四路彩灯显示系统逻辑电路设计
- 格式:doc
- 大小:1.67 MB
- 文档页数:17
电子技术课程设计---彩灯控制器学院:电子信息工程学院班级:姓名学号:指导教师:彩灯控制器一、设计任务与要求:设计一个彩灯控制器,要求:1.四路彩灯从左向右逐次渐亮,间隔为1秒。
2.四路彩灯从右向左逐次渐灭,间隔为1秒。
3.四路彩灯同时点亮,时间间隔为1秒,然后同时变暗,时间为1秒,反复4次。
二、总体框图图(1)总体框图根据设计要求,电路设计大体思路如下:由脉冲发生器发出频率脉冲信号,利用计数器加法计数功能输出0000~1111的脉冲信号,经过数据选择器分别在0000~0011,0100~0111,1000~1111三个时段输出不同的高低电平,控制移位寄存器实现右移→左移→置数功能,从而控制彩灯按照设计要求实现亮灭。
三、选择器件本次课程设计所用器件如表一:表一本次课程设计所用器件1.同步二进制计数器74LS163表二7-3 74LS163功能表输入输出CP EP ET Q↑×0 ××全“L”↑0 1 ××预置数据↑ 1 1 1 1 计数× 1 1 0 ×保持× 1 1 ×0 保持根据逻辑图、波形图、功能表分析,74LS163具有如下功能:管脚图逻辑符号1)1是同步4位二进制加法计数器,M=16,CP上升沿触发2)2既可同步清除,也可异步清除。
同步清除时,清除信号的低电平将在下一个CP上升沿配合下把四个触发器的输出置为低电平。
异步清除时,直接用清除信号的低电平把四个触发器的输出置为低电平。
3)3同步预置方式:当LD = 0时,在CP作用下,计数器可并行打入预置数据.当LD = 1时,使能输入PT同时为高电平,在CP作用下,进行正常计数。
4)PT任一为低时,计数器处于保持状态。
5) 5 CO为进位输出,可用来级联成n位同步计数器。
2.四位双向移位寄存器74LS19474LS194内部原理图74LS194四位双向移位寄存器具有左移、右移、并行数据输入、保持、清除功能。
电子技术课程设计任务书题目一:顺序延时关断开关设计一个开关装置,该开关装置在按钮k 第一次按下时,三盏灯x 、y 和z 同时点亮,当k 再次按下时,x 灯立刻熄灭;y 灯5s 后熄灭,在y 灯熄灭8s 后,z 灯熄灭。
原理框图如下图。
数码管数码管题目二:瞬开延断开关设计一个按钮开关,该开关在按钮第一次按下时,输出信号x 和y 瞬时变成高电平,在第二次按钮按下时,输出信号x瞬时变成低电平,可是输出信号y 在延时90s 后,才变成低电平。
假设是x 操纵投影仪的灯泡、y 操纵投影仪的风扇,那么该开关确实是投影仪的电源开关。
该操纵器框图如下图。
Vcc参考《数字电子技术基础教程》夏路易 例6-24题目三:电灯操纵开关设计一个电灯操纵开关,该开关有一个按钮,当按钮按下1次,那么电灯亮10秒钟后灭;当按钮按下2次(包括前一次),那么电灯长亮不灭;当再按1次,那么电灯灭。
参考《数字电子技术基础教程》夏路易 例6-25题目四:顺序开关灯操纵器设计一个顺序开关灯操纵器,要求当按钮k 第1次按下时,灯a 立刻亮,灯b 在延时11 s 后亮,在灯b 亮后15 s 后,灯c 亮;当按钮k 第2次按下时,灯c 立刻灭,延时17 s 后灯b 灭,灯b 灭后12 s ,灯a 灭。
参考《数字电子技术基础教程》夏路易例6-31题目五:电动机操纵器设计一个操纵两个电动机的操纵器。
要求电动机1运转10s后,电动机1停止,电动机2工作;电动机2工作5 s后,电动机2停止,电动机1启动,不断循环;按钮k按下后,操纵器开始运行。
题目六:步进电动机操纵器设计一个兼有三相六拍、三相三拍两种工作方式的脉冲配器。
一、能操纵步进电动机作正向和反向运转。
