初中数学全等三角形精讲
- 格式:doc
- 大小:999.50 KB
- 文档页数:14
全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
初中数学全等三角形综合复习讲义-全面完整版初中数学全等三角形综合复讲义——全面完整版一、基础知识1.全等图形的有关概念1)全等图形的定义:两个图形能够完全重合,就是全等图形。
例如,图13-1和图13-2就是全等图形。
2)全等多边形的定义:两个多边形是全等图形,则称为全等多边形。
例如,图13-3和图13-4中的两对多边形就是全等多边形。
3)全等多边形的对应顶点、对应角、对应边:两个全等的多边形,经过运动而重合,相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角。
4)全等多边形的表示:例如,图13-5中的两个五边形是全等的,记作五边形ABCDE≌五边形A’B’C’D’E’(这里符号“≌”表示全等,读作“全等于”)。
表示图形的全等时,要把对应顶点写在对应的位置。
5)全等多边形的性质:全等多边形的对应边、对应角分别相等。
6)全等多边形的识别:对边形相等、对应角相等的两个多边形全等。
2.全等三角形的识别1)根据定义:若两个三角形的边、角分别对应相等,则这两个三角形全等。
2)根据SSS:如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
相似三角形的识别法中有一个与(SSS)全等识别法相类似,即三条边对应成比例的两个三角形相似,而相似比为1时,就成为全等三角形。
3)根据SAS:如果两个三角形有两边及夹角分别对应相等,那么这两个三角形全等。
相似三角形的识别法中同样有一个是与(SAS)全等识别法相类似,即一角对应相等而夹这个角的两边对应成比例的两个三角形相似,当相似比为1时,即为全等三角形。
4)根据ASA:如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
5)根据AAS:如果两个三角形有两个角及其中一角的对边分别对应相等,那么这两个三角形全等。
3.直角三角形全等的识别1)根据HL:如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个直角三角形全等。
2)SSS、SAS、ASA、AAS对于直角三角形同样适用。
2.8 直角三角形全等的判定学习目标1.探索两个直角三角形全等的条件。
2.掌握两个直角三角形全等的条件(HL )。
知识详解1.直角三角形全等的判定定理(Ⅰ)文字语言:斜边和一条直角边对应相等的两个直角三角形全等。
(角写为“HL ”) (Ⅱ)数学语言:在Rt △ABC 和Rt △A'B'C'''''AB AC AB C A ⎧=⎪⎨=⎪⎩∴Rt △ABC ≌Rt △A'B'C'(HL )说明:证明两个直角三角形全等时,一定要分清用判定定理“HL ”,还是用一般三角形全等的判定定理。
书写证明的格式也要注意区分,不要混淆。
2.定理的运用:“HL ”是直角三角形独有的判定定理,对于一般三角形不成立,“HL ”定理是直角三角形全等判定的补充。
3.角平分线的性质定理(Ⅰ)文字语言:角平分线上的点到这个角的两边的距离相等。
(Ⅱ)数学语言:∵OP 是∠AOB 的平分线PE ⊥OA 于E ,PD ⊥OB 于D∴PD =PE (角平分线性质)(Ⅲ)定理的作用:证明线段相等4.角平分线的判定定理(性质定理的逆命题)(Ⅰ)文字语言:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。
(Ⅱ)数学语言:∵点P 在∠AOB 的内部PD ⊥OA 于DPE ⊥OB 于E∴点P 在∠AOB 的平分线上(角平分线的判定定理)(Ⅲ)定理的作用:证明角相等【典型例题】例1:1.已知:如图,A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE =BF ,AC =BD 求证:CF =DE 。
【答案】证明:因为AC ⊥CE ,BD ⊥DF所以∠ACE =∠BDF =90°在Rt △ACE 和Rt △BDF 中AE =BF (已知)AC =BD (已知)∴Rt △ACE ≌Rt △BDF (HL )∴∠A =∠B∵AE =BF∴AE+EF =BF+EF即AF =BE在△ACF 和△BDE 中AF BE A B AC BD =∠=∠=⎧⎨⎪⎩⎪()()()已证已证已知∴△ACF ≌△BDE (SAS )∴CF =DE【解析】证线段相等,通常利用三角形全等的性质证明,但往往证一次全等不能解决问题,本题利用两次全等实现了最终目的,第一次全等为第二次全等创造条件。
全等三角形及其应用主讲:张光华【知识精讲】1. 全等三角形的定义:能够完全重合的两个三角形叫全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点。
