激光的理论基础讲解
- 格式:doc
- 大小:26.50 KB
- 文档页数:2
激光入门知识一、激光产生原理1、普通光源的发光--受激吸收和自发辐射普通常见光源的发光(如电灯、火焰、太阳等地发光)是由于物质在受到外来能量(如光能、电能、热能等)作用时,原子中的电子就会吸收外来能量而从低能级跃迁到高能级,即原子被激发。
激发的过程是一个"受激吸收"过程。
处在高能级(E2)的电子寿命很短(一般为10-8~10-9秒),在没有外界作用下会自发地向低能级(E1)跃迁,跃迁时将产生光(电磁波)辐射。
辐射光子能量为hυ=E2-E1这种辐射称为自发辐射。
原子的自发辐射过程完全是一种随机过程,各发光原子的发光过程各自独立,互不关联,即所辐射的光在发射方向上是无规则的射向四面八方,另外未位相、偏振状态也各不相同。
由于激发能级有一个宽度,所以发射光的频率也不是单一的,而有一个范围。
在通常热平衡条件下,处于高能级E2上的原子数密度N2,远比处于低能级的原子数密度低,这是因为处于能级E的原子数密度N的大小时随能级E的增加而指数减小,即N∝exp(-E/kT),这是著名的波耳兹曼分布规律。
于是在上、下两个能级上的原子数密度比为N2/N1∝exp{-(E2-E1)/kT}式中k为波耳兹曼常量,T为绝对温度。
因为E2>E1,所以N2《N1。
例如,已知氢原子基态能量为E1=-13.6eV,第一激发态能量为E2=-3.4eV,在20℃时,kT≈0.025eV,则N2/N1∝exp(-400)≈0可见,在20℃时,全部氢原子几乎都处于基态,要使原子发光,必须外界提供能量使原子到达激发态,所以普通广义的发光是包含了受激吸收和自发辐射两个过程。
一般说来,这种光源所辐射光的能量是不强的,加上向四面八方发射,更使能量分散了。
2、受激辐射和光的放大由量子理论知识知道,一个能级对应电子的一个能量状态。
电子能量由主量子数n(n=1,2,…)决定。
但是实际描写原子中电子运动状态,除能量外,还有轨道角动量L和自旋角动量s,它们都是量子化的,由相应的量子数来描述。
激光知识点总结一、激光的工作原理激光是由激光管或半导体激光器等激光器件产生的一种特殊的光,其产生过程涉及到激发、放大和辐射三个过程。
激发过程是激光器内部能级的粒子被外部能量激发,处于高能级,即被激发态。
放大过程是被激发态的粒子受到反射膜的作用,在激光谐振腔内不断来回运动,使得光子通过受激辐射不断放大,形成激光能量。
辐射过程是形成激光光束的过程,激光能量通过谐振腔的光学放大产生足够的光强,经过半透过膜射出。
二、激光的分类根据激光器产生的机理、工作波长和应用领域不同,激光可以分为不同的类型。
常见的激光器包括气体激光器、固体激光器、半导体激光器等。
气体激光器主要包括CO2激光器、氩离子激光器等,工作波长主要在10.6微米和0.5微米左右。
固体激光器主要包括Nd:YAG激光器、Nd:YVO4激光器等,工作波长主要在1微米左右。
半导体激光器主要包括GaAs激光器、InGaN激光器等,工作波长主要在可见光和红外光区域。
三、激光的应用激光在各个领域都有着广泛的应用,包括医学、通信、材料加工等。
在医学领域,激光可以用于手术、治疗、检测等,例如激光近视手术、激光溶脂手术等。
在通信领域,激光可以用于光纤通信、激光雷达等,实现了信息的高速传输和大容量存储。
在材料加工领域,激光可以用于切割、焊接、打标等,高精度、高效率、非接触等优点,深受制造业的青睐。
四、激光的安全问题激光的应用虽然带来了很多便利,但同时也伴随着一些安全问题。
