利用小波门限法进行信号去噪
- 格式:pdf
- 大小:676.34 KB
- 文档页数:6
小波分析的语音信号噪声消除方法小波分析是一种有效的信号处理方法,可以用于噪声消除。
在语音信号处理中,噪声常常会影响语音信号的质量和可理解性,因此消除噪声对于语音信号的处理非常重要。
下面将介绍几种利用小波分析的语音信号噪声消除方法。
一、阈值方法阈值方法是一种简单而有效的噪声消除方法,它基于小波变换将语音信号分解为多个频带,然后通过设置阈值将各个频带的噪声成分消除。
1.1离散小波变换(DWT)首先,对语音信号进行离散小波变换(DWT),将信号分解为近似系数和细节系数。
近似系数包含信号的低频成分,而细节系数包含信号的高频成分和噪声。
1.2设置阈值对细节系数进行阈值处理,将细节系数中幅值低于设定阈值的部分置零。
这样可以将噪声成分消除,同时保留声音信号的特征。
1.3逆变换将处理后的系数进行逆变换,得到去噪后的语音信号。
1.4优化阈值选择为了提高去噪效果,可以通过优化阈值选择方法来确定最佳的阈值。
常见的选择方法有软阈值和硬阈值。
1.4.1软阈值软阈值将细节系数进行映射,对于小于阈值的细节系数,将其幅值缩小到零。
这样可以在抑制噪声的同时保留语音信号的细节。
1.4.2硬阈值硬阈值将细节系数进行二值化处理,对于小于阈值的细节系数,将其置零。
这样可以更彻底地消除噪声,但可能会损失一些语音信号的细节。
二、小波包变换小波包变换是对离散小波变换的改进和扩展,可以提供更好的频带分析。
在语音信号噪声消除中,小波包变换可以用于更精细的频带选择和噪声消除。
2.1小波包分解将语音信号进行小波包分解,得到多层的近似系数和细节系数。
2.2频带选择根据噪声和语音信号在不同频带上的能量分布特性,选择合适的频带对语音信号进行噪声消除。
2.3阈值处理对选定的频带进行阈值处理,将噪声成分消除。
2.4逆变换对处理后的系数进行逆变换,得到去噪后的语音信号。
三、小波域滤波小波域滤波是一种基于小波变换的滤波方法,通过选择合适的小波函数和滤波器来实现噪声消除。
小波去噪常用方法目前,小波去噪的方法大概可以分为三大类:第一类方法是利用小波变换模极大值原理去噪,即根据信号和噪声在小波变换各尺度上的不同传播特性,剔除由噪声产生的模极大值点,保留信号所对应的模极大值点,然后利用所余模极大值点重构小波系数,进而恢复信号;第二类方法是对含噪信号作小波变换之后,计算相邻尺度间小波系数的相关性,根据相关性的大小区别小波系数的类型,从而进行取舍,然后直接重构信号;第三类是小波阈值去噪方法,该方法认为信号对应的小波系数包含有信号的重要信息,其幅值较大,但数目较少,而噪声对应的小波系数是一致分布的,个数较多,但幅值小。
基于这一思想,在众多小波系数中,把绝对值较小的系数置为零,而让绝对值较大的系数保留或收缩,得到估计小波系数,然后利用估计小波系数直接进行信号重构,即可达到去噪的目的。
1:小波变换模极大值去噪方法信号与噪声的模极大值在小波变换下会呈现不同的变化趋势。
小波变换模极大值去噪方法,实质上就是利用小波变换模极大值所携带的信息,具体地说就是信号小波系数的模极大值的位置和幅值来完成对信号的表征和分析。
利用信号与噪声的局部奇异性不一样,其模极大值的传播特性也不一样这些特性对信号中的随机噪声进行去噪处理。
算法的基本思想是,根据信号与噪声在不同尺度上模极大值的不同传播特性,从所有小波变换模极大值中选择信号的模极大值而去除噪声的模极大值,然后用剩余的小波变换模极大值重构原信号。
小波变换模极大值去噪方法,具有很好的理论基础,对噪声的依赖性较小,无需知道噪声的方差,非常适合于低信噪比的信号去噪。
这种去噪方法的缺点是,计算速度慢,小波分解尺度的选择是难点,小尺度下,信号受噪声影响较大,大尺度下,会使信号丢失某些重要的局部奇异性。
2:小波系数相关性去噪方法信号与噪声在不同尺度上模极大值的不同传播特性表明,信号的小波变换在各尺度相应位置上的小波系数之间有很强的相关性,而且在边缘处有很强的相关性。
基于小波门限化的图像去噪方法
KeitaAlpha;彭嘉雄
【期刊名称】《华中科技大学学报:自然科学版》
【年(卷),期】2001(29)6
【摘要】提出用小波门限化方法对图像的噪声进行处理 .从理论上分析和探讨了小波门限化的作用 ,以及对抑制噪声形式的无纹理图像的自适应性 .实验结果表明。
【总页数】3页(P13-15)
【关键词】图像处理;信号处理;小波门限化;噪声抑制;多尺度边缘估计;图像估计【作者】KeitaAlpha;彭嘉雄