互相重合的边叫对应边,互相重合的角叫对应角。
2. 全等三角形的表示方法:若△ABC和△A′B′C′是全等的三角形,记作“△ABC≌△A′B′C′其中,“≌”读作“全等于”。
记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上。
3. 全等三角形的的性质:全等三角形的对应边相等,对应角相等;4. 寻找对应元素的方法(1)根据对应顶点找如果两个三角形全等,那么,以对应顶点为顶点的角是对应角;以对应顶点为端点的边是对应边。
通常情况下,两个三角形全等时,对应顶点的字母都写在对应的位置上,因此,由全等三角形的记法便可写出对应的元素。
(2)根据已知的对应元素寻找全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边;4、要熟悉全等三角形的基本图形全等三角形的基本图形大致有如下几种:(1)平移型下图的图形属于平移型图形它们可看成是由对应相等的边在同一直线上移动所构成的,故该对应边的相等关系一般可由同一直线上的线段和或差而证得。
(2)、对称型下面的图形属于对称型图形它们的特征是可沿某一直线对折,且这直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点。
(3)、旋转型下面的图形属于旋转型图形它们可看成是以三角形的某一顶点为中心旋转所构成的,故一般有一对相等的角隐含在平行线、对顶角、某些角的和或差中。
5. 判定三角形全等的方法:(1)边角边公理、角边角公理、边边边公理、斜边直角边公理(2)推论:角角边定理6. 注意问题:(1)在判定两个三角形全等时,至少有一边对应相等;(2)不能证明两个三角形全等的是,a: 三个角对应相等,即AAA;b :有两边和其中一角对应相等,即SSA。
全等三角形是研究两个封闭图形之间的基本工具,同时也是移动图形位置的工具。
在平面几何知识应用中,若证明线段相等或角相等,或需要移动图形或移动图形元素的位置,常常需要借助全等三角形的知识。
《全等三角形》_PPT《全等三角形》_PPT全等三角形是初中数学中非常重要的一个概念,它不仅是几何学习的基础,也是解决许多实际问题的有力工具。
在这个 PPT 中,我们将深入探讨全等三角形的定义、性质、判定方法以及应用。
一、全等三角形的定义全等三角形是指能够完全重合的两个三角形。
如果两个三角形的三条边及三个角都对应相等,那么这两个三角形就是全等三角形。
为了更直观地理解全等三角形的定义,我们可以通过实际操作来感受。
比如,用硬纸板剪出两个完全相同的三角形,将它们叠放在一起,可以发现它们能够完全重合。
二、全等三角形的性质1、全等三角形的对应边相等这意味着,如果两个三角形全等,那么它们对应的边长度是相等的。
例如,若△ABC 与△DEF 全等,那么 AB = DE,BC = EF,AC =DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的角大小也是相等的。
比如,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形的形状和大小完全相同,所以它们所占据的空间大小(即面积)也是相等的。
三、全等三角形的判定方法1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
5、 RHS(直角、斜边、边)对于两个直角三角形,如果它们的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
四、全等三角形的应用1、测量在实际生活中,当我们无法直接测量某些长度或角度时,可以通过构造全等三角形来间接测量。
例如,要测量池塘两端 A、B 的距离,可以在池塘外找一个能够直接到达 A 和 B 点的点 C,连接 AC 并延长到 D,使 CD = AC;连接BC 并延长到 E,使 CE = BC,然后测量 DE 的长度,就等于 AB 的长度。
数学中考总复习:全等三角形一知识讲解【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2•探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形2.全等三角形的性质(1)全等三角形对应边相等; (2 )全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等( ASA;(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL). 考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来. 应用三角形全等的判别方法注意以下几点:1.条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2.