二、设计驱动步进电动机工作的脉冲放大电路,使之能驱动一个相电压为24伏、相电流为的步进电动机工作。
3、设计步数显示和步数操纵电路,能操纵电动机运转到预置的步数时即停止转动,或运转到预定圈数时停转。
4、设计电路工作的时钟信号,频率为10HZ-10KHZ,且持续可调。
目录摘要 (Ⅰ)1 理论知识准备 (1)2 方案论证 (2)2.1 备选方案 (2)2.2 方案选择 (5)3 电路设计 (7)3.1 选择器件 (7)3.1.1 555定时器 (7)3.1.2 74LS194移位寄存器 (8)3.2 功能模块 (10)3.2.1 时钟脉冲产生电路 (10)3.2.2 彩灯维持电路 (12)3.2.3 显示电路 (14)4 电路调试 (15)4.1 总体电路仿真 (15)4.2 电路布线 (16)4.3 电路调试结果 (17)心得体会 (18)参考文献 (19)1 理论知识准备本次做的彩灯循环控制其实也可以看成是不是用单片机而实现的流水灯电路,流水灯是一串按一定的规律像流水一样连续闪亮。
流水灯控制是可编程控制器的一个应用,其控制思想在工业控制技术领域也同样适用。
循环彩灯控制可用多种方法实现,但对现代可编程控制器而言,利用移位寄存器实现最为便利。
通常用左移寄存器实现灯的单方向移动;用双向移位寄存器实现灯的双向移动。
控制程序中,关键在于数据移位方向的控制。
单方向控制的流水灯,使用左移寄存器可容易地实现。
如果流水灯的点亮顺序是双向的,则使用双向移位寄存器进行控制。
由于本次设计只是设计了单向的彩灯循环电路,所以彩灯控制电路由三个模块构成,显示电路﹑秒脉冲电路和维持电路。
秒脉冲电路全程为电路提供矩形波信号使彩灯定时发亮;显示电路为维持电路提供电源:维持电路在显示电路部分提供电源的情况下为电路提供一段较长的高电平,使彩灯在全部变亮后保持一段时间。
同时结合显示电路部分所带元件(主要是74LS194)的性质,使彩灯从右到左依次由暗变亮,亮后维持一段时间,然后熄灭,并且不断重复。
由于本次设计并不是很复杂,所以本设计只采用数字集成电路的555定时器和移位寄存器,产生相应的控制信号,从而控制彩灯的闪烁。
数据选择器的输出端接移位寄存器的输入端,在时钟脉冲的作用下,数据在移位寄存器的八位并行输出端从Q0到Q7顺序移动。
四路彩灯控制器电路工作原理
四路彩灯控制器电路是一种常见的电路,用于控制四个不同颜色的灯光。
它可以通过控制器来实现对灯光的开关、亮度和颜色的调节。
下面我们来了解一下四路彩灯控制器电路的工作原理。
四路彩灯控制器电路主要由三个部分组成:电源部分、控制部分和输出部分。
其中电源部分提供电源,控制部分控制灯光的开关、亮度和颜色,输出部分将控制信号转换为电流输出到灯光上。
电源部分通常采用交流电源或直流电源,通过整流、滤波和稳压等处理,将电源转换为稳定的直流电源,以供控制部分和输出部分使用。
控制部分是四路彩灯控制器电路的核心部分,它通过控制芯片来实现对灯光的控制。
控制芯片通常采用单片机或专用的控制芯片,它们可以通过编程或设置来实现对灯光的控制。
控制芯片可以控制灯光的开关、亮度和颜色,同时还可以实现多种灯光效果,如闪烁、渐变、呼吸等。
输出部分将控制信号转换为电流输出到灯光上。
输出部分通常采用三极管或场效应管等电子元件,它们可以将控制信号转换为电流输出到灯光上,从而实现对灯光的控制。
输出部分还可以通过电阻、电容等元件来实现对灯光的亮度和颜色的调节。
四路彩灯控制器电路是一种常见的电路,它可以通过控制器来实现对灯光的开关、亮度和颜色的调节。
它的工作原理主要由电源部分、控制部分和输出部分组成,通过这三个部分的协作,实现对灯光的精确控制。