【作者单位】华中科技大学图像识别与人工智能研究所图像信息处理与智能控制教育部重点实验室
【正文语种】中文
【中图分类】TP391.41
【相关文献】
1.基于双树复小波和形态学的红外图像去噪方法 [J], 牛犇;慕晓冬;陈长倩
2.基于广义全变分和小波阈值模型的图像去噪方法 [J], 杜渺勇; 周浩
3.基于小波阈值的图像去噪方法研究 [J], 刘光宇;黄懿;曾志勇;曹禹;赵恩铭;邢传玺
4.基于小波阈值的图像去噪方法研究 [J], 刘光宇;黄懿;曾志勇;曹禹;赵恩铭;邢传玺
5.基于二进小波的多阈值图像去噪方法 [J], 刘美琪;吐尔洪江·阿不都克力木
因版权原因,仅展示原文概要,查看原文内容请购买。
基于小波分析的信号去噪小波分析是一种用于信号处理的数学工具,可以用于信号的去噪。
它能够有效地分解信号并在不同频率和时间尺度上进行分析。
在信号处理中,噪声是不可避免的,因此去除噪声是非常重要的。
在这篇文章中,我们将介绍使用小波分析进行信号去噪的方法。
首先,让我们了解一下信号的特性。
信号可以分为两种类型:确定性信号和随机信号。
确定性信号是指在给定时间内具有确定的数学函数形式的信号,而随机信号是在给定时间内以随机方式变化的信号。
噪声通常是由随机信号引起的,而小波分析可以有效地处理这种随机信号的噪声。
小波分析使用小波函数对信号进行分解,这些小波函数具有平滑和局部化特性。
通过分解信号,我们可以将信号分解为具有不同频率和时间尺度的子信号。
然后,我们可以通过滤波来去除噪声,并重新构造干净的信号。
小波分析的主要步骤如下:1. 选择适当的小波函数:小波函数的选择取决于信号的特性。
常用的小波函数有Haar小波、Daubechies小波和Symlet小波等。
根据信号的特点选择合适的小波函数是非常重要的。
2.进行小波分解:将信号分解成不同尺度的子信号。
这可以通过对信号进行多级小波分解来实现。
在每个尺度上,信号被分解为近似系数和细节系数。
3.对细节系数进行滤波:由于噪声主要包含在细节系数中,所以我们需要对细节系数进行滤波来去除噪声。
可以使用阈值滤波等方法来实现。
4.合成信号:将滤波后的细节系数和近似系数合成为一个信号。
合成信号将不包含噪声。
小波分析的一个重要优点是它具有局部化特性。
这意味着小波分析可以在频域和时间域上同时提供信息。
这使得它在信号去噪中非常有用,因为它能够有效地捕捉到噪声的频率和时间特征。
除了去噪之外,小波分析还可以应用于信号压缩、模式识别和特征提取等领域。
它在图像处理中也得到了广泛应用。
综上所述,小波分析是一种有效的信号去噪方法。
通过对信号进行小波分解和滤波处理,可以成功去除噪声,得到干净的信号。
小波分析的局部化特性使其在信号处理中得到广泛应用,并在实际应用中取得了很好的效果。
matlab小波变换信号去噪Matlab是一款非常强大的数据分析工具,其中小波变换可以应用于信号去噪的领域。
下面将详细介绍基于Matlab小波变换的信号去噪方法。
1、小波变换简介小波变换是时频分析的一种方法,它将信号分解成尺度与时间两个维度,能够保持信号的局部特征,适用于非平稳信号的分析。
小波变换的本质是将信号从时域转换到时频域,得到更加精细的频域信息,可以方便的对信号进行滤波、去噪等处理。
2、小波去噪方法小波去噪是指通过小波分析方法将噪声与信号分离并且去除的过程。
小波去噪的基本步骤是通过小波分解将信号分解成多尺度信号,然后对每一个分解系数进行阈值处理,去除一部分小于阈值的噪声信号,最后将处理后的分解系数合成原始信号。
3、基于Matlab的小波变换信号去噪实现在Matlab中,可以使用wavemenu命令进行小波变换,使用wthresh命令对小波分解系数进行阈值处理,利用waverec命令将阈值处理后的小波分解系数合成原始信号。
下面给出基于Matlab实现小波变换信号去噪的步骤:(1)读取信号,并可视化观测信号波形。
(2)通过wavedec命令将信号进行小波分解得到多个尺度系数,展示出小波分解系数。
(3)通过绘制小波系数分布直方图或者小波系数二维展示图,估计信号的噪声强度。
(4)根据阈值处理法对小波系数进行阈值处理,获得非噪声系数和噪声系数。
(5)通过waverec命令将非噪声系数合成原始信号。
(6)可视化效果,比较去噪前后信号的波形。
针对每个步骤,需要熟悉各个工具箱的使用知识。
在实际应用中,还需要根据特定的数据处理需求进行合理的参数设置。
