最新反比例函数经典习题及答案
- 格式:doc
- 大小:124.04 KB
- 文档页数:6
反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
反比例函数的性质专项练习60题(有答案)1.已知正比例函数y=kx(k为常数,k≠0),y随x的增大而增大,则反比例函数图象位于()A.第一、二象限B.第一、三象限C.第二、四象限D.第三、四象限2.已知函数:①y=2x;②y=2+5x;③y=(x>0);④y=;⑤y=,其中y随着x的增大而增大的有()A.1个B.2个C.3个D.4个3.小明正在研究函数y=的性质,下面他的几种说法中错误的是()A.无论x取何值,xy总是一个定值B.在自变量取值范围内的每一象限,y随着x的增大而减小C.函数y=的图象关于y=﹣x对称D.函数y=的图象与y=x的图象有两个交点4.已知反比例函数(k≠0),当x>0时,y随x的增大而增大,那么该函数的图象经过()A.第一象限;B.第四象限;C.第一、三象限D.第二、四象限5.已知双曲线y=(k≠0)在第二,四象限,则直线y=kx+k一定不经过第()象限.A.一B.二C.三D.四6.已知函数y=的图象经过点(2,3),则下列说法正确的是()A.点(﹣2,﹣3)一定在此函数的图象上B.此函数的图象只在第一象限C.y随x增大而增大D.此函数与x轴的交点的纵坐标为07.已知反比例函数y=(k为常数)的图象在第一、三象限,那么k的取值范围是()A.k>B.k<C.k>D.k<8.已知反比例函数y=的图象经过点(3,﹣4),下列说法正确的是()A.当x<0时,y>0 B.函数的图象只在第四象限C.y随着x的增大而增大D.点(4,3)在此函数的图象上9.下列关于反比例函数y=,y=,y=的共同点的叙述错误的是()C.图象都不与坐标轴相交D.图象在每一个象限内,y随x的增大而减小10.在直角坐标系中,若一点的横坐标与纵坐标互为倒数,则该点一定在()A.直线y=﹣x上B.双曲线y=﹣上C.直线y=x上D.双曲线y=上11.关于函数有如下结论:①函数图象一定经过点(﹣2,﹣3);②函数图象在第一、三象限;③函数值y随x的增大而减小;④当x≤﹣6时,y的取值范围为y≥﹣1.其中正确的有()个.A.1B.2C.3D.412.若反比例函数y=m的图象在它所在的象限内,y随x的增大而增大,则m的值是()A.﹣2 B. 2 C.±2 D.以上结论都不对13.若函数y=﹣(m﹣)是反比例函数,且图象在第一,三象限,那么m的值是()A.±1 B.﹣1 C.1D.214.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,则k的取值范围_________ .15.若反比例函数y=(m﹣2)的图象在第一、三象限内,则m= _________ .16.若反比例函数y=(2k﹣1)的图象在二、四象限,则k= _________ .17.若反比例函数y=(1﹣2m)的图象在第一、三象限,则m= _________ .18.已知函数y=的图象的两个分支在第一,三象限内,则m的取值范围是_________ .19.反比例函数y=(m为常数)当x<0时,y随x的增大而增大,则m的取值范围是_________ .20.若函数y=的图象过点(3,﹣7),那么这个反比例函数值在每一个象限内y随x的增大而_________ .21.已知双曲线过点(﹣1,﹣3),则双曲线的两个分支在第_________ 象限.22.如果反比例函数图象经过点(2,1),那么这个反比例函数的图象在第_________ 象限和第_________ 象限.23.若函数y=的图象,当x>0时,y随着x的增大而减小,则m _________ .24.是y关于x的反比例函数,且图象在第二、四象限,则m的值为_________ .25.反比例函数y=(3m﹣1)的图象在它所在的象限内,y随x的增大而增大,则m= _________ .26.若函数是反比例函数,且它的图象在第一、三象限,则m= _________ .27.直线y=kx+b过一、二、三象限,则反比例函数的图象在第_________ 象限内.28.已知关于x的函数满足下列条件:①当x>0时,函数值y随x值的增大而减小;②当x=1时,函数值y=2.请写一个符合条件函数的解析式:_________ .(答案不唯一)29.反比例函数y=,当x>0时,其图象位于第一象限,则m的取值范围是_________ ,此时y随x的增大而_________ .30.一般地,函数y=(k是常数,k≠0)是反比例函数,其图象是_________ ,当k<0时,图象两支在第_________ 象限内.31.已知反比例函数y=的图象过点(6,﹣),则函数的图象在第_________ 象限.32.反比例函数(k为常数,k≠0)的图象位于第_________ 象限.33.若函数是反比例函数,且图象在第二、四象限内,则m的值是_________ .34.若y=的图象在第二、四象限,则k的值可以是_________ (填上一个满足条件的k值).35.已知点(﹣3,﹣5)在反比例函数y=的图象上,当x<0时,它的图象在第_________ 象限.36.反比例函数y=(2k+1)在每个象限内y随x的增大而增大,则k= _________ .37.如图,在平面直角坐标系中,过A(0,2)作x轴的平行线,交函数(x<0)的图象于B,交函数(x >0)的图象于C,则线段AB与线段AC的长度之比为_________ .38.已知函数y=﹣,当x<0时,y _________ 0,此时,其图象的相应部分在第_________ 象限.39.若反比例函数y=的图象在第一、三象限内,则m _________ .40.已知y=kx﹣3的值随x的增大而增大,则函数的图象在_________ 象限.41.已知关于x的函数是反比例函数,则m= _________ ,x>0时,y随x的增大而_________ .42.反比例函数y=(k为常数,且k≠0)的图象是_________ ,该图象分布在第_________ 象限.43.对于反比例函数,下列说法:①点(﹣3,﹣5)在它的图象上;②它的图象在第二、四象限;③当x>0时,y随x的增大而减小;④当x<0时,y随x的增大而增大.⑤它的图象不可能与坐标轴相交.上述说法中,正确的结论是_________ .(填上所有你认为正确的序号,答案格式如:“①②③④⑤”).44.如果反比例函数y=的图象位于第二、四象限,则n的取值范围是_________ ;如果图象在每个象限内,y随x的增大而减小,则n的取值范围是_________ .45.函数y=的图象在第_________ 象限内,在每一个象限内,y随x的增大而_________ ;函数y=﹣的图象在第_________ 象限内,在每一个象限内,y随x的增大而_________ .46.李老师给出了一个函数,甲、乙两学生分别指出这个函数的一个特征.甲:它的图象经过第二、四象限;乙:在每个象限内函数值y随x的增大而增大.在你学过的函数中,写出一个满足上述特征的函数解析式_________ .47.点(2,1)在反比例函数的图象上,则当x<0时,y的值随着x的值增大而_________ .48.已知图中的曲线是反比例函数y=(m为常数,m≠5)图象的一支.(Ⅰ)这个反比例函数图象的另一支在第几象限?常数m的取值范围是什么;(Ⅱ)若该函数的图象与正比例函数y=2x的图象在第一象内限的交点为A,过A点作x轴的垂线,垂足为B,当49.在反比例函数的图象的每一条曲线上,y都随x的增大而减小.(1)求k的取值范围;(2)在曲线上取一点A,分别向x轴、y轴作垂线段,垂足分别为B、C,坐标原点为O,若四边形ABOC面积为6,求k的值.50.如图所示是反比例函数的图象的一支,根据图象回答下列问题:(1)图象的另一支在哪个象限?常数n的取值范围是什么?(2)若函数图象经过点(3,1),求n的值;(3)在这个函数图象的某一支上任取点A(a1,b1)和]点B(a2,b2),如果a1<a2,试比较b1和b2的大小.51.已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.52.设函数y=(m﹣2),当m取何值时,它是反比例函数?它的图象位于哪些象限?求当≤x≤2时函数值y的变化范围.53.已知是反比例函数,且y随x值的增大而增大,求k的值.54.如图是三个反比例函数,,在x轴上方的图象,由此观察得到k1,k2,k3的大小关系,并写出比较过程.55.在反比例函数y=图象的每一条曲线上,y随x的增大而减小,求k的取值范围.56.已知反比例函数的图象如图所示(1)则k的值是_________ ;(2)你认为点B(﹣2,4)在这个函数的图象上吗?答:_________ ;(3)在第二象限内,y随x的增大而_________ .(填“增大”或“减小)57.已知反比例函数y=,分别根据下列条件求k的取值范围,并画出草图.(1)函数图象位于第一、三象限;(2)函数图象的一个分支向右上方延伸.58.已知反比例函数,(1)若在此反比例函数图象的每一条曲线上,y都随着x的增大而减小,求m的取值范围值;(2)若点A(2,3)在此反比例函数图象上,求其解析式.59.已知反比例函数的图象在每个象限内y随x的增大而减小,求a的取值范围.60.若函数y=(2m﹣9)x|m|﹣7是反比例函数,且它的图象分别位于第一象限和第三象限内,求m的值.参考答案:1.∵正比例函数y=kx(k为常数,k≠0),y随x的增大而增大,∴k>0,∴反比例函数y=图象位于第一、三象限.故选B2.①y=2x,k=2,y随着x的增大而增大,正确;②y=2+5x是一次函数,k>0,y随着x的增大而增大,正确;③y=(x>0),y随着x的增大而增大,正确;④y=,k=5>0,在每个象限内,y随x的增大而减小,错误;⑤y=,k2+2>0,在每个象限内,y随x的增大而减小,错误.故选C.3.A、无论x取何值,xy总是一个定值,由于x≠0,错误;B、在自变量取值范围内的每一象限,y随着x的增大而减小,正确;C、函数y=的图象关于y=﹣x对称,正确;D、函数y=的图象与y=x的图象有两个交点,正确;故选A4.∵当x>0时,y随x的增大而增大,∴k<0∴其函数图象应经过二、四象限故选D.5.