条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件•解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边 或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:① 遇到等腰三角形, 可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的② 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③ 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④ 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤ 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明•这种作法,适合于证明线段的和、差、 倍、分之类的题目.【典型例题】类型一、全等三角形 1.如图,BD CE 分别是△ ABC 的边AC 和AB 上的高,点 P 在BD 的延长线上,BP=AC . 上,CQ=AB 求证:(1) AP=AQ (2) API AQ 【思路点拨】 本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)T BD CE 分别是△ ABC 的边AC 和AB 上的高,•••/ 1 + Z CAE=90,/ 2+Z CAE=90 .•••/ 仁/2,•••在△ AQC^A PAB 中,“对折”;Q 在CECQ = AB-Zl= Z2AC^BP:.△PAB ••• AP=AQ.(2) •/ AP=AQ / QAC2 P,•••/ PAD+Z P=90°,•••/ PAD+Z QAC=90,即/ PAQ=90• API AQ【总结升华】在确定全等条件时,注意隐含条件的寻找举一反三:【变式】(2015?永州)如图,在四边形ABCD中,Z A=Z BCD=90 , BC=DC延长AD到E点,使DE=AB (1)求证:Z ABC玄EDCABCD 中,T Z BAD= Z BCD=90 °,•90 ° Z B+90 ° Z ADC=360 ° °•Z B+ Z ADC=180 °又 T Z CDE+ Z ADC=180 °•Z ABC= Z CDE ,(2)连接人。
全等三角形讲义知识点一、全等三角形的概念。
1. 定义。
- 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
- 例如,在△ABC和△DEF中,如果△ABC与△DEF能够完全重合,那么A与D、B 与E、C与F是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C与∠F是对应角。
2. 表示方法。
- 全等用符号“≌”表示,读作“全等于”。
- 例如,△ABC≌△DEF,表示△ABC全等于△DEF。
书写时要注意对应顶点写在对应的位置上。
二、全等三角形的性质。
1. 对应边相等。
- 如果△ABC≌△DEF,那么AB = DE,BC = EF,AC = DF。
- 这一性质可以用于求线段的长度。
例如,已知两个全等三角形的一组对应边的长度,就可以根据全等三角形对应边相等的性质求出另一组对应边的长度。
2. 对应角相等。
- 若△ABC≌△DEF,则∠A=∠D,∠B = ∠E,∠C = ∠F。
- 在解决角度问题时,这个性质非常有用。
比如在几何证明中,当证明两个角相等时,如果能证明包含这两个角的三角形全等,就可以得出角相等的结论。
三、全等三角形的判定。
1. SSS(边边边)判定定理。
- 内容:三边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 应用:当已知两个三角形的三条边分别相等时,可以直接判定这两个三角形全等。
在实际解题中,可能需要通过计算或者已知条件推导出三边相等的关系。
2. SAS(边角边)判定定理。
- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 即如果在△ABC和△DEF中,AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。
- 注意这里的角必须是两边的夹角。
在解题时,要准确找出两个三角形中对应的两边及其夹角。
3. ASA(角边角)判定定理。
七年级数学三角形精讲[知识点归纳总结]1. 三角形的三边之间的关系三角形任意两边之和大于第三边,三角形任意两边之差小于第三边。
2. 三角形的内角和三角形三个内角的和等于180°。
3. 三角形全等的条件(1)三边对应相等的两个三角形相等,简写为“SSS”。
(2)两角和它们的夹边对应相等的两个三角形全等,简写成“ASA”。