4、总结小波去噪是一种常见的信号处理方法,在Matlab中也可以方便地实现。
通过实现基于Matlab小波变换的信号去噪,可以更好地应对复杂信号处理的需求,提高数据分析的准确性和精度。
基于小波Mallat算法的微波信号去噪
基于小波Mallat算法的微波信号去噪
胡本钧,杨健
【摘要】摘要:为准确识别微波信号中的目标信号,文章将小波Mallat算法引入到微波目标信号处理,对微波信号进行分解、重构,去除信号中的噪声,并采用MATLAB软件进行系统仿真,结果表明,用小波Mallat算法对微波信号进行目标识别,可有效的去除噪声,抑制杂波,准确的识别目标信号,具有很好的应用前景。
【期刊名称】今日自动化
【年(卷),期】2018(000)002
【总页数】2
【关键词】小波;Mallat算法;微波
0 引言
随着无线通信技术的快速发展,微波逐渐应用到生活的各个方面,它在方便我们生活的同时,也导致微波信号中的干扰越来越严重,微波噪声是复杂的、含有多种成分的一种时域波形,使用传统的傅立叶变换不能很好的去除信号中噪声,识别出目标信号。
本文采用小波Mallat算法在多个尺度上对微波信号进行分解,对分解后的信号进行多分辨分析,对其中的高频分量进行阀值处理,对其中的低频部分依次提取其低频系数,从而尽量减少目标信号与噪声在相应坐标系内的重叠,从而实现目标信号与噪声的分离,通过MATLAB软件进行仿真试验,结果表明基于小波Mallat算法对微波信号进行降噪,可以很好的去除噪声。
1 降噪过程。
如何使用小波变换进行信号去噪处理信号去噪是信号处理领域中的一个重要问题,而小波变换是一种常用的信号去噪方法。
本文将介绍小波变换的原理和应用,以及如何使用小波变换进行信号去噪处理。
一、小波变换的原理小波变换是一种时频分析方法,它可以将信号分解成不同频率和时间尺度的成分。
与傅里叶变换相比,小波变换具有更好的时域分辨率和频域分辨率。
小波变换的基本思想是通过选择不同的小波函数,将信号分解成不同尺度的波形,并通过对这些波形的加权叠加来重构信号。
二、小波变换的应用小波变换在信号处理中有着广泛的应用,其中之一就是信号去噪处理。
信号中的噪声会影响信号的质量和准确性,因此去除噪声是信号处理的重要任务之一。
小波变换可以通过将信号分解为不同尺度的波形,利用小波系数的特性来区分信号和噪声,并通过滤波的方式去除噪声。
三、小波变换的步骤使用小波变换进行信号去噪处理的一般步骤如下:1. 选择合适的小波函数:不同的小波函数适用于不同类型的信号。
选择合适的小波函数可以提高去噪效果。
2. 对信号进行小波分解:将信号分解成不同尺度的小波系数。
3. 去除噪声:通过对小波系数进行阈值处理,将小于一定阈值的小波系数置零,从而去除噪声成分。
4. 重构信号:将去噪后的小波系数进行逆变换,得到去噪后的信号。
四、小波阈值去噪方法小波阈值去噪是小波变换中常用的去噪方法之一。
它的基本思想是通过设置一个阈值,将小于该阈值的小波系数置零,从而去除噪声。
常用的阈值去噪方法有软阈值和硬阈值。
软阈值将小于阈值的小波系数按照一定比例进行缩小,而硬阈值将小于阈值的小波系数直接置零。
软阈值可以更好地保留信号的平滑性,而硬阈值可以更好地保留信号的尖锐性。
五、小波变换的优缺点小波变换作为一种信号处理方法,具有以下优点:1. 可以提供更好的时域分辨率和频域分辨率,能够更准确地描述信号的时频特性。
2. 可以通过选择不同的小波函数适用于不同类型的信号,提高去噪效果。
3. 可以通过调整阈值的大小来控制去噪的程度,灵活性较高。
单片机小波去噪-概述说明以及解释1.引言1.1 概述单片机小波去噪是一种在单片机系统中利用小波变换技术对信号进行去噪处理的方法。
随着单片机在各种领域的广泛应用,如智能家居、智能交通、工业控制等,对信号处理的需求越来越高。
而信号往往会受到各种干扰和噪声的影响,影响系统的性能和稳定性,因此需要对信号进行去噪处理。
小波变换作为一种有效的信号处理技术,可以在时域和频域同时对信号进行分析,具有多分辨率和局部性等优点。
通过小波变换可以将信号分解成不同频率和尺度的成分,实现对信号的去噪处理。
在单片机系统中实现小波去噪,可以有效地提高系统的性能和稳定性,同时减少系统的计算复杂度和资源消耗。
本文将介绍单片机小波去噪的原理、实现步骤和实验结果分析,展望其在各种应用领域的前景,总结其在信号处理领域的重要意义和应用价值。
1.2 文章结构本文主要分为三大部分。
首先是引言部分,介绍了本文的概述、文章结构以及目的,为读者提供了对本文的整体了解。
