自动控制的基本原理与方式
- 格式:ppt
- 大小:3.91 MB
- 文档页数:54
第1章自动控制的一般概念1.1复习笔记本章内容主要是经典控制理论中一些基本的概念,一般不会单独考查。
一、自动控制的基本原理与方式1.反馈控制方式反馈控制方式的主要特点是:(1)闭环负反馈控制,即按偏差进行调节;(2)抗干扰性好,控制精度高;(3)系统参数应适当选择,否则可能不能正常工作。
2.开环控制方式开环控制方式可以分为按给定量控制和按扰动控制两种方式,其特点是:(1)无法通过偏差对输出进行调节;(2)抗干扰能力差,适用于精度要求不高或扰动较小的情况。
3.复合控制方式复合控制即开环控制和闭环控制相结合。
二、自动控制系统的分类根据系统性能可将自动控制系统按线性与非线性、连续和离散、定常和时变三个维度进行分类,本书主要介绍了线性连续控制系统、线性定常离散控制系统和非线性控制系统的性能分析。
三、对自动控制系统的基本要求1.基本要求的提法稳定性、快速性和准确性。
2.典型外作用(1)阶跃函数阶跃函数的数学表达式为:0,0(),0t f t R t <⎧⎪=⎨≥⎪⎩(2)斜坡函数斜坡函数的数学表达式为:0,0(),0t f t Rt t <⎧⎪=⎨≥⎪⎩(3)脉冲函数脉冲函数定义为:0000()lim [1()1()]t A f t t t t t →=--(4)正弦函数正弦函数的数学表达式为:f t A tωϕ=-()sin()式中,A为正弦函数的振幅;ω=2πf为正弦函数的角频率;φ为初始相角。
1.2课后习题详解1-1图1-2-1是液位自动控制系统原理示意图。
在任意情况下,希望液面高度c维持不变,试说明系统工作原理并画出系统方块图。
图1-2-1液位自动控制系统原理图解:当Q1≠Q2时,液面高度的变化。
例如,c增加时,浮子升高,使电位器电刷下移,产生控制电压,驱动电动机通过减速器减小阀门开度,使进入水箱的流量减少。
反之,当c 减小时,则系统会自动增大阀门开度,加大流入水量,使液位升到给定高度c。
自动控制基本原理自动控制是一种通过使用控制系统,以实现对某个过程或系统的稳定性、准确性和效率的控制的技术和方法。
在许多行业中,自动控制起着至关重要的作用,包括工业生产、交通运输、航天航空等领域。
本文将介绍自动控制的基本原理,包括反馈控制、开环控制、控制系统组成及其应用。
首先,了解反馈控制是理解自动控制基本原理的第一步。
反馈控制是一种基于系统输出与期望输出之间差异的控制方法。
控制系统通过测量系统输出,并将其与期望输出进行比较,然后通过调整输入来减小这个差异。
这样的反馈控制循环可以确保系统能够自动调整以实现所需的目标。
其次,开环控制是另一种常见的自动控制方式。
开环控制是在没有测量和反馈系统输出的情况下直接将输入应用到系统的控制方式。
尽管开环控制的实现相对简单,但它通常无法对系统的扰动和变化做出及时的调整。
因此,开环控制在一些确定性要求较低的简单应用中使用较多。
一个典型的控制系统可以由几个基本组成部分构成。
首先是传感器,用于测量系统的输出或影响系统的输入。
传感器将所测量的信号转换为电信号,并将其传送给控制器。
控制器接收传感器的输入信号,与期望输出进行比较,并产生相应的控制信号。
控制信号进一步传递给执行器,执行器改变系统的输入以实现所需输出。
自动控制的应用广泛。
在工业生产中,自动控制可以用来控制流程,如化工生产中的温度、压力和液位等。
在交通运输领域,自动控制可以用于车辆行驶控制系统,以实现自动驾驶和车辆稳定性控制。
在航天航空领域,自动控制可以保证航天器或飞机的稳定性和导航精度。
除此之外,自动控制还可以用于家居自动化、医疗设备、能源系统等领域。
自动控制基本原理的研究与应用对于提高生产效率、减少人力资源的浪费以及降低事故风险具有重要意义。
通过引入自动控制系统,可以大大提高系统的稳定性、精确性和可靠性。
然而,自动控制也面临一些挑战,如控制算法的设计、系统建模的复杂性以及对外部环境变化的鲁棒性等。
总结而言,自动控制基本原理包括反馈控制和开环控制两种方法。
第一节自动控制的基本方式一、两个定义:(1) 自动控制:在没有人直接参与的情况卞,利用控制装置使某种设备、装置或生产过程 中的某些物理屋或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。
(2) 自动控制系统:由控制器(含测量元件)和被控对彖组成的有机整体。
或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。
称为自动控制系统。
在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。
系统的输入屋,通常指两种:给定输入量和扰动输入量。
给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。
扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电 源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输 入量。
扰动输入量影响给定输入量对系统输出量的控制。
自动控制的基本方式二、基本控制方式(3种)1、开环控制方式⑴定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。
具有这种控制方式的有机整体,称为开坏控制系统。
如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。
