八年级数学变化的鱼2
- 格式:pdf
- 大小:1.07 MB
- 文档页数:11
变化的“鱼”(2)一、温故知新1.点M(3,-4)到原点的距离是.2.点A关于原点O的对称点的坐标是B(6,-8),则点A的坐标是.3.2的相反数是.4.A(-3,2)关于原点O的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(3,2) B.(-3,2) C.(3,-2) D.(-2,3)二、自主学习1.在平面直角坐标系中,若将某一个图形各点的坐标进行如下变化,平面直角坐标系中的图形将会发生怎样的变化:(1)横坐标不变,纵坐标分别变成原来的3倍,图形将;(2)纵坐标不变,横坐标分别变成原来的2倍,图形将;(3)纵坐标不变,横坐标分别减去1,图形将;(4)横坐标不变,纵坐标分别加2,图形将;(5)若纵坐标保持不变,横坐标分别乘-1,图形将;(6)若想要此图形向下平移5个单位长度,需将坐标分别个单位长度;(7)若想要此图形放大4倍,需将此图形的横、纵坐标分别;(8)若想要此图形向右平移3个单位长度,需将坐标分别个单位长度.2.把点A(-3,4)的横坐标不变,纵坐标乘以-1(即纵坐标取相反数),得到的点B的坐标为;这个点B和点A 关于对称.3.把点A(-3,4)的纵坐标不变,横坐标乘以-1(即横坐标取相反数),得到的点C的坐标为;这个点C和点A 关于对称.三、课堂同步基础训练1.点M(a,-3)和点N(2,b)关于x轴对称,则2.点A(3,-4)关于y轴的对称点是点B线段AC的长是个单位.3.已知(0,0)A,(2,2)B,(4,0)C(1)依次连接各点可得到什么图形,角坐标系中画出这个图形?(2)若想将此图案向左平移3换?(3)将此图案向下平移3个单位长度呢?(4)将此图案横向拉长为原来的2倍呢?阶梯一(5)将此图案沿y 轴作轴对称图形呢?4.已知点(,3)P m m -是第二象限的点,则m 的取值范围是什么?若点(,3)P m m -关于原点的中心对称点在第二象限,则m 的取值范围又是什么?能力应用5.点M 位于x 轴的下方,距x 轴3个单位长度,且位于y 轴左方,距y 轴2个单位长度,则M 点的坐标为 .6.在矩形ABCD 中,(4,1)A ,(0,1)B ,(0,3)C ,求点D 的坐标?拓展练习 7.已知两点(0,4)A ,(8,2)B ,点P 是x 轴上的一点,求:PA PB +的最小值.8.设m 是实数,那么平面上的点2(352,1)P m m m -+-不可能在第几象限?阶梯三阶梯二。
1.课题:《变化的鱼》第2课时2.教学目标(1)知识与技能目标进一步巩固图形坐标变化与图形平移、伸长、压缩之间的探索过程,发展学生的形象思维能力和数形结合意识。
加入坐标变化所引起的图形的对称变化,让学生能根据轴对称图形的特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
(2)过程与方法目标在同一坐标系中,改变点的坐标,通过让学生画图,充分感受点的坐标变化所带来的图形的变化规律,从而让学生在动手的过程中对坐标变化后图形的变化规律先立下印象,再和老师一起总结变化规律,清晰坐标如何改变时,图形关于什么对称。
(3)情感与态度目标通过研究有趣的图形,学生能进行探索和创造,把学到的知识灵活地运用到现实生活中。
3.教学重难点重点:作某一图形关于轴对称的对称图形,并能写出图形相应点的坐标。
难点:作某一图形关于对称轴的对称图形。
4.教学过程序幻灯片设计意图号幻灯片1 上课前,先把一条几何形状的游来游去的“鱼”展示给学生,“鱼”会做平移、拉伸、压缩、对称等多种变化。
引起学生注意力的同时,为学生先打下印象基础。
灯片2复习上节课的关键点,坐标加减一个正数时,图形的变化怎样?如何表达?继续加深学生印象的同时,强调答题规范。
幻灯片3复习上节课的关键点,坐标乘以一个正数时,图形的变化怎样?如何表达?继续加深学生印象的同时,强调答题规范。
幻灯片4重温上一节课画好的第一条“鱼”,为下面在同一直角坐标系中比较“鱼”的变化作好参照准备。
幻灯片5 若纵坐标保持不变,横坐标分别×(-1)同样,这一次我也是先让学生画好一个4行9列的表格,方便把坐标的变化记录下来。
这样子,坐标改变时,学生能清晰坐标怎么变,变成了什么,画图的时候也就不用一直抬头看白板了。
灯片6巡视学生画图的情况后,老师播放出标准的变化后的“鱼”,让学生参考答案并能及时发现自身错误的同时,根据图形,引导学生发现图形与原图形相比,出现了什么变化。
首先,先要让学生明确,图形的形状以及大小没有发生变化,以y轴为对称轴,把图形翻折,“鱼”能重合,所以图形是与原图形关于y轴对称。