接下来是正文部分,主要包括单片机的应用、小波去噪原理以及单片机小波去噪实现步骤。
通过对单片机在实际应用中的重要性进行介绍,以及小波去噪原理的解释,读者可以更好地理解单片机小波去噪的实现过程。
最后是结论部分,对实验结果进行分析,展望单片机小波去噪在未来的应用前景,并对全文内容进行总结,使读者对本文的主要内容有一个清晰的概念。
1.3 目的:本文旨在介绍单片机小波去噪技术在信号处理领域的应用。
通过深入解析小波去噪原理,探讨单片机如何实现小波去噪处理,为读者提供一种有效的信号处理方法。
同时,通过实验结果的分析和对应用前景的展望,希望读者能够深入了解小波去噪技术的优势和局限性,为今后在实际工程中的应用提供参考和借鉴。
最终,总结本文的重点内容,让读者对单片机小波去噪有一个清晰的认识并且能够将其灵活运用于实际工程中。
2.正文2.1 单片机的应用单片机是一种微型计算机系统,主要由微处理器、内存、输入输出接口和定时器等组成。
基于小波分析的信号去噪技术[摘要] 介绍了小波变换的基本思想和优点及多分辨率分析的过程, 并在MA TLAB 下利用小波变换工具箱, 编写程序实现信号去噪处理。
充分显示了小波变换在处理非平稳信号中的优势。
[关键词] 小波变换 信号去噪 模极大值 李普西兹指数在通信及计算机过程控制系统中,对信号进行实时采样是很重要的环节。
但由于信号在激励、传输和检测过程中,可能不同程度地受到随机噪声的污染,特别在小信号采集和测量中,噪声干扰显得尤其严重。
因此,如何消除实际信号中的噪声,从混有噪声的信号中提取有用信息一直是信息学科研究的焦点之一。
傅里叶变换是一种经典方法,适用于诸多场合。
但由于傅里叶变换是一种全局变换,无法表述信号的时域局部性质,而这种性质恰恰是非平稳信号最根本和最关键的性质。
为了更有效地处理非平稳信号,人们提出了小波变换这种新的信号分析理论。
小波变换是一种信号的时频分析,它具有多分辨率的特点,可以方便地从混有强噪声的信号中提取原始信号,被誉为分析信号的显微镜。
本文主要讨论应用小波变换的理论,利用Matlab 软件在计算机上实现了信号的噪声消除,从混有噪声的实际信号中提取了原始信号,具有非常实用的意义。
1.小波变换与多分辨率分析设ψ是定义在(-,+)∞∞上能量有限的函数,Ψ构成平方可积信号空间,记为Ψ∈L2(R),则生成函数族{ab ψ }: 1/2()||()ab t b t a a --ψ=ψ ,0b a -∞<<+∞> (1)Ψ(t)称为小波函数,()ab t ψ由Ψ(t)伸缩和平移生成,为小波基函数。
a 为伸缩因子,b 为平移因子。
对任一信号()f i ∈L2(R)的连续小波变换可定义为信号与小波基函数的内积:1/2(();,),||()ab R t b WT f t a b f a dt a --=<ψ>=ψ⎰ (2)连续小波变换具有线性、平移不变性、伸缩共变性、自相似性和冗余性等重要性质。
基于小波分析的语音信号噪声消除方法及MATLAB 实现一、 实验内容噪声污染是我们生产、生活中普遍存在的问题。
在某些环境中,噪声的影响给人们的生活和工作带来了极大不便,尤其在语音信号处理中,噪声甚至使人们正常的生活和工作无法进行。
因此,消除噪声干扰具有极为重要的研究意义和广泛的应用前景。
小波分析理论是一种新兴的信号处理理论,它在时间上和频率上都有很好的局部性,这使得小波分析非常适合于时-频分析,借助时- 频局部分析特性,小波分析理论已经成为信号去噪中的一种重要的工具。
利用小波方法去噪,是小波分析应用于实际的重要方面。
小波去噪的关键是如何选择阈值和如何利用阈值来处理小波系数,通过对小波阈值化去噪的原理介绍,运用MATLAB 中的小波工具箱,对一个含噪信号进行阈值去噪,实例验证理论的实际效果,证实了理论的可靠性。
本文简述了几种小波去噪方法,其中的阈值去噪的方法是一种实现简单、效果较好的小波去噪方法。
实验内容包括:(1) 分别利用软阈值法和硬阈值法对含噪信号进行去噪,并进行效果对比。
(2) 分别使用FFT 和小波分析方法对含噪信号进行去噪处理,并进行效果对比。
二、 实验原理1. 小波去噪原理分析1.1. 小波去噪原理叠加性高斯白噪声是最常见的噪声模型,受到叠加性高斯白噪声“污染”的观测信号可以表示为:i i i y f z σ=+ 1,...,,i n = (1.1) 其中y i 为含噪信号,i f 为“纯净”采样信号,z i 为独立同分布的高斯白噪声~(0,1)iid i z N ,σ为噪声水平,信号长度为n. 为了从含噪信号y i 中还原出真实信号i f ,可以利用信号和噪声在小波变换下的不同的特性,通过对小波分解系数进行处理来达到信号和噪声分离的目的。