四路彩灯控制器设计方案1 前言1.1序言随着经济的发展,城市之间的灯光系统花样越来越多,用中规模集成电路设计并制作一个四路彩灯显示系统,可用于节日庆典,医院病房等多处地方,同用单片机控制相比,它具有准确,不易受外界干扰出错,因而得到了广泛的应用。
小到人们日常生活中的电子贺卡,大到宾馆、医院等公共场所的大型数显电子钟。
1.2设计要求用中规模集成电路设计并制作一个四路彩灯显示系统,要求如下:1)开机自动置入初始状态后即能按规定的程序进行循环显示;2)程序由三个节拍组成:第一节拍时,四路输出Q1~Q4依次为1,使第一路彩灯先点亮,接着第二,第三,第四路彩灯点亮。
第二节拍时,Q4~Q1依次为0,使第四路彩灯先灭,然后使第三,第二,第一路彩灯灭。
第三节拍时,Q1~Q4输出同时为1态0.5秒,然后同时为0态0.5秒,使四路彩灯同时点亮0.5秒,然后同时灭0.5秒,共进行4次。
每个节拍费时都为4秒,执行一次程序共需12秒;3)用发光二极管显示彩灯系统的各节拍。
1.3实施计划根据课程设计要求,首先确定总设计方案,然后用EDA软件设计各单元电路并仿真分析,最后完善总体电路写出设计报告。
1.4必备条件编辑说明书:Word 2003绘制框图:SmartDraw 7绘制原理电路:Protel、Altium、Multisim、Tina、Proteus等仿真分析:Altium、Multisim、Tina、Proteus等PCB:Protel、Altium、Multisim、Tina、Proteus等设计所需软件用以上任意即可完成需求。
2 总体方案设计通过查阅大量相关技术资料,并结合自己的实际知识,我主要提出了两种技术方案来实现系统功能。
下面我将首先对这两种方案的组成框图和实现原理分别进行说明,并分析比较它们的特点,然后阐述我最终选择方案的原因。
图2.1 四路彩灯控制流程框图2.1方案比较2.1.1方案1采用单片机控制电路为主实现四路彩灯显示。
四路彩灯设计实验报告1. 引言彩灯设计实验是电子实践课程中的一项基础实验,通过设计和搭建电路,控制四路彩灯的亮灭和颜色变化,培养学生对电路原理和电子元件的实际运用能力。
本实验报告将详细介绍实验的设计思路、实验过程和实验结果,并对实验中遇到的问题进行分析和总结。
2. 设计思路本实验的主要目标是设计一个能够控制四个灯泡亮灭和变化颜色的电路。
基于这个目标,我们采用了以下设计思路:1. 使用Arduino开发板作为控制中心,通过编程实现对彩灯的控制。
2. 运用PWM (脉宽调制)技术来控制灯泡的亮度和颜色变化。
3. 使用LED灯泡作为彩灯的光源,通过调整电流来控制亮度和颜色。
3. 实验过程3.1 实验器材和元件- Arduino开发板- 面包板- 杜邦线- RGB LED灯泡x 4- 电阻x 4- 电阻箱- 电源3.2 实验步骤3.2.1 电路搭建首先,我们将Arduino开发板和面包板连接起来,并将四个RGB LED 灯泡和电阻连接到面包板上。
连接电路的示意图如下:3.2.2 程序编写接下来,我们使用Arduino开发软件编写程序。
程序的基本思路是通过控制PWM输出来控制灯泡的亮灭和颜色变化。
程序的核心代码如下:int redPin = 9;int greenPin = 10;int bluePin = 11;void setup() {pinMode(redPin, OUTPUT);pinMode(greenPin, OUTPUT);pinMode(bluePin, OUTPUT);}void loop() { analogWrite(redPin, 255); analogWrite(greenPin, 0); analogWrite(bluePin, 0); delay(1000);analogWrite(redPin, 0); analogWrite(greenPin, 