∵双曲线y=(k≠0)在第二,四象限.∴k<0,则直线y=kx+k一定经过二、三、四象限,不经过第一象限.故选A.6.由题意得:k=6,则反比例函数y=;A、点(﹣2,﹣3)一定在此函数的图象上,正确;B、此函数的图象只在第一象限,错误,在一三象限;C、y随x增大而增大,错误,在每一象限,y随x增大而减小;D、此函数与x轴的交点的纵坐标为0,错误,与x轴无交点.故选A.7.∵y=(k为常数)的图象在第一、三象限,∴2﹣3k>0,解得k<.故选B.8.把点(3,﹣4)代入反比例函数y=得,k=﹣12<0,A、因为xy=﹣12<0,故x、y异号,故选项正确;B、函数的图象在第二、四象限,故选项错误;C、在每个象限内,y随着x的增大而增大,故选项错误;D、4,3两数同号,根据A的结论,(4,3)不在函数图象上,故9.A、图象都位于第一三象限,正确;B、自变量的取值范围都是不等于0的实数,而不是全体实数,故本选项错误;C、反比例函数图象都不与坐标轴相交,正确;D、图象在每一个象限内,y随x的增大而减小,正确.故选B②正确,因为此函数中k=6>0,所以函数图象在第一、三象限;③错误,因为反比例函数的增减性必须强调在每个象限内或在双曲线的每一支上;④错误,应为﹣1≤y<0.所以,①②两个正确;故选B.12.根据题意得:,解得m=﹣2.故选A.13.∵y=﹣(m﹣)是反比例函数,∴,解之得m=±1,又∵图象在第一,三象限,∴﹣(m﹣)>0,即m,故m的值是﹣1.故选B.14.∵反比例函数y=图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,解得k>1004.故答案为:k>1004.15.∵y=(m﹣2)是反比例函数,且图象在第一、三象限,∴,解得m=±3且m>2,∴m=3.故答案为:3.16.根据题意,3k2﹣2k﹣1=﹣1,2k﹣1<0,解得k=0或k=且k<,∴k=0.故答案为:017.根据题意m2﹣2=﹣1,解得m=±1,又∵函数的图象在第一、三象限∴1﹣2m>0,m<.所以m=﹣1.故答案为:﹣118.∵反比例函数的图象在一、三象限,∴2m﹣1>0,∴m>.故答案为:m>.19.∵反比例函数y随x的增大而增大,∴1﹣2m<0,∴m>.故答案为:m>.20.将点(3,﹣7)代入解析式可得k=﹣21<0,∴反比例函数值在每一个象限内y随x的增大而增大.故答案为:增大.21.设y=,图象过(﹣1,﹣3),所以k=3>0,故函数图象位于第一、三象限.22.设y=,∵图象过(2,1),23.∵当x>0时,y随着x的增大而减小∴m﹣1>0,则m>1.故答案为:>124.∵是y关于x的反比例函数,∴m2﹣m﹣7=﹣1,解得m=﹣2或3,∵图象在第二、四象限,∴m2﹣5<0,解得:m=﹣2.故答案为:﹣225.由于反比例函数y=(3m﹣1)的图象在它所在的象限内,y随x的增大而增大,则m需满足:m2﹣2=﹣1且3m﹣1<0,则m=﹣1.26.∵是反比例函数,且它的图象在第一、三象限,∴,解得:m=2.故答案为:227.∵直线y=kx+b过一、二、三象限,∴k>0,b>0,∴kb>0,∴反比例函数y=的图象在一、三象限.故答案为:一、三.28.根据反比例函数的性质关于x的函数当x>0时,函数值y随x值的增大而减小,则函数关系式为y=(k>0),把当x=1时,函数值y=2,代入上式得k=2,符合条件函数的解析式为y=(答案不唯一).29.∵当x>0时,其图象位于第一象限,∴m﹣5>0,则m>5,此时y随x的增大而减小.故答案为:m>5、减小30.函数y=(k是常数,k≠0)是反比例函数,其图象是双曲线,当k<0时,图象两支在第二,四象限内.31.由题意知k=6×(﹣)=﹣2<0,∴函数的图象在第二、四象限.32.∵k≠0,∴k2>0,∴﹣k2<0,∴函数图象位于第二、四象限.故答案为:二、四.33.∵函数是反比例函数,且图象在第二、四象限内,∴,解得m=±2且m<﹣1,∴m=﹣2.故答案为:﹣234.∵若y=的图象在第二、四象限,根据反比例函数的性质k<0,k的值可以是﹣1(答案不唯一).35.根据题意得:﹣5=﹣,解得:k=﹣15,∴函数解析式为y=﹣,因此当x<0时,它的图象在第二象限.故答案为:二36.由于反比例函数y=(2k+1)在每个象限内y随x的增大而增大,37.根据题意,点B、C的纵坐标为2,∴﹣=2,解得x=﹣1,∴AB=|﹣1|=1,=2,解得x=3,∴AC=3,故线段AB与线段AC的长度之比为1:3.故答案为:1:338.∵函数y=﹣,k=﹣<0,∴函数图象位于第二、四象限,∴当x<0时,y>0,其图象的相应部分在第二象限.故答案为:>、二.39.由于反比例函数y=的图象在第一、三象限内,则m﹣1>0,解得:m>1.故答案为:m>1.40.∵y=kx﹣3的值随x的增大而增大,∴k>0,根据反比例函数的性质函数:的图象在二,四象限41.∵关于x的函数是反比例函数,∴,解得m=﹣2.∵m=﹣2,∴m﹣2=﹣2﹣2=﹣4<0,∴此函数的图象在二、四象限,当x>0时,y随x的增大而增大.故答案为:﹣2、增大.42.根据反比例函数的性质,反比例函数y=(k为常数,且k≠0)的图象是双曲线,无论k为何值|k|>0,该图象分布在第一,三象限.43.①把点(﹣3,﹣5)代入上反比例函数中在它的图象上﹣5=﹣成立,正确;②它的图象在第一、三象限,错误;③当x>0时,y随x的增大而减小,正确;④当x<0时,y随x的增大而减小,错误;⑤∵x≠0,∴它的图象不可能与坐标轴相交,正确.故正确的结论是①③⑤.44.反比例函数y=的图象位于第二、四象限,所以有4﹣n<0,即n>4.又函数图象在每个象限内,y随x的增大而减小,可知4﹣n>0,得n<4.故答案为:n>4、n<445.(1)函数y=中,k=10>0,根据反比例函数的性质,在第一,三象限内,在每一个象限内,y随x的增大而减小;(2)函数y=﹣中,k=﹣10<0,根据反比例函数的性质,在第二,四象限内,在每一个象限内,y随x的增大而增大46.由甲乙同学给出的信息可以判断出该函数为在二四象限的反比例函数,系数k<0,写出符合题意的一个函数解析式,如:y=.47.∵点(2,1)在反比例函数的图象上,∴k=2×1=2,∴函数的解析式为y=,∴函数的图象在一、三象限,∴当x<0时,y的值随着x的值增大而减小.故答案为:减小.48.(Ⅰ)这个反比例函数图象的另一支在第三象限.∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(Ⅱ)如图,由第一象限内的点A在正比例函数y=2x的图象上,设点A的横坐标为a,∵点A在y=2x上,∴点A的纵坐标为2a,而AB⊥x轴,则点B的坐标为(a,0)∵S△OAB=4,∴a•2a=4,解得a=2或﹣2(负值舍去)∴点A的坐标为(2,4).又∵点A在反比例函数y=的图象上,∴4=,即m﹣5=8.∴反比例函数的解析式为y=.49.(1)∵y的值随x的增大而减小,∴k>0.(2)由于点A在双曲线上,则S=|k|=6,而k>0,所以k=6.50.(1)图象的另一支在第三象限.由图象可知,2n﹣4>0,解得:n>2(2)将点(3,1)代入得:,解得:n=;(3)∵2n﹣4>0,∴在这个函数图象的任一支上,y随x增大而减小,∴当a1<a2时,b1>b2.51.∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.52.依题意可得:;解得:m=3∴当m=3时,函数y=(m﹣2)是反比例函数;当m=3时,代入函数式可得:;∵k=1>0,∴它的图象位于第一、第三象限.由可得,∵≤x≤2;∴;解得:.53.∵是反比例函数,∴,解之得k=±1.又∵反比例函数的解析式(k≠0)中,k<0时,y随x值的增大而增大,∴k+<0,即k<﹣,∴k=﹣1.54.由反比例函数的图象和性质可估算k1<0,k2>0,k3>0,在x轴上任取一值x0且x0>0,x0为定值,则有,且y1<y2,∴k3>k2,∴k3>k2>k155.∵反比例函数图象的每一条曲线上,y随x的增大而减小,∴2k﹣2008>0,k>1004.56.(1)∵A(,﹣4)在反比例函数y=的图象上,∴k=×(﹣4)=﹣2;(2)∵由(1)可知k=﹣2,点B(﹣2,4)中,(﹣2)×4=﹣8≠﹣2,∴点B不在这个函数的图象上;(3)∵k=﹣2,∴此反比例函数的解析式为y=﹣,∴此函数的图象在二、四象限,在第二象限内y随x的增大而增大.故答案为:﹣2、不在、增大57.(1)根据题意,4﹣k>0,k<4;(2)根据题意,4﹣k<0,k>4.58.(1)∵在此反比例函数图象的每一条曲线上,y都随着x的增大而减小,∴m﹣5>0,解得:m>5;(2)∵点A(2,3)在此反比例函数图象上,∴2×3=m﹣5,解得:m=11,故反比例函数解析式为y=59.∵反比例函数的图象在每个象限内y随x的增大而减小,∴5﹣a<0,解得a>5.60.根据题意,得解得m=6,故m的值为:6。
反比例函数练习(1)一、判断题 1.当x 与y 乘积一定时,y 就是x 的反比例函数,x 也是y 的反比例函数( ) 2.如果一个函数不是正比例函数,就是反比例函数 ( )3.y 与2x 成反比例时y 与x 并不成反比例( ) 二.填空题4.已知三角形的面积是定值S ,则三角形的高h 与底a 的函数关系式是h =__________,这时h 是a 的__________;5.如果y 与x 成反比例,z 与y 成正比例,则z 与x 成____ ___; 6.如果函数222-+=k kkx y 是反比例函数,那么k =________,此函数的解析式是____ ____;7. 有一面积为60的梯形,其上底长是下底长的31,若下底长为x ,高为y ,则y与x 的函数关系是______________ 三、选择题: 8.如果函数12-=m x y 为反比例函数,则m 的值是 ( )A1- B 0 C 21D 19.李老师骑自行车上班,最初以某一速度匀速行进,中途由于自行车故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,结果准时到校。
