1.储层基本特征
- 格式:ppt
- 大小:849.50 KB
- 文档页数:29
西安市临潼区渭水曲项1-1井储层特征与地热资源评价马荣图,李学森(桂林理工大学,桂林541006)摘要:渭水曲项1-1井位于关中盆地西安凹陷东部渭南断阶构造,揭露蓝田灞河组(N 2l+b )、高陵群(N 1gl )、白鹿塬组(E 3b )以及红河组(E 2h )四组储层;其中白鹿塬组孔隙度高(31.2%)、热水温度高(91.21℃),为本井最优质储水层,属新生界砂砾岩-砂岩孔隙裂隙层状传导型热储系统。
渭水曲项1-1井100年内预计产热量2.35×1016J,相当于标准煤1.35×106t,折合热能7.35MW。
热水中,氟化物、砷、铜含量较高,不适宜作为饮用水、农田灌溉水和渔业用水。
氟、偏硼酸、偏硅酸含量达到命名矿水浓度。
关键词:关中盆地;储层评价;地热井;热量,资源;陕西省中图分类号:P314文献标识码:A 文章编号:1006-0995(2021)01-0062-05DOI:10.3969/j.issn.1006-0995.2021.01.011关中盆地是我国典型的隐伏型中低温地热资源分布区,地热资源储量十分丰富,具有很好的开发利用前景国;已成为中国石化地热开发利用的示范基地。
2018年4月,中石化绿源公司在西安市临潼新区完钻的渭水曲项1-1井,井深2830m,出水量3127m 3/天,井口热水最高温度85℃,显示较好的开发前景。
本项研究依据钻井地质资料,对渭水曲项1-1井的热储地质条件、热储层地质特征及地热资源量进行评价和总结。
对认识关中盆地东部地区地热资源分布和热储层地质特征有理论意义;为地热开发方案制定提供了重要技术支撑。
1渭水曲项1-1井基本情况1.1构造部位渭水曲项1-1井位于关中盆地西安凹陷、骊山凸起、渭南断阶三个二级构造单元交汇处,骊山山前断阶斜坡部位(图1)。
1.2钻遇地层渭水曲项1-1井钻遇秦川群(Q 2-4qc )张家坡组(N 2z )、蓝田-灞河组(N 2l+b )、高陵群(N 1gl )、白鹿塬组(E 3b )和红河组(E 2h )。
油气田沉积演化与储层孔隙结构特征分析油气田储层是油气勘探开发的关键,而储层孔隙结构是影响储层物性的重要因素。
本文将以油气田沉积演化与储层孔隙结构特征分析为主题,探讨油气田储层的形成、演化和孔隙结构特征,为油气勘探开发提供理论依据。
一、油气田沉积演化油气田的形成离不开地质年代学和沉积学的理论和方法。
沉积演化过程中,岩石的物理、化学和结构特征都在发生变化,直接影响了储层性质和孔隙结构。
油气田的沉积演化可以分为盆地发育、岩石沉积、成岩作用、油气生成和运移等阶段。
在盆地发育过程中,盆地的地貌造成不同的剖面形态和沉积条件,决定了不同区域的岩相类型、沉积速率和流变特征。
岩石沉积阶段可以分为物质输入、物质分散、沉降沉积、作用改造等不同的过程。
成岩作用包括压实、嵌布、碳酸化、泥岩压溶和流体作用等,通过改变岩石物理和化学特征,直接影响了储层孔隙结构和渗透性。
油气生成阶段,有机质经过成熟作用和热解反应释放出烃类物质,被储存在孔隙中。
油气运移和富集阶段,主要是液体和气体在物理和化学条件下的分布和迁移,富集在有效的储层中形成油气藏。
二、储层孔隙结构特征储层孔隙结构特征直接影响储层性质和储层渗透性,因此是油气田勘探开发中非常重要的因素。
储层孔隙可以分为主孔隙和次生孔隙等,其中主孔隙是沉积过程中原生形成的孔隙,多数情况下是天然形成的,对于储层渗透性的影响最大。
次生孔隙是在成岩变质过程中形成的,对于储层物性的影响较小。