(3)两角和其中一角的对边对应相等的两个三角形全等,简写成“AAS”。
(4)两边和它们的夹角对应相等的两个三角形全等,简写成“SAS”。
(5)斜边和一条直角边对应相等的两个直角三角形全等,简写成“HL”。
4. 全等三角形的性质全等三角形的对应角相等,对应边相等。
5. 三角形的外角性质三角形的一个外角等于和它不相邻的两个内角的和。
专题总复习(一)全等三角形、轴对称一、复习目标:1、理解全等三角形概念及全等多边形的概念.2、掌握并会运用三角形全等的判定和性质,能应用三角形的全等解决一些实际问题.3、通过复习,能够应用所学知识解决一些实际问题,提高学生对空间构造的思考能力.二、重难点分析:1、全等三角形的性质与判定;2、全等三角形的性质、判定与解决实际生活问题.三、知识点梳理:知识点一:全等三角形的概念——能够完全重合的两个三角形叫全等三角形.知识点二:全等三角形的性质.(1)全等三角形的对应边相等. (2)全等三角形的对应角相等.知识点三:判定两个三角形全等的方法.(1)SSS (2)SAS (3)ASA (4)AAS (5)HL(只对直角三形来说)知识点四:寻找全等三形对应边、对应角的规律.①全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.②全等三角形对应边所对的角是对应角,两个对应边所夹的角是对应角.③有公共边的,公共边一定是对应边.④有公共角的,公共角一定是对应角.⑤有对顶角的,对顶角是对应角.⑥全等三角形中的最大边(角)是对应边(角),最小边(角)是对应边(角).知识点五:找全等三角形的方法.(1)一般来说,要证明相等的两条线段(或两个角),可以从结论出发,看它们分别落在哪两具可能的全等三角形中.(常用的办法)(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等.(3)可以从已知条件和结论综合考虑,看它们能否一同确定哪两个三角形全等.(4)如无法证证明全等时,可考虑作辅助线的方法,构造成全等三角形.知识点六:角平分线的性质及判定.(1)角平分线的性质:角平分线上的点到角两边的距离相等.(2)角平分线的判定:在角的内部到角的两边距离相等的点在角平分线上.(3)三角形三个内角平分线的性质:三角形三条角平分线交于一点,且到三角形三边距离相等.知识点七:证明线段相等的方法.(重点)(1)中点性质(中位线、中线、垂直平分线)(2)证明两个三角形全等,则对应边相等(3)借助中间线段相等.知识点八:证明角相等的方法.(重点)(1)对顶角相等;(2)同角或等角的余角(或补角)相等;(3)两直线平行,内错角相等、同位角相等;(4)角平分线的定义;(5)垂直的定义;(6)全等三角形的对应角相等;(7)三角形的外角等于与它不相邻的两内角和.知识点九:全等三角形中几个重要的结论.(1)全等三角形对应角的平分线相等;(2)全等三角形对应边上的中线相等;(3)全等三角形对应边上的高相等.知识点十:三角形中常见辅助线的作法.(重难点)(1)延长中线构造全等三角形(倍长线段法);(2)引平行线构造全等三角形;(3)作垂直线段(或高);(4)取长补短法(截取法).【典型例题】例1. 已知:如图,△ABC中,AB=AC,D、E、F分别在AB、BC、CA上,且BD=CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明理由。
ADFB E C解:△CEF≌△BDE理由:∵AB=AC,∴∠B=∠C又∵∠DEC=∠B+∠BDE∴∠DEF+∠CEF=∠B+∠BDE∵∠DEF=∠B,∴∠CEF=∠BDE∴===⎧⎨⎪⎩⎪∠∠(已证)(已知)∠∠(已证)BDE CEFBD CEB C∴△CEF≌△BDE(ASA)例2. 已知:AB=CD,DE⊥AC,BF⊥AC,垂足分别为E、F,BF=DE,则AB∥CD,为什么?D CE F解:理由:∵DE ⊥AC ,BF ⊥AC ∴∠DEC =∠BFA =90° 在Rt △DEC 和Rt △BFA 中 C D A B B F D E ==⎧⎨⎩(已知)(已知)∴Rt △DEC ≌Rt △BFA (HL ) ∴∠DCE =∠BAF ∴CD ∥AB例3. 用两个全等的等边△ABC 和△ACD 拼成一个四边形ABCD ,把一个含60°角的三角尺与这个四边形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB 、AC 重合,将三角尺绕点A 按逆时针方向旋转,问:当三角尺的两边分别与四边形的两边BC 、CD 相交于E 、F 时,通过观察或测量BE 、CF 的长度,你能得出什么结论?并证明你的结论。
A DB CFE 1 2解:结论:BE =CF理由:∵△ABC 、△ACD 为等边三角形∴AB =AC ,∠B =∠ACF =60°,∠BAC =60° 又∵∠1+∠EAC =60°,∠2+∠EAC =60° ∴∠1=∠2∴∠∠(已证)(已证)∠∠(已证)12===⎧⎨⎪⎩⎪AB AC B A C F ∴△ABE ≌△ACF (ASA )∴BE =CF例4. 如图,AD 是△ABC 的角平分线,AE 是BC 边上的高,∠B =20°,∠C =40°,求∠DAE 的度数。