在课堂上,李老师请学生画出自行车行进路程s 千米与行进时间t 的函数图像的示意图,同学们画出的示意图如下,你认为正确的是( )10、下列函数中,y 是x 反比例函数的是( )(A ) 12+=x y (B )22x y = (C )x y 51=(D )x y =2四.辨析题(1)兄弟二人分吃一碗饺子,每人吃饺子的个数如下表:①写出兄吃饺子数y 与弟吃饺子数x 之间的函数关系式(不要求写xy 的取值范围).②虽然当弟吃的饺子个数增多时,兄吃的饺子数(y )在减少,但y 与x 是成反例吗?(2)水池中有水若干吨,若单开一个出水口,水流速v 与全池水放光所用时t 如下表:①写出放光池中水用时t(小时)与放水速度v(吨/小时)之间的函数关系.②这是一个反比例函数吗? ③与(1)的结论相比,可见并非反比例函数有可能“函数值随自变量增大而减小”,反之,所有的反比例函数都是“函数值随自变量的增大而减小吗?这个问题,你可以提前探索、尝试,也可以预习下一课时”反比例函数的图象和性质,也可以等到下一节课我们共同解决.五.已知□ABCD 中,AB = 4,AD = 2,E 是AB 边上的一动点,设AE=x ,DE 延长线交CB 的延长线于F ,设CF =y ,求y 与x 之间的函数关系。
北师大版数学2024年中考反比例函数专题复习含答案一、选择题1.如图,在矩形ABCD中,AB与BC的长度比为3:4,若该矩形的周长为28,则BD 的长为()A.5B.6C.8D.10 2.如图,已知△ABC是等腰直角三角形,△ABC=90°,A点坐标(-2,0),B点坐标为(1,1),点C在反比例函数y=k x上,则k的值为()A.−2−√2B.−√2C.-4D.-2 3.已知函数y=k x的图象过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,−2)B.(−2,3)C.(1,−6)D.(−6,−1)4.若反比例函数y=k+2x的图象在其所在的每一象限内,y随x的增大而减小,则k的取值范围是()A.k<-2B.k>-2C.k<2D.k>25.在下列函数图象上任取不同两点P1(x1,y1)、P2(x2,y2),一定能使y2−y1x2−x1<0成立的是()A.y=3x−1(x<0)B.y=−x2+2x−1(x>0)C.y=−√3D.y=x2−4x−1(x<0)x(x>0)6.若双曲线y=k x(k<0),经过点A(−1,y1),B(−3,y2),则y1与y2的大小关系为()A.y1<y2B.y1>y2C.y1=y2D.无法比较y1与y2的大小7.汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速路,继续以100千米/时的速度匀速行驶,则汽车行驶的路程s(千米)与行驶的时间t(时)的函数关系的大致图象是()A.B.C.D.8.函数y=−1x的图象上有两点A(x1,y1),B(x2,y2),若0<x1<x2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定9.小明从二次函数y=ax2+bx+c的图象(如图)中观察得出了下面五条信息:①c<0;②abc>0;③a-b+c>0;④2a-3b=0;⑤c-4b>0.你认为其中正确的信息是()A.①②③⑤B.①②③④C.①③④⑤D.②③④⑤10.已知A(x1,y1)和B(x2,,y2)是反比例函数y=8x的上的两个点,若x2>x1>0,则()A.y2>y1>0B.y1>y2>0C.0>y1>y2D.0>y2>y1二、填空题11.如图①,点E、F分别为长方形纸带ABCD的边AD、BC上的点,△DEF=19°,将纸带沿EF折叠成图②(G为ED和EF的交点,再沿BF折叠成图③(H为EF和DG 的交点),则图③中△DHF=°12.已知x=2−√5是一元二次方程x2−4x+m=0的一个根,则m=,方程的另一个根是.13.在▱ABCD中,∠A=30°,AD=4√3,连接BD,若BD=4,则线段CD 的长为.14.如图,在四边形ABCD中,对角线AC平分∠DAB,∠D=90°,AC=25,AD=24.若点E是AB边上一动点,则CE的最小值为.15.直线y=2x﹣4与x轴的交点坐标是三、解答题16.已知一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)相交于A、B两点,且A点坐标为(1,3),B点的横坐标为﹣3.(1)求反比例函数和一次函数的解析式.(2)根据图象直接写出使得kx+b<mx时x的取值范围.17.如图,在△ABC中,AB=AC,BD△AC于D,若△ABC=72°,求△ABD的度数.四、综合题18.如图,直线y=-2x与直线y=kx+b相交于点A(a,2),并且直线y=kx+b经过x 轴上点B(2,0).(1)求直线y=kx+b的解析式;(2)求两条直线与y轴围成的三角形面积;(3)直接写出不等式(k+2)x+b≥0的解集.19.九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x元.(1)请用含x的式子表示:①销售该运动服每件的利润是()元;②月销量是()件;(直接写出结果)(2)设销售该运动服的月利润为y元,那么售价为多少时,当月的利润最大,最大利润是多少?20.如图,直线y=12x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣12x2+bx+c 经过A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;(2)直线AB上方抛物线上的点D,使得△DBA=2△BAC,求D点的坐标;(3)M是平面内一点,将△BOC绕点M逆时针旋转90°后,得到△B1O1C1,若△B1O1C1的两个顶点恰好落在抛物线上,请求点B1的坐标.21.在一个不透明的袋子里装有只有颜色不同的黑、白两种颜色的球共50个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)请估计:当n很大时,摸到黑球的频率将会接近(精确到0.1);(2)试估计袋子中有黑球个;(3)若学习小组通过试验结果,想使得在这个不透明袋子中每次摸到黑球的可能性大小为50%,则可以在袋子中增加相同的白球个或减少黑球个.答案解析部分1.【答案】D 2.【答案】C 3.【答案】D 4.【答案】B 5.【答案】D 6.【答案】B 7.【答案】C 8.【答案】A 9.【答案】A 10.【答案】B 11.【答案】57 12.【答案】-1;2+√5 13.【答案】4或8 14.【答案】7 15.【答案】(2,0)16.【答案】(1)解:将点 A (1,3)代入 ,解得:m =3.∴反比例函数解析式为y =3x.∵点 B 的横坐标为﹣3, ∴点 B 坐标(﹣3,﹣1).把 A (1,3),B (﹣3,﹣1)代入 y =kx+b 得:{k +b =3−3k +b =−1解得:{k =1b =2∴一次函数的解析式为 y =x+2;(2)解:由图象可知 kx+b <mk 时,x <﹣3 或 0<1 17.【答案】解:∵BD△AC 于D ,∴△BDC=90°,∵△B=72°,AB=AC,∴△A=36°,∴△ABD=90°﹣△A=54°18.【答案】(1)解:把A(a,2)代入y=-2x中,得-2a=2,∴a=-1,∴A(-1,2),把A(-1,2)、B(2,0)代入y=kx+b中得{−k+b=22k+b=0,∴k=-23,b=43,∴一次函数的解析式是y=-23x+43;(2)解:设直线AB与y轴交于点C,则C(0,43),∴S△ABC=12×43×1=23;(3)解:不等式(k+2)x+b≥0可以变形为kx+b≥-2x,结合图象得到解集为:x≥-1. 19.【答案】(1)x﹣60;400﹣2x(2)解:由题意得,y=(x﹣60)(﹣2x+400)=﹣2x2+520x﹣24000=﹣2(x﹣130)2+9800,∴售价为130元时,当月的利润最大,最大利润是9800元20.【答案】(1)解:y=12x+2,当x=0时,y=2;当y=0时,x=﹣4,∴A(﹣4,0),B(0,2),把A、B的坐标代入y=﹣12x2+bx+c,得{c=2−12×(−4)2−4b+c=0,解得{b=−32c=2,∴抛物线的解析式为:y=﹣12x2﹣32x+2(2)解:取点B关于x轴的对称点B′(0,﹣2),连接AB′,过点B作BD△AB′交抛物线于点D,∵B、B′关于x轴对称,∴AB=AB′,△BAB′=2△BAC,设AB′:y=kx﹣2,代入A(﹣4,0)得﹣4k﹣2=0,解得k=﹣1 2,则BD:y=﹣12x+2,解{y=−12x+2y=−12x2−32x+2得{x1=0y1=2,{x2=−2y2=3,∴D(﹣2,3)(3)解:∵△BOC绕点M逆时针旋转90°,∴B1O1△x轴,O1C1△y轴,当B1、O1在抛物线上时,设B1的横坐标为x,则O1的横坐标为x+2,∴﹣12x2−32x+2=﹣12(x+2)2﹣32(x+2)+2,解得x=﹣5 2,则B1(﹣52,218);当B1、C1在抛物线上时,设B1的横坐标为x,则C1的横坐标为x+2,C1的纵坐标比B1的纵坐标大1,∴﹣12x2−32x+2=﹣12(x+2)2﹣32(x+2)+2﹣1,解得x=﹣3,则B1(﹣3,2),∴B1的坐标为(﹣52,218)或(﹣3,2).21.【答案】(1)0.6(2)30(3)10;10北师大版数学2024年中考反比例函数专题复习含答案一、选择题1.在平行四边形的复习课上,小明绘制了如下知识框架图,箭头处添加条件错误的是()A.①:对角线相等B.②:对角互补C.③:一组邻边相等D.④:有一个角是直角2.如图,在同一直角坐标系中,函数y=kx与y=k x(k≠0)的图象大致是().A.①②B.①③C.②④D.③④3.设点A(x1,y1)和点B(x2,y2)是反比例函数y= k x图象上的两点,当x1<x2<0时,y1>y2,则一次函数y=﹣2x+k的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限4.已知点A(x1,y1),B(x2,y2)在反比例函数y=−4x的图象上,若x1<x2,则下列关于y1、y2大小关系正确的是()A.y1<y2B.y1>y2C.y1=y2D.无法确定5.对于双曲线y= 1−mx,当x>0时,y随x的增大而减小,则m的取值范围为()A.m>0B.m>1C.m<0D.m<1 6.