激光具有高能量密度、强聚焦性和直线传播性,如果被不当使用,可能会导致眼睛、皮肤等组织的损伤。
因此,在激光使用过程中,需要采取一系列的安全措施,包括佩戴防护眼镜、设置相应的警示标识、限制激光输出功率等,确保激光的安全使用。
总之,激光作为一种重要的光学技术,在科研和工程实践中有着广泛的应用,具有很高的经济和社会效益。
通过深入理解其工作原理、分类和应用等,可以更好地把握激光的特点和优势,更好地应用于实际工作中。
激光知识点归纳总结一、激光的基本概念1. 激光的定义:激光是指一种纯准直性极好的光线,其光子是高度同步的单色光子。
2. 激光的产生:激光是由受激发射产生的,利用三能级或四能级的原子,分子或离子系统,通过外加能量使体系转移到激发态,再利用其辐射产生激光光子。
3. 激光的特性:激光具有单色性、准直性、明暗对比度高、相干性强等特点。
4. 激光的种类:激光可以分为气体激光器、固体激光器、液体激光器和半导体激光器等。
二、激光的基本原理1. 激光的受激辐射:当原子、分子或离子处于激发态时,通过外界刺激的辐射能引起它们从激发态向稳态跃迁,再发出与外界激发辐射相同特性的电磁波,即受激辐射。
2. 激光的稳态条件:产生激光需要满足稳态条件,即发射和吸收的粒子数要平衡,从而实现能量的持续放大和稳定输出。
3. 激光的放大作用:在激光器内,通过激发态原子、分子或离子吸收外界光子能量,使它们跃迁到更高激发态,从而放大光子,产生激光。
4. 激光的光学谐振腔:激光器内部常常设置光学谐振腔,用来反射和增强激光,从而实现激光的输出。
三、激光的应用领域1. 激光测距与测速:激光雷达通过测量反射光的飞行时间来实现测距,同时通过多普勒效应测速。
2. 激光材料加工:激光可用于金属切割、焊接、打孔等材料加工过程。
3. 激光医学应用:激光可用于眼科手术、皮肤治疗、激光治疗仪等医疗设备。
4. 激光通讯:激光可以传输更大带宽、更高速率的信息,用于通讯领域。
5. 激光导航:激光雷达可用于无人飞行器、自动驾驶汽车等导航系统。
6. 激光防御:激光武器可用于导弹防御、激光束武器等领域。
四、激光器的分类1. 气体激光器:以气体为工作物质的激光器,常见的包括二氧化碳激光器、氦氖激光器等。
2. 固体激光器:以固体为工作物质的激光器,常见的包括Nd:YAG激光器、激光二极管等。
3. 半导体激光器:以半导体为工作物质的激光器,可用于激光打印机、光纤通信等领域。
4. 液体激光器:以液体为工作物质的激光器,常见的包括染料激光器等。
激光的理论基础
激光是一种特殊的光,按其特征可以分为多个类别。
它具有相同频率和向量方向的电
磁辐射,可以把复杂的电场双极转换为光场双极,其振荡频率在可视光到红外光之间,占
据辐射场中的特定频率范围,而光束具有较高的能量强度和一致性。
激光技术,是根据半
导体激光器的发展,此技术可以主要应用于可视光投射、仪器仪表、打印机以及生物医学
等领域。
激光的理论基础是光学和量子电动力学。
归纳起来概括可有四个基本要素:一是光调
制系统,将复杂的电场双极转换为光场双极,例如准直镜的一种折射或反射;二是能量放
大系统,由多个放大管或激光晶体组成,以把中微量的能量大量地放大输出;三是光学系统,由反射镜、透镜等元件组成,调整激光束的方向;四是量子电动力学,研究电态到光
态的转换,形成基本的激光源。
因此,各种光学和量子电动力学的理论与实验及各种光学
器件的应用,是激光的理论基础。
同时,激光有多个理论模型,基本上可以分为非平衡模型、直接激发模型、激光器模型、激光共振腔模型及衍射激光模型五种。
其中,非平衡模型和激光器模型是最常用的理
论模型。