在实际工程应用中,有用信号通常表现为低频信号或是一些比较平稳的信号,而噪声信号则通常表现为高频信号,所以我们可以先对含噪信号进行小波分解(如进行三层分解):321312211CD CD CD CA CD CD CA CD CA S +++=++=+= (1.2)图1 三层小波分解示意图其中i cA 为分解的近似部分, 为i cD 分解的细节部分,321,,i =,则噪声部分通常包含在1cD ,2cD ,3cD 中,用门限阈值对小波系数进行处理,重构信号即可达到去噪的目的。
利用小波变换进行噪声滤波的步骤与策略噪声是信号处理中常见的问题,它会干扰信号的真实信息,影响到信号的质量和准确性。
为了解决这个问题,小波变换成为了一种常用的噪声滤波方法。
小波变换是一种时频分析方法,它可以将信号分解成不同频率的子信号,从而更好地处理噪声。
利用小波变换进行噪声滤波的步骤主要包括信号分解、阈值处理和信号重构三个阶段。
首先,我们将待处理的信号进行小波分解,得到一系列的小波系数。
小波系数反映了信号在不同频率上的能量分布情况。
然后,我们需要对这些小波系数进行阈值处理,以去除噪声。
阈值处理的目标是将噪声系数置零,而保留信号系数。
最后,我们将处理后的小波系数进行逆变换,得到滤波后的信号。
在进行小波变换的过程中,选择合适的小波函数是非常重要的。
不同的小波函数对信号的特征提取有不同的效果。
常用的小波函数有Haar小波、Daubechies小波和Symlet小波等。
选择合适的小波函数需要考虑信号的特性和噪声的类型。
例如,对于具有突变特性的信号,Haar小波可以更好地提取信号的边缘信息;而对于平滑型的信号,Daubechies小波和Symlet小波可以更好地提取信号的低频信息。
在阈值处理的过程中,选择合适的阈值策略也是至关重要的。
常用的阈值策略有固定阈值法、自适应阈值法和软硬阈值法等。
固定阈值法是最简单的一种方法,它将小波系数与一个固定的阈值进行比较,超过阈值的系数被置零。
自适应阈值法根据小波系数的统计特性来确定阈值,可以更好地适应不同信号的特点。
软硬阈值法是一种常用的方法,它通过设置软阈值和硬阈值来实现滤波效果。
软阈值将小于阈值的系数置零,并对大于阈值的系数进行缩放;硬阈值直接将小于阈值的系数置零,保留大于阈值的系数。
除了选择合适的小波函数和阈值策略,还有其他一些策略可以提高噪声滤波的效果。
首先,信号的预处理非常重要。
在进行小波变换之前,可以对信号进行平滑处理,以减少噪声的影响。
其次,多级小波分解可以提高滤波效果。
基于小波分析的信号去噪一、实验目的1、掌握小波分析的原理;2、利用小波分析进行信号去噪,并编写Matlab 程序。
二、实验内容1、使用不同小波函数对信号去噪,比较消噪效果;2、采取不同分解层数对信号去噪,比较消噪效果;3、阈值设定方法对信号去噪的影响;三、实验原理小波分析方法是一种窗口大小(即窗口面积)固定但其形状可改变,时间窗和频率窗都可改变的时频局部化分析方法。
即在低频部分具有较高的频率分辨率和较低的时间分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,所以被誉为数学显微镜。
正是这种特性,使小波变换具有对信号的自适应性。
原则上讲,传统上使用傅里叶分析的地方,都可以用小波分析取代。
小波分析优于傅里叶变换的地方是,它在时域和频域同时具有良好的局部化性质。
小波函数的定义:设()t ψ为平方可积函数,即())(2R L t ∈ψ,若其傅里叶变换()ωψ∧(()ωψ∧是()t ψ的傅里叶变换)满足∞<=⎰∧ωωωψψd C R 2)( 称()t ψ为一个基本小波或母小波(Mother Wavelet ),并称上式为小波函数的允许条件。
与标准的傅立叶变换相比,小波分析中用到的小波函数不具有唯一性,对于一个时频分析问题,如何选者最佳的小波基函数是一个重要的问题。
常用的小波函数有Haar 小波、dbN 小波、Morl 小波、Mexh 小波、Meyer 小波等,不同的小波函数对应不同的尺度函数和性能。
从下图中可以看出小波变换与傅立叶变换在时频窗口特性上有很大的不同,更显示了上述小波变换的特点。