255); analogWrite(bluePin, 0); delay(1000);analogWrite(redPin, 0); analogWrite(greenPin, 0); analogWrite(bluePin, 255); delay(1000);analogWrite(redPin, 255);analogWrite(greenPin, 255);analogWrite(bluePin, 0);delay(1000);}3.2.3 实验验证完成电路搭建和程序编写后,我们将Arduino开发板连接到电脑上,上传程序,并将电源接入电路。
摘要彩灯常常用于商业、家居或者其他室内外装饰,成本低廉、变化多样、,深受大家喜爱。
四路彩灯系统设计主要由秒脉冲发生器、分频器、节拍控制器、移位计数器、彩灯显示系统组成。
其中,秒脉冲发生器由NE555构成的多谐振荡器产生,分频和控制器由74HC163构成,移位计数器为74HC194。
关键字:彩灯控制分频器节拍控制器秒脉冲发生器移位计数器绪论 (3)设计任务 (3)设计要求 (3)彩灯控制系统设计 (4)第一节系统电路方案设计与论证 (4)1. 基本原理 (4)2. 方案设计 (6)第二节直流电源设计方案 (6)第三节单元电路设计 (7)1. 直流稳压电源的工作原理 (7)2. 时钟脉冲产生电路 (8)3. 分频电路设计 (9)4. 循环控制电路设计 (10)5. 彩灯输出电路 (11)第四节总电路设计及仿真 (12)调试及测试结果分析 (14)参考资料 (15)附录 (16)4位双向移位寄存器 (17)心得体会 (18)设计任务设计并制作一套彩灯控制系统设计要求1.四路彩灯从左向右逐次渐亮,间隔为1秒。
2.四路彩灯从右向左逐次渐灭,间隔为1秒。
3.四路彩灯同时点亮,时间为0.5秒,然后同时变暗,时间为0.5秒,反复四次。
4.按照以上技术要求设计电路,撰写设计报告,绘制电路图。
5.电源:220V/50Hz的工频交流电供电。
彩灯控制系统设计第一节系统电路方案设计与论证1.基本原理四路彩灯有四路输出,所以设输其出设依次为Q0n+1Q1n+2Q2n+1Q3n+1若用“1”表示灯亮,则“0”表示灯灭,由设计要求可知四路彩灯显示系统要求如表1.1-1所示的输出显示。
表1-1由表1.1-1可知,需要一个分频器起节拍产生和控制作用,每4s一个节拍,3个节拍共12s,然后反复循环这三个节拍。
一个节拍结束后应产生一个信号到节拍程序执行器,完成彩灯渐亮、渐灭、同时亮、同时灭等功能。
分频及节拍控制可以用一个12进制计数器来完成;彩灯渐亮、渐灭可以用器件的左移、右移功能来实现,因此可选用移位寄存器74HC194来完成,因为它既可以实现左移又可以实现右移的功能。
电路工作原理从ICl⑧脚出来的脉冲信号分为两路:一路作为计数脉冲送到IC3的⑩脚;另一路作为移位时钟脉冲加到IC6的⑧脚。
调节RWl 改变ICl的振荡频率,可以改变灯光的移动速度,以得到不同的动态效果。
IC2、IC4、IC5共同组成了一个电子开关。
IC2输出的
计数脉冲经IC4两位二进制计数,在IC4的两个输出端共可得到“00”一“11”4个逻辑状态。
这4个状态作为IC5的4个数据通道选择信号,对应从IC3输送到IC5的QA、QB、QC、QD4个分频信号。
其作用相当于一个受控的一刀四位的机械转换开关。
当IC4输出为“00”时,选通IC5的⑧脚;为“01”时,选定IC5的⑤脚……。
调节RW2改变IC2的输出脉冲周期,可以改变开关的切换时间,用以选择每种花样出现时间的长短。
从IC5第⑦脚输出的数据信号送到IC6的输入端,在时钟脉冲作用下,数据在IC6的8位并行输出端从Q0一Q7顺序移动。