⑵职能方框图任何开坏控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。
2、闭坏控制方式(1)定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭坏控制方式。
如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。
自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为 电压。
反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放人器放大后去控制 电动机的转速。
当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速 运行。
当系统受到某种干扰时(例如负载变人),电动机的转速会发生变化(下降),测速反馈扰动输入量输出量电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变人),经放人后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。
自动控制系统的基本原理与技术自动控制系统是一种能够自主调节、控制和监测的系统,广泛应用于各个领域,包括工业生产、交通运输、通信网络、航空航天等。
它通过感知、决策和执行三个步骤,实现对被控对象的精确控制。
在本文中,我们将介绍自动控制系统的基本原理与技术,并探讨其在现代社会中的应用。
一、自动控制系统的基本原理自动控制系统的基本原理可以总结为反馈控制和前馈控制两种方式。
1. 反馈控制反馈控制是根据被控对象的实际状态与期望状态之间的差异进行调整的一种控制方式。
它通过传感器获取被控对象的输出信号,并将其与预期输出进行对比。
差异信号经过控制器的处理后,通过执行器对被控对象的输入进行调整,使实际输出逐渐趋向于期望输出。
反馈控制可以实现对系统的稳定性和精确性的控制,常用于对动态系统的调节。
2. 前馈控制前馈控制是根据被控对象的输入信号与期望输入信号之间的差异进行调整的一种控制方式。
它通过控制器对期望输入信号进行处理,并将处理后的信号直接作用于被控对象的输入端,以抵消外部扰动对系统的影响。
前馈控制可以提前对系统进行补偿,有效地减小了反馈控制的误差,常用于对静态系统的调节。
二、自动控制系统的基本技术自动控制系统的实现涉及多种基本技术,包括传感器、控制器和执行器等。
1. 传感器传感器是自动控制系统中用于感知被控对象状态的装置。
它可以将物理量、化学量或其他特定量转化为电信号,并传输给控制器。
常见的传感器包括温度传感器、压力传感器、光电传感器等。
传感器的准确性和响应速度直接影响着控制系统的性能。
2. 控制器控制器是自动控制系统中用于处理输入信号并生成控制信号的核心组件。
它根据传感器获取的信息和预设的控制策略,计算出对被控对象的调节量,并将调节信号发送给执行器。
常见的控制器有PID控制器、模糊控制器、模型预测控制器等。
控制器的设计和调节方法直接影响着控制系统的性能表现。
3. 执行器执行器是自动控制系统中用于执行控制信号的装置。
自动控制的原理及其应用1. 引言自动控制是一种基于控制理论、电子技术、计算机技术等多学科交叉的技术,通过对系统状态的监测和控制指令的发送,实现对机械、电子、化工等各种设备和系统的自动化运行和控制。
本文将介绍自动控制的基本原理以及其在不同领域的应用。
2. 自动控制的基本原理自动控制的基本原理可以总结为以下几个方面: 1. 传感器与执行器:传感器负责将所测量的物理量(如温度、压力、速度等)转化为电信号,而执行器则负责将电信号转化为相应的控制行为(如启动电机、调节阀门等)。
2. 控制器:控制器是自动控制系统的核心,负责接收传感器的信号,并对其进行处理和判断,最后输出控制信号给执行器。
常见的控制器包括比例控制器、积分控制器、微分控制器等。
3. 反馈控制:反馈控制是指将系统输出与期望输出进行比较,并根据比较结果对控制信号进行修正。
通过不断地进行反馈,系统能够更快地达到目标状态。
4. 开环控制:开环控制是指控制信号不依赖于系统输出的控制方式。
虽然开环控制简单,但无法对外部干扰和内部变化进行修正,容易导致系统偏离目标状态。
3. 自动控制的应用领域自动控制技术在各个领域都有广泛的应用,下面列举几个典型的应用领域:3.1 工业自动化工业自动化是自动控制技术最早应用的领域之一。
在工厂生产线上,自动控制系统可以实现对设备和流程的自动化控制,提高生产效率和产品质量。
例如,汽车生产线上的机器人可以自动完成车身焊接、喷漆等工序。
3.2 交通运输交通运输领域也是自动控制技术的应用领域之一。
自动驾驶技术在汽车、无人机等交通工具上的应用日益广泛,能够提高交通安全性,并减少交通事故发生率。
此外,交通信号灯、高速公路收费系统等也是自动控制的应用实例。
3.3 全自动化家居全自动化家居系统可以实现对家居设备的智能控制。
通过感应器、智能控制器和执行器的协同工作,可以实现灯光、温度、安防等方面的智能化控制。
例如,智能家居系统可以根据主人的离开时间自动关闭电器设备,实现节能和安全控制。
自动控制原理的原理及应用1. 前言自动控制原理是一门研究系统控制的学科,它通过对各种物理量进行感知、测量、比较和调整,实现对系统的自动化控制。
本文将介绍自动控制原理的基本原理和常见的应用。
2. 自动控制原理的基本原理自动控制原理是基于反馈原理的一种控制方法。
它通过传感器感知系统的实际状态,与期望状态进行比较,并根据比较结果调整系统的控制信号,使系统保持在期望状态。