图6-1 小波变换的时频分析窗小波变换的多分辨率分析实际上就是对一个频带信号进行低频分解,对每一步分解出来的低频部分在分解,使频率分辨率越来越高,其目的是构造一个理想的正交小波基。
小波包分析实际上就是对与多分辨率分析没有分解的高频信号也进行逐层分解,进一步提高时频分辨率。
小波分析地这些原理与特点与测控领域中的滤波原理非常相似,常常被用于信号噪声的消除。
小波阈值去噪,信号去噪,小波变换,傅里叶变换小波阈值去噪是一种常用的去噪方法,基于小波变换的原理。
小波变换是一种在时间-频率领域上分析信号的工具,它将信号分解为不同尺度的小波函数,进而揭示信号的瞬时特性和频率信息。
傅里叶变换则是将一个信号在时域和频域之间进行转换。
小波阈值去噪的步骤如下:
1. 对信号进行小波变换,将信号分解为多个尺度的小波系数。
2. 对每个尺度的小波系数进行阈值处理,将绝对值小于某个阈值的系数置零,保留绝对值较大的系数。
3. 对处理后的小波系数进行逆变换,得到去噪后的信号。
小波阈值去噪的关键在于如何选择合适的阈值,通常会使用软阈值或硬阈值进行处理。
软阈值将绝对值小于阈值的系数置零,并对绝对值较大的系数进行调整。
硬阈值则只保留绝对值较大的系数,将绝对值小于阈值的系数置零。
与小波阈值去噪相比,傅里叶变换是一种全局变换方法,它将信号转换到频域中,展示了信号包含的不同频率成分。
傅里叶变换的主要特点是能够提供信号的频率信息,但无法提供信号的时域信息。
因此,在处理非周期性信号时,小波变换通常被认为是一种更有效的方法。
总结起来,小波阈值去噪和傅里叶变换是两种常用的信号处理方法,前者基于小
波变换,在时-频域上分析信号并通过阈值处理实现去噪,而后者则是通过将信号转换到频域中以展示信号的频率成分。
小波变换和去噪通俗的讲就是剥大蒜的过程,也就是不断的分层,使得信号拆分成各种频段(根据采用频率而定),而这一过程要用到低通滤波器和高通滤波器,而小波去噪就是在高频部分(因为通常白噪声出现在高频部分)改变数字量,运用一些算法去除一些混有噪声的数字,然后再运用重构低通滤波器和高通滤波器把刚刚分层的频段加起来,差不多就是拼凑大蒜的过程吧。
如何改变高频系数(也就是去除噪声)具体算法如下:1.软门限和硬门限所谓门限法,就是选择一个门限,然后利用这个门限对小波变换后的离散细节信号和离散逼近信号进行处理。
硬门限可以描述为:当数据的绝对值小于给定的门限时,令其为零,而数据为其他值时不变。
软门限可以描述为:当数据的绝对值小于给定的门限时,令其为零,然后把其他数据点向零收缩。
2.门限选择的准则及其算法根据现有的文献,对于被高斯白噪声污染的信号基本噪声模型, 一般地, 选择门限的准则如下:1.无偏风险估计准则。
对应于每一个门限值, 求出与其对应的风险值, 使风险最小的门限就是我们所要选取的门限,其具体算法为:(a) 把待估计的矢量中的元素取绝对值, 由小到大排序, 然后将各个元素平方, 得到新的待估计矢量N V ,其长度为原待估计矢量的长度n。
(b) 对应每一个元素下标(即元素的序号) k ,若取门限为待估计矢量的第k 个元素的平方根,则风险算法为:(2) 固定门限准则。
利用固定形式的门限,可取得较好的去噪特性。
设n 为待估计矢量的长度,取长度2 倍的常用对数的平方根为门限.(3) 极小极大准则。
本准则采用固定门限获得理想过程的极小极大特性. 极小极大原理是在统计学中为设计估计量而采用的,由于去噪信号可以假设为未知回归函数的估计量,则极小极大估计量是实现在最坏条件下最大均方误差最小的任选量。
(4) 混合准则。
它是无偏风险估计和固定门限准则的混合小波(Wavelet)这一术语,顾名思义,“小波”就是小区域、长度有限、均值为0的波形。
小波变换和去噪通俗的讲就是剥大蒜的过程,也就是不断的分层,使得信号拆分成各种频段(根据采用频率而定),而这一过程要用到低通滤波器和高通滤波器,而小波去噪就是在高频部分(因为通常白噪声出现在高频部分)改变数字量,运用一些算法去除一些混有噪声的数字,然后再运用重构低通滤波器和高通滤波器把刚刚分层的频段加起来,差不多就是拼凑大蒜的过程吧。
如何改变高频系数(也就是去除噪声)具体算法如下:1.软门限和硬门限所谓门限法,就是选择一个门限,然后利用这个门限对小波变换后的离散细节信号和离散逼近信号进行处理。
硬门限可以描述为:当数据的绝对值小于给定的门限时,令其为零,而数据为其他值时不变。
软门限可以描述为:当数据的绝对值小于给定的门限时,令其为零,然后把其他数据点向零收缩。
2.门限选择的准则及其算法根据现有的文献,对于被高斯白噪声污染的信号基本噪声模型, 一般地, 选择门限的准则如下:1.无偏风险估计准则。