主孔隙结构特征主要包括储层孔隙度、储层孔径和储层孔隙形态等。
储层孔隙度是指储层中孔隙空间的占比例,是指储层孔隙的数量和分布。
孔隙度越大,储层的渗透性越好。
储层孔径是指储层中孔隙的大小分布,大孔径的储层渗透性相对较好。
储层孔隙形态是指储层中孔隙空间的形态特征,如孔洞口径、孔洞形状、孔壁构造等。
孔洞口径越大,其渗透性能越好。
在储层孔隙结构特征中,孔隙度是最重要的一个因素。
孔隙度的大小直接影响储层孔隙体积和渗透性,其大小的变化,会影响储层物性。
莺歌海盆地东方1-1气田中新统黄流组浅海多级海底扇形成机理及储层分布莺歌海盆地东方1-1气田位于华南地区,是中国海上油气勘探领域的重要发现之一。
其中,中新统黄流组被认为是气田的主要目标层系,其储层的分布和形成机理备受关注。
黄流组是东方1-1气田中新统的一部分,沉积于海侵期间形成的浅海环境中。
根据地质特征和物性分析,黄流组主要由石英砂岩、泥质砂岩、硅质泥岩和泥质泥岩等岩性组成。
这些岩性具有较好的储集性能,为气田的形成提供了有利条件。
黄流组的沉积环境主要为浅海多级海底扇。
在古海盆的沉积过程中,由于断层的作用以及沉积物供给的变化,扇体被分成多个扇脊。
每个扇脊由一至多个扇泵组成,扇泵之间通过扇坡相连。
扇脊之间的关系复杂多样,包括交叉、合并、分离等。
扇体的形成与古地形、河道分布、海平面变动等密切相关。
扇体的形成机理多种多样,包括河道发育、泥石流沉积、沿海建筑、震荡沉积等。
以黄流组为例,其扇体形成的主要机理是河道分布和沉积物供给的变化。
在古地形变动的作用下,河道具有分岔、汇聚、重整等特点,这导致了扇体的复杂形态。
同时,断层活动和沉积物的堆积也对扇体的形成产生了影响。
黄流组的储层分布与多级海底扇的特点密切相关。
由于沉积物供给的变化,在不同的扇脊和扇泵中,储层的厚度和连通性存在差异。
一般来说,储层在扇脊中最好发育,在扇泵中次之。
扇体中储层的连通性较好,有利于气体的储存和运移。
据研究发现,黄流组的储层特点主要有以下几个方面。
首先,储层厚度普遍较大,可以达到数十米至百余米。
其次,储层孔隙度适中,一般在10%左右,孔径分布较为均匀。
再次,储层渗透率较高,常常达到百毫达因尺。
最后,储层连通性较好,具有较大的储量潜力。
综上所述,莺歌海盆地东方1-1气田中新统黄流组的浅海多级海底扇成机理及储层分布的研究具有重要意义。
通过了解扇体形成机理,可以更好地预测储层的分布和性质,为勘探开发提供科学依据。
未来的研究应进一步深入研究扇体发育特点和储层分布规律,以提高油气勘探的效率和成功率综合研究结果表明,莺歌海盆地东方1-1气田中新统黄流组的浅海多级海底扇形成机理和储层分布具有重要意义。
第三章储层流体的物理特性所谓储层流体,这里指的是储存于地下的石油、天然气和地层水。
其特点是处于地下的高压、高温下,特别是其中的石油溶解有大量的气体,从而使处于地下的油气藏流体的物理性质与其在地面的性质有着很大的差别。
例如,当储层流体从储层流至井底,再从井底流至地面的过程中,流体压力、温度都会不断降低,此时会引起一系列的变化—原油脱气、体积收缩、原油析蜡;气体体积膨胀、气体凝析出油;油田水析盐—即离析和相态转化过程,而这一系列变化过程对于油藏动态分析、油井管理、提高采收率等都有重要的影响。
又如,进行油田开发设计和数值模拟时,必须掌握有关地下流体的动、静态物理参数,如石油和天然气的体积系数、溶解系数、压缩系数、粘度等;在进行油气田科学预测方面,如在开采初期及开采过程中,油田有无气顶、气体是否会在地层中凝析等,都需要对油气的物理化学特性及相态变化有深刻的认识,才能作出判断。