若点A(−2,y1),B(−1,y2),C(1,y3)在反比例函数y=−6x的图象上,则下列结论正确的是()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y2>y 3>y17.函数y=x+m与y= mx(m≠0)在同一坐标系内的图像可以是()A.B.C.D.8.若点A(−1,y1),B(2,y1),C(3,y3)在反比例函数y=−6x的图像上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y 2>y19.一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系中的图象如左图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.10.若点A(−3,y1),B(−2,y2),C(1,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系为()A.y1>y2>y3B.y3>y1>y2C.y2>y1>y3D.y3>y 2>y1二、填空题11.长方形ABCD中,△ADB=20°,现将这一长方形纸片沿AF折叠,当折痕AF与AB的夹角△BAF为时, AB′∥BD.12.点(α,β)在反比例函数y=kx的图像上,其中α,β是方程x2−2x−8=0的两根,则k= .若点A(−1,y1),B(−14,y2),C(1,y3)都在反比例函数y=k x的图像上,则y1,y2,y3的大小关系是.13.如图,点D是△ ABCD内一点,CD△x轴,BD△y轴,BD=√2,△ADB=135°,S△ABD=2,若反比例函数y=kx(x<0)的图象经过A、D两点,则k的值是.14.如图,一个工人拿一个2.5米长的梯子,底端A放在距离墙根C点0.7米处,另一头B点靠墙,如果梯子的顶部下滑0.4米,梯子的底部向外滑米.15.三张完全相同的卡片上分别写有函数y=3x,y=3x,y=x2,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y随x的增大而增大的概率是.三、解答题16.已知反比例函数y=k x过点P(2,﹣3),求这个反比例函数的解析式,并在直角坐标系中作出该函数的图象.17.在等腰△ABC中,AB=AC=10,BC=12,求BC边上的高线AD的长。
反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小。
2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1. (1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数xky =与一次函数42-=x y 的图象都经过点A(a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyOMxA(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k 〉0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 . (1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (—3,0)。
⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x 〉0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。
(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk BOA21xy A O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。
反比例函数测试题及答案一、选择题1. 反比例函数y= \frac{k}{x}(k≠0)的图象是双曲线,下列说法正确的是()A. 函数图象在一、三象限内,k>0B. 函数图象在二、四象限内,k<0C. 函数图象在一、三象限内,k<0D. 函数图象在二、四象限内,k>0答案:A2. 若点(2,3)在反比例函数y= \frac{k}{x}(k≠0)的图象上,则k的值是()A. 6B. -6C. 2D. -2答案:A二、填空题3. 反比例函数y= \frac{k}{x}(k≠0)的图象经过点(1,-2),则k的值为______。
答案:-24. 反比例函数y= \frac{k}{x}(k≠0)的图象是中心对称图形,若点(a,b)在函数图象上,则点(-a,-b)也在函数图象上,且k=ab,若点(2,-1)在函数图象上,则点(-2,1)也在函数图象上,且k=______。
答案:-2三、解答题5. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(3,-1),求k的值,并判断图象在哪个象限。
解:将点(3,-1)代入反比例函数y= \frac{k}{x}得,-1=\frac{k}{3},解得k=-3。
因为k=-3<0,所以图象在第二、四象限。
6. 已知反比例函数y= \frac{k}{x}(k≠0)的图象经过点(2,3),求k的值,并写出函数的表达式。
解:将点(2,3)代入反比例函数y= \frac{k}{x}得,3=\frac{k}{2},解得k=6。
因此,函数的表达式为y= \frac{6}{x}。
结束语:通过以上题目的练习,可以检验你对反比例函数性质和图象特征的掌握程度,希望同学们能够通过这些题目加深对反比例函数的理解。
1、某工厂生产一种零件,如果每天生产x个零件,那么需要y天完成全部生产任务。
已知当每天生产100个零件时,需要20天完成。
如果生产效率不变,当每天生产200个零件时,需要的天数是?A. 40天B. 20天C. 10天D. 5天(答案)C2、一个水池,如果用x台抽水机同时抽水,需要y小时才能抽干。
现在知道用3台抽水机需要8小时才能抽干。
如果增加抽水机的数量到6台,那么需要的小时数是?A. 16小时B. 8小时C. 4小时D. 2小时(答案)C3、某公司计划招聘x名新员工,如果每名员工的工作效率相同,那么完成一项任务需要y 天。
已知如果招聘10名员工,需要20天完成任务。
如果公司想要在10天内完成任务,那么需要招聘的员工数量是?A. 5名B. 10名C. 20名D. 40名(答案)C4、一个果园,如果每天摘x筐苹果,那么需要y天才能摘完。
现在知道如果每天摘10筐,需要20天才能摘完。
如果果园主想要在10天内摘完所有的苹果,那么每天需要摘的筐数是?A. 5筐B. 10筐C. 20筐D. 40筐(答案)C5、某城市的水费是按照用水量来计算的,如果每月用水x吨,那么需要支付y元的水费。
已知如果每月用水5吨,需要支付100元。
如果某月想要支付50元的水费,那么可以用的水量是?A. 1吨B. 2.5吨C. 5吨D. 10吨(答案)B6、一个工人如果每天工作x小时,那么可以完成y个零件。
现在知道如果每天工作8小时,可以完成16个零件。
如果工人想要在一天内完成32个零件,那么需要工作的小时数是?A. 4小时B. 8小时C. 12小时D. 16小时(答案)D7、某公司投资了一个项目,如果每年投资x万元,那么需要y年才能收回成本。
已知如果每年投资100万元,需要5年才能收回成本。
如果公司想要在3年内收回成本,那么每年需要投资的金额是?A. 50万元B. 100万元C. 150万元D. 约166.67万元(答案)D8、一个学生如果每天学习x小时,那么需要y天才能掌握一项技能。
反比例函数练习题一、精心选一选!(30分)1.下列 函数中,图象经过点(11)-,的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 反 比例函数2k y x=-(k 为常数,0k ≠)的图象位于( )A.第一、二象限 B.第一、三象限 C.第二、四角限 D.第三、四象限3.已知 反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ). (A )k >2 (B ) k ≥2 (C )k ≤2 (D ) k <24.反 比例函数xky =的图象如图所示,点M 是该函数图象上一点,MN 垂直于x 轴,垂足是点N ,如果S △MON =2,则k 的值为( ) (A)2 (B)-2 (C)4 (D)-4 5.对于反比 例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它的图象上B .它的图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小6.反比 例函数22)12(--=m xm y ,当x >0时,y 随x 的增大而增大,则m 的值时( )A 、±1B 、小于21的实数 C 、-1 D 、1 7.如 图,P 1、P 2、P 3是双曲线上的三点,过这三点分别作y 轴的垂线,得到三个三角形P 1A 1O 、P 2A 2O 、P 3A 3O ,设它们的面积分别是S 1、S 2、S 3,则( )。
