较长时取小值;反之,则取大值。
电动机起动电流倍率选定是整定计算的另一个因素。
电动机在起动瞬间,转子是静止的,反电势尚未建立,形如堵转,相当于电动机短路。
转子转动以后,电动机的反电势随转子的加速而上升,起动电流逐渐接近额定值。
因此,起动电流的大小与电动机起动转矩有关。
一般而言,空载或电动机直径较大时,倍率取小值;反之,则取大值。