对应于每一个门限值, 求出与其对应的风险值, 使风险最小的门限就是我们所要选取的门限,其具体算法为:(a) 把待估计的矢量中的元素取绝对值, 由小到大排序, 然后将各个元素平方, 得到新的待估计矢量N V ,其长度为原待估计矢量的长度n。
(b) 对应每一个元素下标(即元素的序号) k ,若取门限为待估计矢量的第k 个元素的平方根,则风险算法为:(2) 固定门限准则。
利用固定形式的门限,可取得较好的去噪特性。
设n 为待估计矢量的长度,取长度2 倍的常用对数的平方根为门限.(3) 极小极大准则。
本准则采用固定门限获得理想过程的极小极大特性. 极小极大原理是在统计学中为设计估计量而采用的,由于去噪信号可以假设为未知回归函数的估计量,则极小极大估计量是实现在最坏条件下最大均方误差最小的任选量。
(4) 混合准则。
它是无偏风险估计和固定门限准则的混合小波(Wavelet)这一术语,顾名思义,“小波”就是小区域、长度有限、均值为0的波形。
用sym6和db6小波对信号y1进行5层分解。
其中信号y1是由正余弦信号y和白噪声信号s构成。
选用sure阈值模式。
Wden函数是对一维信号的小波进行消噪处理。
xd=wden(x,tptr,sorh,scal,n,’wname’)X即为将要去噪的信号。
tptr为所选用的sure阈值模式。
sorh为函数选择阈值使用方式,其中s表示软阈值,h为硬阈值。
输入参数scal规定阈值处理随噪声水平变化。
scal=one,不随噪声水平变化。
scal=sln,根据第一层小波分解的噪声水平估计进行调整。
scal=mln根据每一层小波分解的噪声水平估计进行调整。
对于函数heursure为启发式阈值,rigrsure为stein无偏估计,sqtwolog 为固定式阈值minimaxi为极大值极小值阈值。
应用小波分析对信号去噪的程序如下:t=0:0.001:1f1=5;f2=20;y=3*sin(2*pi*f1*t)+5*cos(5*pi*f2*t)s1=randn(1,length(y))s=y+s1subplot(211);plot(t,s);grid on;lev=5;xdH=wden(s,'heursure','s','sln',lev,'sym6');xdR=wden(s,'rigrsure','s','sln',lev,'sym6');xdS=wden(s,'sqtwolog','s','sln',lev,'sym6');xdM=wden(s,'minimaxi','s','sln',lev,'sym6');subplot(5,2,1);plot(y);title('原始信号')axis([1,2048,-10,10]);subplot(5,2,2);plot(s);title('有噪信号')axis([1,2048,-10,10]);subplot(5,2,3);plot(xdH);xlabel('heursure阈值消噪处理后的信号')axis([1,2048,-10,10]);subplot(5,2,4);plot(xdR);xlabel('rigrsure阈值消噪处理后的信号')axis([1,2048,-10,10]);subplot(5,2,5);plot(xdS);xlabel('sqtwolog阈值消噪处理后的信号')axis([1,2048,-10,10]);subplot(5,2,6);plot(xdM);xlabel('minimaxi阈值消噪处理后的信号')Subplot(5,2,7);plot(y-xdH);xlabel('heursure阈值消噪后与原信号比较')subplot(5,2,8);plot(y-xdR);xlabel('rigrsure阈值消噪后与原信号比较') subplot(5,2,9);plot(y-xdS);xlabel('sqtwolog阈值消噪后与原信号比较') subplot(5,2,10);plot(y-xdM);xlabel('minimaxi阈值消噪后与原信号比较') A=var(y-xdH)B=var(y-xdR)C=var(y-xdS)D=var(y-xdM)A =0.2415B =0.2421C =2.2178D =1.0703各信号图形如下:当采用db6作为小波时:t=0:0.001:1f1=5;f2=20;y=3*sin(2*pi*f1*t)+5*cos(5*pi*f2*t)s1=randn(1,length(y))s=y+s1subplot(211);plot(t,s);grid