A 、S 1<S 2<S 3B 、S 2<S 1<S 3C 、S 3<S 1<S 2D 、S 1=S 2=S 38.在同 一直角坐标系中,函数xy 2-=与x y 2=图象的交点个数为( ) A .3 B .2 C .1 D .0 9.已知 甲、乙两地相距s (km ),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t (h )与行驶速度v (km/h )的函数关系图象大致是( )10.如图,直线y=mx 与双曲线y=xk交于A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连结BM,若ABM S ∆=2,则k 的值是( )A .2B 、m-2C 、mD 、4OA 1 A 2 A 3 P 1 P 2 P 3xy11.在反比例函数xky =(k <0)的图象上有两点A (x 1,y 1),B (x 2,y 2),且1x >2x >0,则12y y -的值为( ) (A)正数 (B)负数 (C)非正数 (D)非负数 二、细心填一填!(30分)11.写出一个图象在第一、三象限的反比例函数的解析式 . 12.已知反比例函数8y x=-的图象经过点P (a+1,4),则a=_____. 13.反比例函数6y x=-图象上一个点的坐标是 . 14.一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .15.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .15.3-; 16.在ABC △的三个顶点(23)(45)(32)A B C ----,,,,,中,可能在反比例函数(0)ky k x=>的图象上的点是 . 17.在对物体做功一定的情况下,力F (牛)与此物体在力的方向上移动的距离s (米)成反比例函数关系,其图象如图所示,P (5,1)在图象上,则当力达到10牛时,物体在力的方向上移动的距离是 米. 18.已知点P 在函数2y x=(x >0)的图象上,PA⊥x 轴、PB⊥y 轴,垂足分别为A 、B ,则矩形OAPB 的面积为__________. 19.已知直线mx y =与双曲线xky =的一个交点A 的坐标为(-1,-2).则m =_____;k =____;它们的另一个交点坐标是______.20.如图,过原点的直线l 与反比例函数1y x=-的图象交于M ,N 两点,根据图象猜想线段MN 的长的最小值是___________. 三、用心解一解!(60分)21.在平面直角坐标系xOy 中,直线y x =-绕点O 顺时针旋转90得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(3)A a ,,试确定反比例函数的解析式.(5分)22.如图,点A 是反比例函数图象上的一点,自点A 向y 轴作垂线,垂足为T ,已知S △AOT =4,求此函数的表达式. (5分)OyMNl23.已知点P (2,2)在反比例函数xky =(0≠k )的图象上, (Ⅰ)当3-=x 时,求y 的值;(Ⅱ)当31<<x 时,求y 的取值范围.(7分)24.如图,已知双曲线ky x=(0x >)经过矩形OABC 的边AB BC ,的中点F E ,,且四边形OEBF 的面积为2,求k 的值.(7分)25.若一次函数y =2x -1和反比例函数y =2kx的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,求点A 的坐标;(8分)26.已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;(2)若直线mx y =与线段AB 相交,求m 的取值范围. (8分)27.如图正方形OABC 的面积为4,点O 为坐标原点,点B 在函数ky x=(0,0)k x << 的图象上,点P(m ,n)是函数ky x=(0,0)k x <<的图象上异于B 的任意一点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F . (1)设矩形OEPF 的面积为S l ,判断S l 与点P 的位置是否有关(不必说理由).(2)从矩形OEPF 的面积中减去其与正方形OABC 重合的面积,剩余面积记为S 2,写出S 2与m 的函数关系,并标明m 的取值范围.(8分)A B CO y x y xOFAB EC参考答案:一、1.B 2.C 3.A 4.D 5.C 6.C 7.D 8.D 9.C 10.A ;三、21.解:依题意得,直线l 的解析式为y x =.因为(3)A a ,在直线y x =上,则3a =. 即(33)A ,.又因为(33)A ,在k y x =的图象上,可求得9k =.所以反比例函数的解析式为9y x=. 22.解:设所求反比例函数的表达式为x ky =,因为S △AOT =k 21,所以k 21=4,即8±=k ,又因为图象在第二、四象限,因此8-=k ,故此函数的表达式为8y x =-;又反比例函数xy 4=在0>x 时y 值随x 值的增大而减小, ∴当31<<x 时,y 的取值范围为434<<y .24.设B 点的坐标为(2a ,2b ),则E 点的坐标为(a ,2b ),F 点的坐标为(2a ,b ),所以k =2ab .因为4ab -21×2ab ×2=2,所以2ab =2. 25.(1) ∵反比例函数y =2k x的图象经过点(1,1),∴1=2k解得k=2,∴反比例函数的解析式为y=1x.∵点A 在第三象限,且同时在两个函数图象上, ∴A(12-,–2).26.解:(1)设所求的反比例函数为xky =,依题意得: 6 =2k ,∴k=12. ∴反比例函数为x y 12=.(2) 设P (x ,y )是线段AB 上任一点,则有2≤x≤3,4≤y ≤6.∵m =xy, ∴34≤m ≤26.所以m 的取值范围是34≤m ≤3.27.(1) 没有关系;(2) 当P 在B 点上方时,242(20)S m m =+-<<;当P 在B 点下方时,284(2)S m m=+<-。
反比例函数1. 如图,函数b x k y +=11的图象与函数xk y 22=(0>x )的图象交于A 、B 两点,与y 轴交于C 点,已知A 点坐标为(2,1),C 点坐标为(0,3).(1)求函数1y 的表达式和B 点的坐标;(2)观察图象,比较当0>x 时,1y 与2y 的大小.2、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.3、若反比例函数x ky =与一次函数42-=x y 的图象都经过点A (a ,2) (1)求反比例函数x ky =的解析式;(2) 当反比例函数xky =的值大于一次函数42-=x y 的值时,求自变量x 的取值范围.ABOCxyO Mx A(第5题)4、如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y= (k>0)的图象经过点A (2,m ),过点A 作AB ⊥x 轴于点B ,且△AOB 的面积为 .(1)求k 和m 的值;(2)点C (x ,y )在反比例函数y= 的图象上,求当1≤x ≤3时函数值y 的取值范围;5、如图,四边形ABCD 为菱形,已知A (0,4),B (-3,0)。
⑴求点D 的坐标;⑵求经过点C 的反比例函数解析式.6、如图,一次函数3y kx =+的图象与反比例函数my x=(x>0)的图象交于点P ,PA ⊥x 轴于点A ,PB ⊥y 轴于点B ,一次函数的图象分别交x 轴、y 轴于点C 、点D ,且S △DBP =27,12OC CA =。
(1)求点D 的坐标;(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x 取何值时,一次函数的值小于反比例函数的值?xkxk B O A21xyA O PBC D7、已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式; (3)写出当x 取何值时,一次函数的值小于反比例函数的值?8、如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。
反比例函数综合一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于()A.B.2C.4 D.3第1题第2题第3题第5题2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于()A.B.6 C.3 D.123.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为()A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是()A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有()A.4个B.3个C.2个D.1个6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为()A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为()A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>1第7题第9题第11题第12题8.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长=3.则k的值为()线交x轴于点C,若S△AOCA.2 B.1.5 C.4 D.610.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是()A.﹣12 B.﹣8 C.﹣6 D.﹣412.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是()A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为()A.(2,4)B.(3,6)C.(4,2)D.(,)第13题第14题第15题第16题14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是()A.B.C.D.15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为()A.B.﹣C.D.﹣16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是()A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为()A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是()A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<219.