它们分别涉及物理系统非平衡状态和物理激光器两个大的研究问题。
激光的理论基础,即模型理论基础和实验理论基础。
模型理论基础是指上述激光的理
论模型,实验理论基础是指实验研究、探讨激光的特性及其现象的理论基础。
结合上述理
论和实验,可以剖析激光的特性和表现,从而更有效地发挥激光的性能,应用到实践中去。
《激光》讲义一、激光的定义与原理激光,这个在现代科技中频繁出现的词汇,对于很多人来说或许既熟悉又神秘。
那么,究竟什么是激光呢?简单来说,激光(Laser)是“Light Amplification by Stimulated Emission of Radiation”的缩写,意思是“通过受激辐射实现光放大”。
其工作原理基于量子力学的概念。
在普通光源中,比如灯泡,光是由大量原子或分子自发地发射出来的,这些光子的发射方向、频率和相位都是随机的,这就导致了光的分散和不集中。
而激光的产生则是一个受控的、高度有序的过程。
首先,有一个增益介质,比如气体(如氦氖气体)、固体(如红宝石、钕玻璃)或半导体。
在增益介质中,存在着大量处于不同能级的原子或分子。
当外界提供能量(例如通过电流、光照射等方式)时,一些原子或分子会被激发到较高的能级,形成所谓的“粒子数反转”状态。
处于这种状态下的原子或分子,当受到一个特定频率和相位的光子激发时,会产生一个与激发光子完全相同的光子,这就是受激辐射过程。
这两个光子不仅频率、相位相同,而且方向也完全一致。
通过在增益介质两端放置反射镜,形成一个光学谐振腔,使得受激辐射产生的光子在腔内来回反射,不断激发更多的原子或分子产生受激辐射,从而实现光的放大。
最终,当光强达到一定程度时,从其中一个反射镜部分透射出去,形成一束高强度、高方向性、高单色性和高相干性的激光束。
二、激光的特点激光具有许多独特的特点,使其在众多领域得到了广泛的应用。
1、高方向性激光束的发散角非常小,可以近似看作是平行光。
这使得激光能够在长距离传输后仍然保持较小的光斑尺寸,从而实现精确的能量传递和信息传输。
例如,在激光测距中,激光可以照射到很远的目标,并通过测量光的往返时间来精确计算距离。
2、高单色性激光的波长非常单一,即颜色非常纯。
这使得激光在光谱分析、医学诊断和通信等领域具有重要的应用价值。
比如在医学领域,特定波长的激光可以被血红蛋白吸收,从而用于治疗血管病变。
激光的理论基础
直到二十世纪初,人们才在实验的基础上揭开了原子结构的奥秘。
原子结构像是一个小小的太阳系,中间是原子核,电子围绕原子核不停地旋转,同时也不停地自转。
原子核集中了原子的绝大部分质量,但却只占有很小的空间。
原子核带正电,电子带负电,一般原子核与电子所携带的正负电荷数量相等,因此对外呈中性。
电子绕核旋转具有一定的动能,同时负电荷的电子与正电荷的原子核之间存在着一定的位能。
所有电子的动能与位能之和就是整个原
直到二十世纪初,人们才在实验的基础上揭开了原子结构的奥秘。
原子结构像是一个小小的太阳系,中间是原子核,电子围绕原子核不停地旋转,同时也不停地自转。
原子核集中了原子的绝大部分质量,但却只占有很小的空间。
原子核带正电,电子带负电,一般原子核与电子所携带的正负电荷数量相等,因此对外呈中性。
电子绕核旋转具有一定的动能,同时负电荷的电子与正电荷的原子核之间存在着一定的位能。
所有电子的动能与位能之和就是整个原子的能量,称为原子的内能。
这种原子模型是1911年由英国科学家卢瑟福提出的。
紧接着,1913年,丹麦物理学家玻尔提出了原子只能处于由不连续能级表征的一系列状态——定态上,这与宏观世界中的情况大不相同。