因此可以毫不夸张地说,不了解石油、天然气和水的性质及其问的相互关系,不掌握它们的高压物性参数,那么,科学地进行油田开发、采油及油气藏数值模拟等便无从讲起。
第一节油气藏烃类的相态特征石油和天然气是多种烃类和非烃类所组成的混合物。
在实际油田开发过程中,常常可以发现:在同一油气藏构造的不同部位或不同油气藏构造上同一高度打井时,其产出物各不相同,有的只产纯气,有的则油气同产。
在油气藏条件下,有的烃是气相,而成为纯气藏;有的是单一液相的纯油藏;也有的油气两相共存,以带气顶的油藏形式出现。
在原油从地下到地面的采出过程中,还伴随有气体从原油中分离和溶解的相态转化等现象。
那么,油藏开采前烃类究竟处于什么相态,为什么会发生一系列相态的变化,其主要原因是什么?用什么方式来描述烃类的相态变化?按照内因是事物变化的根据,外因则是事物变化的条件,可以发现油藏烃类的化学组成是构成相态转化的内因,压力和温度的变化是产生相态转化的外部条件。
因此,我们从研究油藏烃类的化学组成人手,然后再进一步研究压力温度变化时对相态变化的影响。
油层物理知识点总结一、油气储层的物理性质1. 储层岩石的物理性质储层岩石的物理性质是指岩石在外部作用下表现出来的物理特征,主要包括孔隙度、渗透率、孔隙结构、孔隙连通性等。
储层岩石的物理性质直接影响着岩石的储集能力和渗流性能。
孔隙度是指储层岩石中孔隙空间所占的比例,其大小直接影响着岩石的储集能力。
渗透率是指流体在岩石中运移的能力,它受孔隙度、孔隙连通性和岩石孔隙结构的影响。
孔隙结构是指储层岩石中孔隙的形态和大小分布特征,它直接影响着岩石对流体的储集和运移能力。
孔隙连通性是指储层岩石孔隙之间的互相连接程度,对于流体的渗流性能具有重要影响。
2. 储层流体的物理性质储层流体的物理性质包括油气的密度、粘度、饱和度、渗透率等。
油气的密度是指油气的质量与体积的比值,它直接影响着油气在地下的运移和驱替过程。
粘度是指液体的内摩擦力,它直接影响着油气在储层中的流动能力。
饱和度是指储层岩石中的孔隙空间中含有流体的比例,它直接影响着储层中的流体储集能力。
渗透率是指储层流体在岩石孔隙中渗流的能力,它受孔隙度、孔隙连通性和流体的物理性质的影响。
3. 储层的物理模型储层的物理模型是指将储层岩石和流体的物理性质用数学模型来描述,以便进行评价和预测储层的性质和行为。
常见的储层物理模型包括孔隙模型、细观模型、孔隙介质模型等。
这些模型可以帮助地质学家和工程师更好地理解和分析储层的物理性质,为油气田的勘探和开发提供科学依据。
二、油层物理测井技术1. 测井装备和工具油层物理测井是研究储层的物理性质和流体性质的一种技术,主要通过在井孔中使用测井装备和工具来获取储层的物理数据。
常见的测井装备和工具包括γ射线测井仪、自感应测井仪、声波测井仪、电阻率测井仪等。
这些测井装备和工具可以在井孔中获取储层的物理数据,并通过数据处理和解释来分析和评价储层的性质。
2. 测井曲线及解释测井曲线是指通过测井仪器在井孔中获取的物理数据所绘制出来的曲线,主要包括γ射线曲线、自感应曲线、声波曲线、电阻率曲线等。
碎屑岩沉积与储层特征研究碎屑岩是一类矿物颗粒直径小于2毫米的岩石,主要由砂砾石、砂岩和泥岩等颗粒状物质组成。
碎屑岩的沉积和储层特征对于石油勘探和储层评价具有重要意义。
本文将从碎屑岩的沉积环境、物性特征和储层评价几个方面展开讨论。
碎屑岩的沉积环境是形成和发育碎屑岩的重要因素之一。
在地质历史长河中,碎屑岩的形成与大陆沉降、气候变化、河流流域的侵蚀速率等有着密切关系。