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为()A.5 B.6 C.4D.5第19题第20题第21题第23题20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是()A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是()A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD 都是等边三角形,则点C的坐标是()A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.第24题第25题第30题第31题25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c 的大小关系是.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是,它的图象分布在象限,在每一个象限内,y随x的增大而.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=.ABDC31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.参考答案一.选择题(共23小题)1.如图,点A,B在双曲线y=(x>0)上,点C在双曲线y=(x>0)上,若AC∥y轴,BC∥x 轴,且AC=BC,则AB等于(B)A.B.2C.4 D.3设C(a,),则B(3a,),A(a,),∵AC=BC,∴﹣=3a﹣a,解得a=1,(负值已舍去)∴C(1,1),B(3,1),A(1,3),∴AC=BC=2,∴Rt△ABC中,AB=2,2.如图,曲线C2是双曲线C1:y=(x>0)绕原点O逆时针旋转45°得到的图形,P是曲线C2上任意一点,点A在直线l:y=x上,且PA=PO,则△POA的面积等于(B)A.B.6 C.3 D.12解:如图,将C2及直线y=x绕点O逆时针旋转45°,则得到双曲线C3,直线l与y轴重合.双曲线C3,的解析式为y=﹣过点P作PB⊥y轴于点B∵PA=PB∴B为OA中点.∴S△PAB=S△POB=3∴△POA的面积是6由反比例函数比例系数k的性质,S△POB3.反比例函数y=的图象如图所示,点A是该函数图象上一点,AB垂直于x轴垂足是点B,如果S△AOB=1,则k的值为(D)A.1 B.﹣1 C.2 D.﹣24.在同一平面直角坐标系中,函数y=kx(k>0)与y=(k>0)的图象可能是(C)A.B.C.D.5.如图,在平面直角坐标系xOy中,反比例函数y=的图象经过点T.下列各点P(4,6),Q(3,﹣8),M(2,﹣12),N(,48)中,在该函数图象上的点有(C)A.4个B.3个C.2个D.1个第5题第7题第9题6.已知反比例函数y=(k≠0)过点A(a,y1),B(a+1,y2),若y2>y1,则a的取值范围为(B)A.﹣1<a B.﹣1<a<0 C.a<1 D.0<a<17.如图,双曲线y=与直线y=kx+b交于点M,N,并且点M的坐标为(1,3),点N的纵坐标为﹣1.根据图象信息可得关于x不等式<kx+b的解为(D)A.x<﹣3 B.﹣3<x<0 C.﹣3<x<1 D.﹣3<x<0 或x>18.点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y3<y1C.y3<y2<y1D.y2<y1<y39.如图,A、B是双曲线y=(k>0)上的点,A、B两点的横坐标分别是a、3a,线段AB的延长线交x轴于点C,若S△AOC=3.则k的值为(B)A.2 B.1.5 C.4 D.6解:如图,分别过点A、B作AF⊥y轴于点F,AD⊥x轴于点D,BG⊥y轴于点G,BE⊥x轴于点E,∵k>0,点A是反比例函数图象上的点,∴S△AOD =S△AOF=|k|,∵A、B两点的横坐标分别是a、3a,∴AD=3BE,∴点B是AC的三等分点,∴DE=2a,CE=a,∴S△AOC =S梯形ACOF﹣S△AOF=(OE+CE+AF)×OF﹣|k|=×5a×﹣|k|=3,解得k=1.5.10.已知点A(x1,y1),B(x2,y2),C(x3,y3)在反比例函数y=(k<0)的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是(D)A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y211.如图,点A(m,1),B(2,n)在双曲线y=(k≠0),连接OA,OB.若S△ABO=8,则k的值是(C)A.﹣12 B.﹣8 C.﹣6 D.﹣4第11题第12题解:过A作y轴的垂线,过B作x轴的垂线,交于点C,连接OC,设A(k,1),B(2,k),则AC=2﹣k,BC=1﹣k,∵S△ABO=8,∴S△ABC﹣S△ACO﹣S△BOC=8,即(2﹣k)(1﹣k)﹣(2﹣k)×1﹣(1﹣k)×2=8,解得k=±6,∵k<0,∴k=﹣6,12.如图,反比例函数与正比例函数的图象交于A、B两点,过点A作AC⊥x轴于点C.若△ABC 的面积是8,则这个反比例函数的解析式是(C)A.y=B.y=C.y=D.y=13.如图,在平面直角坐标系中,函数y=的图象与函数y=x的图象相交于A,B两点,点C是函数y=的图象右支上一点,连结AC,BC,若∠C=90°,则点C的坐标为(A)A.(2,4)B.(3,6)C.(4,2)D.(,)解:函数y=的图象与函数y=x的图象相交于A,B两点,解方程组,可得,,∴B(4,2),A(﹣4,﹣2),∴OB=AO=2,又∵∠ACB=90°,∴OC=AB=2,设C(a,),则OC==2,解得a=2,或a=4(舍去),∴C(2,4),14.如图,直线y=x﹣3与x轴交于点A,与双曲线y=(k≠0)在第一象限内交于点B,过点A 作AC⊥x轴,交该双曲线于点C,若AB=AC,则k的值是(D)A.B.C.D.解:如图,过B作BD⊥OA于D,则∠ADB=∠AOE=90°,由直线y=x﹣3,可得A(4,0),E(0,﹣3),∴AO=4,OE=3,AE=5,设点C的坐标为(4,),则AC=AB=,由△AOE∽△ADB,可得==,即==,∴AD=,BD=,∴B(4+,),∵双曲线y=(k≠0)经过点B,∴(4+)×k=k,解得k=,15.如图,在平面直角坐标系中,点A、B分别在第二象限和第一象限,AB与x轴平行,∠AOB=90°,OA=3,OB=4,函数y=(x<0)和y=(x>0)的图象分别经过点AB,则的值为(D)A.B.﹣C.D.﹣解:∵AB与x轴平行,∴AB⊥y轴,即∠AHO=∠OHB=90°,∵∠AOB=90°,∴∠AOH+∠BOH=∠AOH+∠OAH=90°,∴∠OAH=∠BOH,∴△AOH∽△OBH,∴=,即=,又∵k1<0,∴=﹣,16.如图,在平面直角坐标系中,反比例函数y=(k≠0)经过▱ABCD的顶点B、D,点A的坐标为(0,﹣1),AB∥x轴,CD经过点(0,2),▱ABCD的面积是18,则点D的坐标是(C)A.(﹣2,2)B.(3,2)C.(﹣3,2)D.(﹣6,1)解:如图,∵点A的坐标为(0,﹣1),AB∥x轴,反比例函数y=(k≠0)经过▱ABCD的顶点B,∴点B的坐标为(﹣k,﹣1),即AB=﹣k,又∵点E(0,2),∴AE=2+1=3,又∵平行四边形ABCD的面积是18,∴AB×AE=18,∴﹣k×3=18,∴k=﹣6,∴y=﹣,∵CD经过点(0,2),∴令y=2,可得x=﹣3,∴点D的坐标为(﹣3,2),17.如图,点M是反比例函数y=(x>0)图象上任意一点,MN⊥y轴于N,点P是x轴上的动点,则△MNP的面积为(A)A.1 B.2 C.4 D.不能确定第17题第18题18.如图,已知点A(0,4),B (1,4),点B在双曲线y=(k>0)上,在AB的延长线上取一点C,过C的直线交双曲线于点D,交x轴正半轴于点E,且CD=DE,则线段CE长度的取值范围是(A)A.4≤CE<4B.4≤CE<2C.2<CE<4 D.4<CE<2解:如图1,过D作DF⊥OA于F,∵点A(0,4),B (1,4),∴AB⊥y轴,AB=1,OA=4,∵CD=DE,∴AF=OF=2,∵点B在双曲线y=(k>0)上,∴k=1×4=4,∴反比例函数的解析式为:y=,∵过点C的直线交双曲线于点D,∴D点的纵坐标为2,把y=2代入y=得,x=2,∴D(2,2),当O与E重合时,如图2,∵DF=2,∴AC=4,∵OA=4,∴CE=4,当CE⊥x轴时,CE=OA=4,∴4≤CE<4,19.如图,已知点A(2,3)和点B(0,2),点A在反比例函数y=的图象上,作射线AB,交反比例函数图象于另一点M,再将射线AB绕点A按逆时针方向旋转45°,交反比例函数图象于点C,则CM的长度为(D)A.5 B.6 C.4D.5第19题第20题第21题解:如图,过A作AD⊥y轴于D,将AB绕着点B顺时针旋转90°,得到A'B,过A'作A'H⊥y轴于H,由AB=BA',∠ADB=∠BHA'=90°,∠BAD=∠A'BH,可得△ABD≌△BA'H,∴BH=AD=2,又∵OB=2,∴点H与点O重合,点A'在x轴上,∴A'(1,0),又∵等腰Rt△ABA'中,∠BAA'=45°,而∠BAC=45°,∴点A'在AC上,由A(2,3),A'(1,0),可得直线AC的解析式为y=3x﹣3,解方程组,可得或,∴C(﹣1,﹣6),由点A(2,3)和点B(0,2),可得直线AB 的解析式为y=x+2,解方程组,可得或,∴M(﹣6,﹣1),∴CM==5,20.如图,在平面直角坐标系中,点A是x轴正半轴上的一个定点,点P是双曲线y=(x>0)上的一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会(C)A.逐渐增大B.不变C.逐渐减小D.先增大后减小21.如图,一次函数y1=x+1的图象与反比例函数y2=的图象交于A、B两点,过点A作AC⊥x轴于点C,过点B作BD⊥x轴于点D,连接AO、BO,下列说法正确的是(C)A.点A和点B关于原点对称B.当x<1时,y1>y2C.S△AOC=S△BOD D.