自动控制原理的基本原理包括以下几个要素: - 传感器:用于感知系统的实际状态,并将其转化为电信号。
- 比较器:将传感器输出的实际状态与期望状态进行比较,产生误差信号。
- 控制器:根据误差信号调整控制信号,控制系统的行为。
- 执行器:根据控制信号执行相应的操作,调整系统参数。
3. 自动控制原理的应用自动控制原理广泛应用于各个领域,以下是几个常见的应用。
### 3.1 自动温度控制系统自动温度控制系统是自动控制原理的典型应用之一。
它通过感知室内的温度,并与设定的温度进行比较,调整空调或暖气的输出,使室内温度保持在设定的范围内。
自动温度控制系统包括以下几个组成部分:- 温度传感器:用于感知室内温度。
- 控制器:根据温度传感器的输出和设定的温度,调整空调或暖气的输出。
- 空调或暖气:根据控制器的输出调整制冷或加热效果。
3.2 自动流量控制系统自动流量控制系统用于实现对流体流量的自动控制。
它通过感知流体的流量并与设定的流量进行比较,调整阀门或泵的开度,使流体流量保持在设定的范围内。
自动流量控制系统包括以下几个组成部分: - 流量传感器:感知流体的流量。
- 控制器:根据流量传感器的输出和设定的流量,调整阀门或泵的开度。
- 阀门或泵:根据控制器的输出调整流体的流量。
3.3 自动化生产线自动化生产线是自动控制原理在制造业中的重要应用之一。
它通过传感器感知产品的状态,与期望状态进行比较,并根据比较结果调整机械臂、输送带等设备的运行,实现产品的自动化生产。
第一章自动控制的一般概念1.1 自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。
◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。
◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。
除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。
•测量元件:用以测量被控量或干扰量。
•比较元件:将被控量与给定值进行比较。
•执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。
参与控制的信号来自三条通道,即给定值、干扰量、被控量。
2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。
而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。
◎解决的基本问题:•建模:建立系统数学模型(实际问题抽象,数学描述)•分析:分析控制系统的性能(稳定性、动/稳态性能)•综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。
◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。
◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。
◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。
◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。
◎放大元件:放大偏差信号的元件。
◎校正元件(补偿元件):结构参数便于调整的元件,用于改善系统性能。
第一章概述一、自动控制的基本概念自动控制是指在无人直接参与的情况下,利用控制装置操纵受控对象,使受控对象的被控量等于给定值或按给定信号变化规律去变化,二、自动控制系统的基本构成及控制方式自动控制系统一般有两种基本结构,对应着两种基本控制方式。
1.开环控制控制装置与受控对象之间只有顺向作用而无反向联系时,称为开环控制。
开环控制的特点是,系统结构和控制过程均很简单,无抗扰能力,其控制精度较低,一般只能用于对控制性能要求不高的场合。
2.闭环控制控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,即有被控量对控制过程的影响,这种控制称为闭环控制,相应的控制系统称为闭环控制系统。
闭环控制又常称为反馈控制或按偏差控制。
特点:减小或消除作用在前向通道上的扰动所引起的被控量的偏差值,都会得到减小或消除,使得系统的被控量基本不受该扰动的影响。
3.复合控制反馈控制是在外部(给定及扰动)作用下,系统的被控量发生变化后才作出第三节对控制系统的性能要求系统性能的基本要求有三个方面。
一、稳定性稳定性是这样来表述的:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力。
如果系统受外作用力后,经过一段时间,其被控量可以达到某一稳定状态,则称系统是稳定的,二、快速性快速性是通过动态过程时间长短来表征的,三、准确性准确性是由输入给定值与输出响应的终值之间的差值es来表征的。
反映系统的稳态精度。
第二章自动控制系统的数学模型系统的数学模型有多种,常用的有:微分方程、传递函数、动态结构图、频率特性等。
第一节控制系统的微分方程一、建立系统微分方程的一般步骤(1)确定系统的输入变量和输出变量。
(2)建立初始微分方程组。
(3)消除中间变量,将式子标准化。
第三节传递函数二、典型环节的传递函数及其动态响应1.比例环节特点:其输出不失真、不延迟、成比例地复现输入信号的变化,即信号的传递没有惯性。
2.惯性环节特点:其输出量不能瞬时完成与输入量完全一致的变化。