在陆相环境中,由于河流流速变化频繁,沉积物颗粒易于堆积,形成粒度较大的砂砾岩。
而在海相环境中,海浪、潮汐等水动力作用会导致颗粒运动和分选,形成较细的砂岩和泥岩。
此外,还有一些特殊的沉积环境,如湖泊、河口等,对碎屑岩的形成也有一定影响。
除了沉积环境外,碎屑岩的物性特征也是研究的重点之一。
砂砾岩和砂岩是碎屑岩中常见的类型,其物性特征与沉积粒度和岩石成分有关。
一般来说,砂砾岩的物理性质较好,如孔隙度高、渗透性好,是较好的油气储集体。
而砂岩的物理性质则较差,多为低孔隙、低渗透的储层。
泥岩由于颗粒较细且胶结作用强,其孔隙度和渗透性都很低,一般很难成为有效的储集岩。
储层评价是研究碎屑岩沉积和储层特征的关键环节。
常用的储层评价方法包括大地物理勘探、岩心分析以及岩石地力学实验等。
通过大地物理勘探,可以获取地下岩石的物理性质参数,如密度、声波速度等,从而对储层进行初步评价。
岩心分析则是通过对岩心样品的粒度组成、矿物成分等方面的分析,来了解储层的粒度分布规律和岩性特征。
岩石地力学实验则能够进一步探测岩石的力学性质,如抗压强度、渗透性等,从而评价储层的岩石力学状态。
除了上述研究方法,现代科技的发展也为碎屑岩沉积与储层特征研究提供了新的手段和途径。
例如,扫描电子显微镜(SEM)可以获取岩石微观结构的高分辨率图像,从而进一步了解岩石的成因和演化过程。
同位素地球化学技术可以通过对岩石中的同位素含量和比例进行分析,探测储层物性和成因,为石油勘探提供科学依据。
综上所述,碎屑岩沉积与储层特征研究对于石油勘探和储层评价具有重要意义。
白驹油田丰探1井区孔隙结构简析丰探1井区受三条断层围合所控制,其中北西西走向断层贯穿整个井区,延伸长,大于10km,断距120-300m,,对丰探1井区断块的控制作用强,沟通油气;北西走向断层,延伸1.5km,断距10-60m;北东东走向断层,延伸1.0km,断距10m。
2 岩性与物性特征2.1储层岩石学特征丰探1井区储层主要发育在泰一段,以细砂岩为主,还有部分粉砂岩和粉细砂岩。
油层主要分布在泰一段1985-2031m处。
井区主力油层为浅湖的湖滩砂坝沉积。
根据钻井岩心分析,储层岩性主要为粉、细砂岩。
碎屑成份由石英、长石和岩屑组成,以石英为主,石英平均含量60%,长石平均含量17%,岩屑平均含量23%,多为岩屑长石砂岩和长石砂岩,成分成熟度较低。
颗粒间填隙物多为泥质和方解石、白云石的胶结物,含量可达19%。
据X-衍射分析,储层粘土矿物以伊利石和伊/蒙混层为主,伊利石相对含量8%,伊/蒙混层相对含量50%,高岭石相对含量为36%。
丰探1井泰一段储层中填隙物以碳酸盐岩胶结物为主,泥质杂基含量不到2%。
2.2储层物性特征丰探1井区的储层物性以低孔低渗、特低孔特低渗透为主,其中泰一段主力油层岩性为细砂岩,物性相对较好,孔隙度平均18.1%,渗透率为5.96-19.58×10-3μm2。
3储层孔隙结构特征毛管压力曲线反映了在一定的驱替压力下水银可能进入的孔隙喉道的大小以及这种喉道的孔隙体积,根据压汞资料统计,泰一段Ⅰ砂组2号含油小层排驱压力0.08~0.45 MPa、平均0.271 MPa,中值压力0.233~1.352MPa、平均0.844MPa,最大进汞饱和度91~96.1%、平均92.4%,平均孔喉半径0.512~2.201μm、平均0.161μm,中值孔喉半径0.555~3.217μm、平均1.419μm,最大孔喉半径1.666~9.427μm、平均4.504μm。
泰一段储层一般最大进汞饱和度都在90%以上,表明束缚水含量不高。