当x>0时,y1、y2都随x的增大而增大解:A、,∵把①代入②得:x+1=,解得:x2+x﹣2=0,(x+2)(x﹣1)=0,x1=﹣2,x2=1,代入①得:y1=﹣1,y2=2,∴B(﹣2,﹣1),A(1,2),∴A、B不关于原点对称,故本选项错误;B、当﹣2<x<0或x>1时,y1>y2,故本选项错误;C、∵S△AOC=×1×2=1,S△BOD=×|﹣2|×|﹣1|=1,∴S△BOD=S△AOC,故本选项正确;D、当x>0时,y1随x的增大而增大,y2随x的增大而减小,故本选项错误;22.函数y=k(x﹣1)与y=﹣在同一直角坐标系内的图象大致是(A)A.B.C.D.23.如图,点A,C都在函数y=(x>0)的图象上,点B,D都在x轴上,且使得△OAB,△BCD都是等边三角形,则点C的坐标是(A)A.(+1,﹣)B.(+1,﹣1)C.(+1,﹣)D.(+1,﹣)第23题第24题解:如图,作AE⊥OB于E,CF⊥BD于F,∵△OAB,△BCD均为正三角形,A在反比例函数y=,∴A的横坐标是1,纵坐标是,∴OE=EB=1,OA=2OE=2,AE=,设BF=m,则C(2+m,m),代入y=,得:m2+2m﹣1=0,解得:m=﹣1±,∵m>0,∴m=﹣1+,∴点C的坐标为:(1+,).二.填空题(共9小题)24.如图,点M是函数图象上的一点,直线l:y=x,过点M分别作MA⊥y轴,MB⊥l,A,B为垂足,则MA•MB=.解:延长AM,交直线y=x于点D,设M(x,x+)则△AOD是等腰直角三角形,即∠ADO=45°,∴OA=AD=x+,AM=x,∴MD=AD﹣AM=,∵MB⊥l,∴MB=BD,∴△BDM是等腰直角三角形,∴MB2+BD2=MD2,∴MB=MD,∴MB=×=,∴MA•MB=x•=.25.如图将直线向左平移m个单位,与双曲线交于点A,与x轴交于点B,则OB2﹣OA2+AB2=.解:由题意知:平移后的直线解析式为:y=(x+m);设A(x,y),易知:B(﹣m,0),则有:OB2﹣OA2+AB2=m2﹣(x2+y2)+[(m+x)2+y2],联立y=(x+m),整理得:原式=﹣2x2﹣2mx;由于直线y=(x+m)与交于点A,联立两个函数解析式得:(x+m)=﹣,即x2+mx+2=0,得﹣x2﹣mx=2;故所求代数式=﹣2x2﹣2mx=4.故答案为:4.26.如果反比例函数y=(m﹣3)的图象在第二、四象限,那么m=1.【解答】解:根据题意m2﹣6m+4=﹣1,解得m=1或5,又m﹣3<0,m<3,所以m=1.故答案为:1.27.已知双曲线y=(k≠0)上有一点P,PA⊥x轴于A,点O为坐标原点,且S△PAO=12,则此反比例函数的解析式为y=﹣或y=.【解答】解:设点P的坐标为(x,y).∵P(x,y)在反比例函数y=kx(k≠0)的图象,∴k=xy,=12,∵S△PAO∴|xy|=12,∴|xy|=24,∴xy=±24,∴k=±24,∴y=﹣或y=.故答案为:y=﹣或y=.28.反比例函数的图象同时过A(﹣2,a)、B(﹣3,b)、C(1,c)三点,则a、b、c的大小关系是a>b>c.【解答】解:∵k<0,∴此函数的图象在二、四象限,∵﹣2<0,﹣3<0,1>0,∴A、B两点在第二象限,C点在第三象限,∴a>0,b>0,c<0,∵﹣2>﹣3,∴a>b>0,∴a>b>c.故答案为a>b>c.29.函数y=(m2﹣m)x m2﹣3m+1是反比例函数,则m的值是2,它的图象分布在第一、三象限,在每一个象限内,y随x的增大而减小.【解答】解:由题意得:m2﹣3m+1=﹣1,且m2﹣m≠0,解得:m=2,∵m2﹣m=4﹣2=2>0,∴图象分布在第一、三象限,在每一个象限内,y随x的增大而减小,故答案为:2;第一、三;减小.30.如图,A、B是反比例函数y=上两点,AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,S四边形=14,则k=16.ABDC【解答】解:如图,分别延长CA,DB交于点E,根据AC⊥y轴于C,BD⊥x轴于D,AC=BD=OC,知△CED为直角三角形,且点A与点B的纵横坐标正好相反,设点A的坐标为(x A,y A),则点B的坐标为(y A,x A),点E的坐标为(y A,y A),四边形ACDB的面积为△CED的面积减去△AEB的面积.CE=ED=y A,AE=BE=y﹣y A,∴S ACDB=S△CED﹣S△AEB=[y A•y A﹣(y A﹣y A)(y A﹣y A)]=y A2=14,∵y A>0,∴y A=8,点A的坐标为(2,8),∴k=2×8=16.故答案为:16.31.如图,B为双曲线y=(x>0)上一点,直线AB平行于y轴交直线y=x于点A,若OB2﹣AB2=12,则k=6.【解答】解:如图,延长AB交x轴于点C,设点C的横坐标为a,则点B的纵坐标为,点A的纵坐标为a,所以,AB=a﹣,∵AB平行于y轴,∴AC⊥OC,在Rt△BOC中,OB2=OC2+BC2=a2+()2,∵OB2﹣AB2=12,∴a2+()2﹣(a﹣)2=12,整理得,2k=12,解得k=6.故答案为:6.32.如图,正比例函数y=x与反比例函数y=的图象相交于A,C两点,AB⊥x轴于B,CD⊥x轴于D,则四边形ABCD的面积为2.【解答】解:根据反比例函数的对称性可知:OB=OD,AB=CD,∵四边形ABCD的面积等于S△ADB +S△BDC,∵A(1,1),B(1,0),C(﹣1,﹣1),D(﹣1,0)∴S△ADB=(DO+OB)×AB=×2×1=1,S△BDC=(DO+OB)×DC=×2×1=1,∴四边形ABCD的面积=2.故答案为:2.三.解答题(共8小题)33.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.【解答】解:(1)∵点E、F均是反比例函数y=上的点,四边形AOBC是矩形,∴AE⊥y轴,BC⊥x轴,∴S△AOE =S△BOF=;(2)∵C坐标为(4,3),∴设E(,3),F(4,),如图1,将△CEF沿EF对折后,C点恰好落在OB边上的G点,作EH⊥OB,垂足为H,∵∠EGH+∠HEG=90°∠EGH+∠FGB=90°,∴∠HEG=∠FGB,又∵∠EHG=∠GBF=90°,∴△EGH∽△GFB,∴=,∴GB==,在Rt△GBF中,GF2=GB2+BF2,即(3﹣)2=()2+()2,解得k=,∴反比例函数的解析式为:y=;(3)存在.当OP是平行四边形的边时,如图2所示:平行四边形OPMN,可以看成线段PN沿PO的方向平移至OM处所得.设N(a,),∵P(2,﹣3)的对应点O(0,0),∴M(a﹣2,+3),代入反比例解析式得:(a﹣2)(+3)=,整理得4a2﹣8a﹣7=0,解得a=,当a=时,==,﹣2=,+3=,∴N(,),M(,)(舍去)或N(,),M(,).当OP为对角线时,如图3所示:设M(a,),N(b,),∵P(2,﹣3),∴,解得,,∴M(,),N(,)(舍去)或M(,),N(,),综上所述:M(,)N(,);或M(,),N(,).34.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A、C分别在坐标轴上,顶点B的坐标为(4,2),M、N分别是AB、BC的中点.(1)若反比例函数y=(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N 是否在该函数的图象上;(2)若反比例函数y=(x>0)的图象与△MNB(包括边界)有公共点,请直接写出m的取值范围.【解答】解:(1)∵顶点B的坐标为(4,2),M、N分别是AB、BC的中点,∴M点的坐标为(2,2),把M(2,2)代入反比例函数y=(m≠0)得,m=2×2=4,∴反比例函数的解析式为y=;∵M、N分别为矩形OABC的边AB、BC的中点,且M(2,2),B点坐标为(4,2),∴N点坐标为(4,1),∵4×1=4,∴点N在函数y=的图象上;(2)4≤m≤8.35.如图,反比例函数y=﹣与一次函数y=﹣x+2的图象交于A、B两点.(1)求A、B两点的坐标;(2)观察图象,直接写出x为何值时,一次函数值大于反比例函数?(3)求△AOB的面积.【解答】解:(1)联立两函数解析式得:,解得:或,即A(﹣2,4),B(4,﹣2);(2)根据图象得:当x<﹣2或0<x<4时,一次函数值大于反比例函数值.(3)令y=﹣x+2中x=0,得到y=2,即D(0,2),∴OD=2,∴S△AOB =S△AOC+S△BOC=×2×2+×2×4=6.36.如图,反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点.(1)求一次函数的解析式及△AOB的面积;(2)根据图象直接写出不等式的解集;(3)若点P是坐标轴上的一点,且满足△PAB面积等于△AOB的面积的2倍,直接写出点P的坐标.【解答】解:(1)∵反比例函数y1=的图象与一次函数y2=kx+b的图象交于A(m,3),B(﹣3,n)、两点,将A与B坐标代入反比例解析式得:m=1,n=﹣1,∴A(1,3)、B(﹣3,﹣1),代入一次函数解析式得:,解得:k=1,b=2,∴一次函数的解析式为y=x+2,∵直线y=x+2与x轴、y轴的交点坐标为(﹣2,0)、(0,2),∴S△AOB=×2×(1+3)=4;(2)∵A(1,3),B(﹣3,﹣1),观察图象可知,当x<﹣3或0<x<1时,一次函数的图象在反比例函数图象的下方,∴不等式的解集是x<﹣3或0<x<1.(3)∵S△AOB=4,∴S△PAB =2S△AOB=8,设P1(p,0),即OP1=|p+2|,S△ABP1=S△AP1C+S△P1BC=|p+2|×3+|p+2|×1=8,解得:p=﹣6或p=2,则P1(﹣6,0)、P2(2,0),同理可得P3(0,6)、P4(0,﹣2).37.如图,若直线y=kx+b(k≠0)与x轴交于点,与双曲线在第二象限交于点B,且OA=OB,△OAB的面积为(1)求直线AB的解析式及双曲线的解析式;(2)求tan∠ABO的值.【解答】解:(1)∵直线y=kx+b(k≠0)与x轴交于点A,∴OA=,又∵OA=OB,∴OB=,过点B作BM⊥x轴于点M,∵△OAB的面积为,即OA•BM=,∴BM=2,在Rt△OBM中可求OM=1.5,∴B(﹣1.5,2),再根据待定系数法可得:,解得:k=﹣,b=,∴直线AB的解析式为:y=﹣x+;再将点B代入函数y=得:m=﹣3,∴双曲线的解析式为:y=﹣;(2)∵OA=OB,∴∠ABO=∠BAM,在Rt△ABM中,BM=2,∴MO=,AM=+=4,∴tan∠ABO=tan∠BAM==.38.