on;lev=3;xdH=wden(s,'heursure','s','sln',lev,'db6');xdR=wden(s,'rigrsure','s','sln',lev,'db6');xdS=wden(s,'sqtwolog','s','sln',lev,'db6');xdM=wden(s,'minimaxi','s','sln',lev,'db6');subplot(5,2,1);plot(y);title('原始信号')axis([1,2048,-10,10]);subplot(5,2,2);plot(s);title('有噪信号')axis([1,2048,-10,10]);subplot(5,2,3);plot(xdH);xlabel('heursure阈值消噪处理后的信号')axis([1,2048,-10,10]);subplot(5,2,4);plot(xdR);xlabel('rigrsure阈值消噪处理后的信号')axis([1,2048,-10,10]);subplot(5,2,5);plot(xdS);xlabel('sqtwolog阈值消噪处理后的信号')axis([1,2048,-10,10]);subplot(5,2,6);plot(xdM);xlabel('minimaxi阈值消噪处理后的信号') Subplot(5,2,7);plot(y-xdH);xlabel('heursure阈值消噪后与原信号比较') subplot(5,2,8);plot(y-xdR);xlabel('rigrsure阈值消噪后与原信号比较') subplot(5,2,9);plot(y-xdS);xlabel('sqtwolog阈值消噪后与原信号比较') subplot(5,2,10);plot(y-xdM);xlabel('minimaxi阈值消噪后与原信号比较') A=var(y-xdH)B=var(y-xdR)C=var(y-xdS) D=var(y-xdM) A =0.3059B =0.3246C =1.3149D =0.7510各信号图形如下:应用小波分析,采用sym6小波,进行5层分解去噪的图形如下:下图为全分解模式:对信号进行去噪,图形如下:红色为原始信号,黄色为去噪后的信号。
信号的小波降噪(完整)小波分析的重要应用之一就是用于信号降噪。
在此,简要地阐述一下小波分析对信号降噪的基本原理。
(完整)我们知道,一个含噪的一维信号模型可表示为如下形式:1,,1,0),()()(-=⋅+=n k k e k f k s ε其中,)(k s 为含噪信号,)(k f 为有用信号,)(k e 为噪声信号。
这里我们认为)(k e 是一个1级高斯白噪声,通常表现为高频信号,而实际工程中)(k f 通常为低频信号或者是一些比较平稳的信号。
因此我们可按如下的方法进行降噪处理。
首先对信号进行小波分解,一般地,噪声信号多包含在具有较高频率的细节中,从而,可利用门限阀值等形式对所分解的小波系数进行出来,然后对信号进行小波重构即可达到对信号降噪的木的。
对信号降噪实质上是一直信号中的无庸部分,恢复信号中有用部分的过程。
1. 噪声在小波分解下的特性在此,我们将噪声e 看做普通信号分析以下它的相关性、频谱和频率分布这3个主要特征。
总体上,对于一维离散信号来说,其高频部分所影响的是小波分解的第一层细节,其低频部分所影响的小波分解的最深层和低频层。
如果对一个仅由白噪声所组成的信号进行分析,则可得出这样的结论:高频系数的幅值随着分解层次的增加而迅速地衰减,且其方差也有同样的变化趋势。
在这里用),(k j C 表示对噪声用小波分解后的系数,其中,j 表示尺度,k 表示时间,对离散时间信号引入如下的属性:(1) 如果e 是一个平稳、零均值的白噪声,那么它的小波分解系数是相互独立的。
(2) 如果e 是一个高斯型噪声,那么其小波分解系数是互不相关的,且服从高斯分布。
(3) 如果e 是一个平稳、有色、零均值的高斯型噪声序列,那么他的小拨分解系数也是高斯序列,并且对每一个分解尺度j ,其相应的系数是一个平稳、有色的序列。
如何选择对分解系数具有解相关性的小波是一个很困难的问题,在目前也没有得到很好的解决。
进一步需指出,即使存在一个小波,但是它对噪声的解相关性取决于噪声的有色性,为了用小波计算噪声的解相关性,必须知道噪声本身的颜色。