A解:∵∠BAC +∠B +∠C =180° 又∵∠B =20°,∠C =40°∴∠BAC =180°-20°-40°=120° ∵AD 平分∠BAC∴∠∠×D A C B A C o o===121212060∵AE ⊥BC ,∴∠AEC =90° 又∵∠C =40°∴∠EAC =90°-40°=50°∴∠DAE =∠DAC -∠EAC =60°-50°=10°例5. 如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 、∠DBA ,CD 过点E ,且AC =3cm ,BD =5cm ,你能利用全等三角形有关知识测出AB 的长吗?DCA BE解:如图所示,在AB 上截取AF =AC ,连结EFD∵AE 是∠CAB 平分线 ∴∠CAE =∠BAE ∵AC =AF ,AE =AE ∴△ACE ≌△AFE ∴∠C =∠EFA∵AC ∥BD ,∴∠C +∠D =180° ∵∠AFE +∠EFB =180° ∴∠D =∠EFB∵BE 平分∠DBA ,∴∠DBE =∠FBE ∵BE =BE ,∴△DBE ≌△FBE ∴BF =BD∴AB =AC +BD∵AC =3cm ,BD =5cm ∴AB =8cm全等三角形的有关证明(提高篇)关键:三角形全等的证明及其运用关键点在于“把相等的边(角)放入正确的三角形中”,去说明“相等的边(角)所在的三角形全等”,利用三角形全等来说明两个角相等(两条边相等)是初中里面一个非常常见而又重要的方法。
要说明两边相等,两角相等,最常用的方法就是说明三角形全等直角三角形的全等问题:直角三角形的研究是整个中学几何图形部分里的重点!直角三角形有关的全等问题中,除了特用的HL 定理之外,在条件的寻找上首先就有了一组直角相等;而多个直角,多个垂直的图形组合在一块时,就很容易利用“同(等)角的余角相等”来得到其他的角相等。
例一:图1,已知D O ⊥BC ,O C =O A ,O B =O D ,问CD =AB 吗?[分析]:此图形可看作绕O 点旋转得到,由垂直得到一组直角,把结合其他两组边,很容易找到他们所在的三角形。
[变形1]:请说明△BCE 是直角三角形。
(利用全等三角形的对应角相等,以及直角三角形的两个锐角互余这两个性质进行代换和转换)解:易得△AOB ≌△COD (此过程较简单,略过不描述)∴ ∠B=∠D (全等三角形的对应角相等) 又 ∠OAB=∠DAE (对顶角相等)而在Rt △AOB 中,∠OAB+∠B=90°(直角三角形的两个锐角互余) ∴ ∠DAE+∠D=90°(等量代换)∴ 在△ADE 中,∠DEA=180° (∠DAE+∠D )=90∴ ∠BEC=90°(补角性质) 故△BCE 是直角三角形C图1[变形2]:把两个含有45°角的直角三角板如图1放置,点D 在BC 上, 连结BE ,AD ,AD 的延长线交BE 于点F .求证:AF ⊥BE .[分析]:此图中要说明AF ⊥BE ,与上题中△BCE 是直角三角形是一样的意思, 只需要说明∠BFD=90°即可[变形3]:两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B C E ,,在同一条直线上,连结CD . (彩图为提示)(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母); (2)证明:CD ⊥BE[变形4]、如图2,在△ABC 中,高AD 与BE 相交于点H ,且AD=BD ,问△BHD ≌△ACD ,为什么?[分析]:此题实际上就是[变形1]的反问,已经存在一组直角(由垂直得到),一组相等的边(已知),再利用“同(等)角的余角相等”来得到第二组角相等![变形5]:如图3, 已知ED ⊥AB ,EF ⊥BC ,BD =EF ,问BM =ME 吗?说明理由。
[变形6]:如图4,AD 是一段斜坡,AB 是水平线,现为了测斜坡上一点D 的竖直高度DB 的长度,欢欢在D 处立上一竹竿CD ,并保证CD ⊥AD ,然后在竿顶C 处垂下一根绳CE ,与斜坡的交点为点E图2ABCEH D图3AC M EFBD图2B图1B使得CE=AD ,此时他测得DE=2米,于是他认定DB 的高度也为2米,你觉得对吗?请说明理由。
例二:如图1,已知,AC ⊥CE ,AC=CE , ∠ABC=∠CDE=90°,问BD=AB+ED 吗?[分析] :(1)凡是题中的垂直往往意味着会有一组90°角,得到一组等量关系;(2)出现3个垂直,往往意味着要运用同(等)角的余角相等,得到另一组等量关系; (3)由全等得到边相等之后,还要继续往下面想,这几组相等的边能否组合在一起:如如图6,除了得到三组对应边相等之外,还可以得到AC=BD 。