已知反比例函数y=和一次函数y=2x﹣1,其中一次函数的图象经过(a,b),(a+k,b+k+2)两点.(1)求反比例函数的解析式?(2)已知A在第一象限,是两个函数的交点,求A点坐标?(3)利用②的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?【解答】解:(1)∵一次函数y=2x﹣1的图象经过(a,b),(a+k,b+k+2)两点,代入得:,解得:k=2,代入反比例函数的解析式得:y==,∴反比例函数的解析式是y=.(2)解方程组得:,,∴两函数的交点坐标是(﹣,﹣2),(1,1),∵交点A在第一象限,∴A(1,1).(3)在x轴上存在点P,使△AOP为等腰三角形,理由是:分为三种情况:①以O为圆心,以OA为半径作圆,交x轴于两点C、D,此时OA=0C=0D,∴当P于C或D重合时,△AOP是等腰三角形,此时P的坐标是(,0),(﹣,0);②以A为圆心,以OA为半径作圆,交x轴于点E,此时OA=AE,∴当P于E重合时,△AOP是等腰三角形,此时P的坐标是(2,0);③作OA的垂直平分线交x轴于F,此时AF=OF,∴当P于F重合时,△AOP是等腰三角形,此时P的坐标是(1,0);∴存在4个点P,使△AOP是等腰三角形.39.如图,双曲线y=在第一象限的一支上有一点C(1,5),过点C的直线y=﹣kx+b(k>0)与x 轴交于点A(a,0).(1)求点A的横坐标a与k的函数关系式(不写自变量取值范围).(2)当该直线与双曲线在第一象限的另一个交点D的横坐标是9时,求△COA的面积.【解答】解:(1)把C(1,5)代入直线y=﹣kx+b(k>0)得:﹣k+b=5,则b=5+k;把(a,0)代入直线y=﹣kx+b(k>0)得:﹣ak+b=0,把b=5+k代入﹣ak+b=0,得:﹣ak+5+k=0,解得:a=;(2)把x=9代入y=得:y=,则D的坐标是(9,),设直线AC的解析式是y=﹣kx+b,把C、D两点代入,得,解得:,则AC的解析式是:y=﹣x+.令y=0,解得:x=10.则OA=10,则△COA的面积=×10×5=25.40.如图,一次函数y=ax+b的图象与反比例函数的图象交于M、N两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)连接OM、ON,求三角形OMN的面积.(3)连接OM,在x轴的正半轴上是否存在点Q,使△MOQ是等腰三角形,若存在,请直接写出所有符合条件的点Q的坐标,若不存在,说明理由.【解答】解:(1)把N(﹣1,﹣4)代入y=得:k=4,∴y=,把M(2,m)代入得:m=2,∴M(2,2),把N(﹣1,﹣4),M(2,2)代入y=ax+b得:,解得:a=2,b=﹣2,∴y=2x﹣2,答:反比例函数的解析式是y=,一次函数的解析式是y=2x﹣2.(2)设MN交x轴于C,y=2x﹣2,当y=0时,x=1,∴C(1,0),OC=1,∴△MON的面积是S=S△MOC +S△NOC=×1×2+×1×|﹣4|=3,答:三角形MON的面积是3.(3)当OM=OQ时,Q的坐标是(2,0);当OM=MQ时,Q的坐标是(4,0);当OQ=QM时,Q的坐标是(2,0);答:在x轴的正半轴上存在点Q,使△MOQ是等腰三角形,所有符合条件的点Q的坐标是(2,0)或(4,0)或(2,0).第31页(共31页)。
精品文档
反比例函数练习题
一、精心选一选!(30分)
(1,?1)的反比例函数解析式是(1.下列函数中,图象经过点)
1?12?2?yy??y?y A.C.B ..D xxxx2ky??k?0k)的图象位于(()为常数,.2 反比例函数xA.第一、二象限B.第一、三象限C.第二、四角限D.第三、四象限
k?2的图象位于第一、第三象限,则k的取值范围是()3.已知反比例函数y=.
x (A)k>2 (B)k≥2 (C)k≤2 (D)k<2
k
?y轴,垂x是该函数图象上一点,MN垂直于的图象如图所示,点M4.反比例函数x)的值为(S=2,则kN足是点,如果△MON (A)2 (B)-2 (C)4 (D)-4
2?y),下列说法不正确的是(5.对于反比例函数...x1)?2,(?在它的图象上B.它的图象在第一、三象限A.点yy xx0?xx?0随的增大而减小时,的增大而增大D.当C.当时,随
x1)y?(2m?例函数)的值时(的增大而增大,则>0时,y随xm,当x.反比6
22?m
11 、D C 、-1 、小于A、±1 B 的实数2 y
轴的垂线,得到三个三角形y、P、P是双曲线上的三点,过这三点分别作.如7 图,P321 P )。
SAO,设它们的面积分别是、S、S,则(OAPO、PA、P A131******** =S= <SS<S D、SS <S S、AS<<S B、<SS C、P333113212212 A222 P8.在同)一直角坐标系中,函数图象的交点个数为(与xy2?y?? A33x0 C3 A.B.2 .1 D.xO
st)(h)甲、乙两地相距已知9.(km,汽车从甲地匀速行驶到乙地,则汽车行驶的时间v))的函数关系图象大致是((与行驶速度km/h
精品文档.
精品文档kS的,则若k=2AM⊥x轴,垂足为M,连结BM,10.如图,直线y=mx与双曲线y=A交于、B两点,过点A作ABM?x值是()4
D、m A.2 B、m-2 C、kxyy?x?y k)>的值为(>0,则(x,y),B(11.在反比例函数x,y),且(<0)的图象上有两点A22111221x非负数 (C)非正数
(D)(A)正数 (B)负数分)二、细心填一填!(30.写出一个图象在第一、三象限的反比例函数的解析式11.
8?y?.),则a=_____P12.已知反比例函数(a+1,4的图象经过点x6?y?.13.反比例函数图象上一个点的坐标是x③在每个象限内,函数);②它的图像在二、四象限内;.一个函数具有下列性质:①它的图像经过点(-1,114.值y随自变量x的增大而增大.则这个函数的解析式可以为值m的,3)则
(m,2)和(-2经15.已知反比例函数的图象过点
3?;5..1为
2),(?3?4,?5),CA(2,?3),B(ABC△中,可能在反比例的三个顶点16.在k0)(k?y?.函数的图象上的点是x)s(米F(牛)与此物体在力的方向上移动的距离17.在对物体做功一定的情况下,力牛时,在图象上,则当力达到10成反比例函数关系,其图象如图所示,P(5,1) 米.物体在力的方向上移动的距离是
2?y,则矩轴,垂足分别为A在函数、B0) (x>的图象上,PA⊥x轴、PB⊥yP18.已知点x __________.形OAPB的面积为k mxy?m?y k与双曲线.已知直线=____;它们的另一个交)-1,
-2.则;=_____19的坐标为(的一个交点A x.点坐标是______y
l 1?y?两点,根据图象猜的图象交于.如图,过原点的直线20l与反比例函数NM,x M ___________.的长的最小值是想线段MNx
O
60分)三、用心解一解!(N
90xy??xOy Oll与.绕点顺时针旋转在平面直角坐标系21.中,直线直线得到直线
k?y3)A(a,(反比例函数的图象的一个交点为,试确定反比例函数的解析式.分)5x
精品文档.
精品文档
22.如图,点A是反比例函数图象上的一点,自点A向y轴作垂线,垂足为T,已知S=4,求此函数的表达AOT△式. (5分)
k)的图象上,(2,2)在反比例函数23.已知点P(0?k?y x时,求的值;(Ⅰ)当y3??x 分)时,求的取值范围.(7(Ⅱ)当y3x?1?
k?y EF,AB,BCx?0OABC,24.的边)经过矩形如图,已知双曲线(的中点且x OEBF y
分)的值.(7四边形的面积为2,求k
E
C
B
F
x
O
A
k 1)=.的图象都经过点(1,y25.若一次函数=2x-1和反比例函数y x2 1)求反比例函数的解析式;(8分)A在第三象限,且同时在两个函数的图象上,求点A的坐标;((2)已知点
. )在某个反比例函数的图象上(3,4)已知点A(2,6、B26.)求此反比例函数的解析式;(1mx?y (8分)与线段AB相交,求m的取值范围(2)若直线.
k?y0)x?(k?0,是函,n) O为坐标原点,点B在函数的图象上,点P(m427.如图正方形OABC的面积为,点xk?y0)?k?0,x(、F.分别作Px轴、y轴的垂线,垂足分别为E的图象上异于B 数的任意一点,过点x说理由).不必与点,判断设矩形(1)OEPF的面积为SSP的位置是否有关(ll的函数关系,并标与S,写出重合的面积,剩余面积记为的面积中减去其与正方形从矩形(2)OEPFOABCSm22精品文档.
精品文档8分)明m的取值范围.(
y
C
B
x
;.AD 9.C 10.4.D 5.C 6.C 7D 8...参考答案:一、1B 2.C 3A
.解:依题意三、21x?xy?y3)A(3,A(3,3)(Aa,3)3a?l在因得,直线.的解析式为上,则.因为即为.在直线又9k?y?y9k?.所以反比例函数的解析式为.的图象上,可求得
xx
11k?ykk8?k?设所求反比例函数的表达式为,.解:所以,=4,即,因为S又因为图象在第二、=22AOT△22x8?y?8?k?;,故此函数的表达式为四象限,因此x
44.的取值范围∴当时,又反比例函数为时在值随值的增大而减小,yy30x?x?1?x4?y??y
3x1ababaFbkabaaBbEb-,所以×=2.设24.因为点的坐标为(2,2),则4点的坐标为(,2),2点的坐标为(2,)2ab=2. 2=2×,所以2kk,解得k=2,∴的图象经过点(1,1)=∵反比例函数.25(1) y1=22x1y=∴反比例函数的解析式为.x
精品文档.
精品文档
1∵点A在第三象限,且同时在两个函数图象上,∴A(,–2).?2kk12y?y?)设所求的反比例函数为(126k=12.∴反比例函数为.解:.,∴,依题意得: 6 =x2x64y≤m≤4≤∴.m =y≤6.∵,上任一点,则有,设(2)P(xy)是线段AB2≤x≤3,23x
4≤m≤3.的取值范围是所以m
3
0)(4S??2m?2??m BP在点上方时,在当没有关系;27.(1) (2) PB当;28(m??S4??2)点下方时,
2m
精品文档.。