这一移动的8位控制信号经功率驱动电路去推动8路彩灯,就出现了8路4花样自动循环切换的流水彩灯。
元件选择图1中,变压器用220/9V、10—20VA变压器。
三极管用9013,双向可控硅用3A600V的了LC336A,每路可带20只220V15W的白炽灯泡。
印刷电路见图2。
在实际制作中,注意交流220V市电的相线(火线)和中线(零线)必须严格区分。
火线不能进入控制器,零线进入控制器后,与双向可控硅的地就近相接。
彩灯控制器电路由电源电路和彩灯控制电路组成,如图1-151所示。
电源电路由整流二极管VDl-VD4、限流电阻器Rl、稳压二极管VS和滤波电容器Cl组成。
彩灯控制电路由计数器集成电路IC、电阻器肛-R13、电容器C2、可变电阻器RP、晶闸管VTl-VTlO和彩灯HLl-HLlO组成。
为简化电路,图中IC的Q7-QlO端、Q12、Q13端(该集成电路无Ql-Q3和Qll端)和电阻器R7-Rl2、晶闸管VT4-VT9、彩灯HL4-HL9本画出。
交流220V电压经VDl,VD4整流、Rl限流降压、VS稳压及Cl滤波后,为IC提供6.8V直流工作电源。
RP、R2、R3、C2和IC的9-11脚内电路组成多谐振荡器。
在接通电源后,多谐振荡器即振荡工作,IC对多谐振荡器产生的振荡信号进行分频计数后,从IC的Q4-QlO 端和Q12-Q14端输出变化的控制电平,使VTl-VTlO间歇导通,彩灯HLl-HLlO按不同的频率闪烁发光(HLl的闪烁频率最高,HLlO的闪烁频率最低)。
调节RP的阻值,可改变彩灯闪烁的频率。
元器件选择Rl选用1/2W金属膜电阻器;R2-R13均选用1/4W金属膜电阻器。
Cl选用耐压值为16V的铝电解电容器;C2选用独石电容器或CBB电容器。
RP选用有机实心可变电阻器。
VDl-VD4选用1N4004或1N4007型硅整流二极管。
VS选用lW、6.8V的硅稳压二极管,例如lN4736等型号。
VTl-VTl4均选用2P4M(2A、400V)的晶闸管。
IC选用14级二进制计数分频器集成电路。
HLl-HLlO选用成品彩灯串。
本例介绍的彩灯控制器,能控制5路彩灯(可在一个平面上组成各种图形或图案)使之按逐路递增点亮、逐路递减熄灭的显示方式闪烁发光。
电路工作原理该彩灯控制器电路由电源电路、多谐振荡器、脉冲控制电路和彩灯驱动控制电路组成,如图1-152所示。
电源电路由降压电容器Cl、泄放电阻器Rl4、稳压二极管VS、整流二极管VDl和滤波电容器C2组成。
四路彩灯设计实验报告
彩灯是各式电工装置中一种最常见的家用电器,它可以不同的颜色照亮空间,改善视觉效果。
近年来,一些杰出的电气和光学工程师,经过深入的研究和实验,将普通的彩灯制作技术发展到更新颖的彩色灯饰安装领域,因此,引发了四路彩灯的普及和发展。
为了研究四路彩灯相关知识,我在实验室中进行了“流量控制四路彩灯”的设计实验,实验场地为实验室中的桌面。
首先,根据实验的要求,我在实验室中购买了一台四路彩灯,以及相关电子元件,如三极管、电阻、电容、电阻、LED灯等,把四路彩灯安装在实验台上,装上电源供给开关,可以满足实验室实验需求。
然后,根据实验需要,在实验台上,建立了相关电路线路,接下来,在电路线路设计中,采用了把莫尔斯电码传输到芯片中,让芯片处理后,通过把四个LED灯串联起来,来控制四路彩灯的亮度,就完成了流量控制功能。
最后,完成以上电路设计,使四路彩灯按照一定节奏闪烁,实现对四路彩灯可控,内容丰富多样。
通过实验,我们学习到了LED显示器的电路结构,以及“流量控制四路彩灯”的实现原理,详细了解了彩色灯的基本工作原理,并取得了不错的结果。
因此,使用这款四路彩灯装置可以获得非常可观的成果,使空间更加活跃。
在经历这次设计实验后,我的实验技能也得到了大幅度提高,受益匪浅。