人造卫星绕地球旋转时,可以位于任意的轨道上,也就是说可具有任意的连续变化的能量。
而电子在绕核运动时,却只能处于某些特定的轨道上。
从而原子的内能不能连续的改变,而是一级一级分开的,这样的级就称为原子的能级。
不同的原子具有不同的能级结构。
一个原子中最低的能级称为基态,其余的称为高能态,或激发态。
原子从高能态E2过渡到低能态E1时,会向外发射某个频率为ν的辐射,满足普朗克公式:hv = E1 - E2
式中h为普朗克常数。
反之,该原子吸收频率为ν的辐射时,就会从低能态E1过渡到高能态E2。
爱因斯坦在玻尔工作的基础上于1916年发表《关于辐射的量子理论》。
文章提出了激光辐射理论,而这正是激光理论的核心基础。
因此爱因斯坦被认为是激光理论之父。
在这篇论文中,爱因斯坦区分了三种过程:受激吸收、自发辐射、受激辐射。
前两个概念是已为人所知的。
受激吸收就是处于低能态的原子吸收外界辐射而跃迁到高能态;自发辐射是指高能态的原子自发地辐射出光子并迁移至低能态。
这种辐射的特点是每一个原子的跃迁是自发的、独立进行的,其过程全无外界的影响,彼此之间也没有关系。
因此它们发出的光子的状态是各不相同的。
这样的光相干性差,方向散乱,而受激辐射则相反。
它是指处于高能级的原子在光子的“刺激”或者“感应”下,跃迁到低能级,并辐射出一个和入射光子同样频率的光子。
这好比清晨公鸡打鸣,一个公鸡叫起来,其他的公鸡受到“刺激”也会发出同样的声音。
受激辐射的最大特
点是由受激辐射产生的光子与引起受激辐射的原来的光子具有完全相同的状态。
它们具有相同的频率,相同的方向,完全无法区分出两者的差异。
这样,通过一次受激辐射,一个光子变为两个相同的光子。
这意味着光被加强了,或者说光被放大了。
这正是产生激光的基本过程。
爱因斯坦的理论在当初只是为了解决黑体辐射问题而提出的假设。
但是几十年后却成了打开激光宝库的金钥匙。
那么,激光是怎样产生的?在一个原子体系中,总有些原子处于高能级,有些处于低能级。
而自发辐射产生的光子既可以去刺激高能级的原子使它产生受激辐射,也可能被低能级的原子吸收而造成受激吸收。
因此,在光和原子体系的相互作用中,自发辐射、受激辐射和受激吸收总是同时存在的。
如果想获得越来越强的光,也就是说产生越来越多的光子,就必须要使受激辐射产生的光子多于受激吸收所吸收的光子。
怎样才能做到这一点呢?我们知道,光子对于高低能级的光子是一视同仁的。
在光子作用下,高能级原子产生受激辐射的机会和低能级的原子产生受激吸收的机会是相同的。
这样,是否能得到光的放大就取决于高、低能级的原子数量之比。
若位于高能级的原子远远多于位于低能级的原子,我们就得到被高度放大的光。
但是,在通常热平衡的原子体系中,原子数目按能级的分布服从玻尔兹曼分布率。
因此,位于高能级的原子数总是少于低能级的原子数。
在这种情况下,为了得到光的放大,必须到非热平衡的体系中去寻找。
所谓非热平衡体系,是指热运动并没有达到平衡、整个体系不存在一个恒定温度的原子体系。
这种体系的原子数目按能级的分布不服从玻尔兹曼分布率,位于高能级上的原子数目有可能大于位于低能级上的原子数目。
这种状态称为“粒子数反转”。
如何才能达到粒子数反转状态呢?这需要利用激活媒质。
所谓激活媒质(也称为放大媒质或放大介质),就是可以使某两个能级间呈现粒子数反转的物质。
它可以是气体,也可以是固体或液体。
用二能级的系统来做激活媒质实现粒子数反转是不可能的。
要想获得粒子数反转,必须使用多能级系统。
在现代的激光器中,第一台激光器红宝石激光器是三能级系统,也有一些激光器采用了四能级系统,如钕玻璃激光器。
(编辑:文静)。