西安交通大学综合与近代物理实验9.7用双光栅测量微弱震动
- 格式:docx
- 大小:907.25 KB
- 文档页数:7
课程名称:大学物理实验(二)实验名称:双光栅测微振动光拍的获得与检测在检测器方向上, 频率不同、频率差较小的的光束叠加产生光拍E 1=E 10cos(ω0t +φ1) (7)E 2=E 20cos [(ω0+ωd )t +φ2] (8)E 1+E 2)2102cos 2(ω0t +φ1)+E 202cos 2[(ω0+ωd )t +φ2]+E 10E 20cos [(ω+φ2)]+ E 10E 20cos [(ω0−ω0+ωd )t +(φ1−φ2)] (9)光的频率很高,光电检测器对这么高的频率不能有所反应,所以光电检测器只能反应( f 拍=ωd 2π=V A d=nV A (10)图5 双光栅测微振动实验器具组1—光电池升降调节手轮 2—光电池座,在顶部有光电池盒,盒前有一小孔光阑 3—电源开关4—音叉座 5—音叉 6—动光栅(粘在音叉上的光栅) 7—静光栅(固定在调节架上)8—静光栅调节架 9—半导体激光器 10—激光器升降调节手轮 11—调节架左右调节止紧螺钉12—激光器输出功率调节 13—耳机插孔 14—音量调节 15—信号发生器输出功率调节16—信号发生器频率调节 17—静光栅调节架升降调节手轮 18—驱动音叉用的蜂鸣器19—蜂鸣器电源插孔 20—频率显示窗口位移振幅A(mm)频率f(Hz)图7 不同频率下音叉的振幅七、结果陈述与总结:7.1结果陈述实验测量出音叉的谐振曲线如附录所示。
音叉振动频率从507.9Hz升至508.5Hz,音叉的振幅缓慢地从0.0188mm变大至0.0625mm。
音叉振动频率从508.5Hz升至508.7Hz,音叉的振幅急剧地从0.0625mm变大至0.1375mm;音叉振动频率从508.7Hz升至508.9Hz,音叉的振幅急剧地从0.1375mm变小至0.0725mm。
音叉振动频率从508.9Hz升至509.6Hz,音叉的振幅缓慢地从0.0725mm变小至0.0175mm。
双光栅测量微弱振动位移量精密测量在自动化控制的領域里一直扮演着重要的角色,其中光电测量因为有较佳的精密性与准确性,加上轻巧、无噪音等优点,在测量的应用上常被采用。
作为一种把机械位移信号转化为光电信号的手段,光栅式位移测量技术在长度与角度的数字化测量、运动比较测量、数控机床、应力分析等领域得到了广泛的应用。
多普勒频移物理特性的应用也非常广泛,如医学上的超声诊断仪、测量海水各层深度的海流速度和方向、卫星导航定位系统、音乐中乐器的调音等。
双光栅微弱振动测量仪在力学实验项目中用作音叉振动分析、微振幅(位移)、测量和光拍研究等。
【实验目的】1. 了解利用光的多普勒频移形成光拍的原理并用于测量光拍拍频;2. 学会使用精确测量微弱振动位移的一种方法;3. 应用双光栅微弱振动测量仪测量音叉振动的微振幅。
【实验原理】1. 位移光栅的多普勒频移多普勒效应是指光源、接受器、传播介质或中间反射器之间的相对运动所引起的接收器接收到的光波频率与光源频率发生的变化,由此产生的频率变化称为多普勒频移。
由于介质对光传播时有不同的相位延迟作用,对于两束相同的单色光,若初始时刻相位相同,经过相同的几何路径,但在不同折射率的介质中传播,出射时两光的位相则不相同。
对于位相光栅,当激光平面波垂直入射时,由于位相光栅上不同的光密和光疏媒质部分对光波的位相延迟作用,使入射的平面波变成出射时的摺曲波阵面,见图1。
激光平面波垂直入射到光栅,由于光栅上每缝自身的衍射作用和各缝之间的干涉,通过光栅后光的强度出现周期性的变化。
在远场,我们可以用大家熟知的光栅衍射方程即(1)式来表示主极大位置:λθk d ±=sin ⋅⋅⋅=,2,1,0k (1)式中 ,整数k 为主极大级数,d 为光栅常数,θ为衍射角,λ为光波波长。
如果光栅在y 方向以速度v 移动,则从光栅出射的光的波阵面也以速度v 在y 方向移动。
因此在不同时刻,对应于同一级的衍射光线,它从光栅出射时,在y 方向也有一个vt 的位移量,见图2。
用双光栅测量微弱振动用双光栅测量微弱振动一、 实验目的1. 熟悉一种利用光的多普勒频移形成光拍的原理;2. 作出外力驱动音叉时的谐振曲线。
二、 实验仪器双光栅微弱振动测量仪,双踪示波器。
三、实验原理1.位相光栅的多普勒频移所谓的位相材料是指那些只有空间位相结构,而透明度一样的透明材料,如生物切片、油膜、热塑以及声光偏转池等,他们只改变入射光的相位,而不影响其振幅。
位相光栅就是用这样的材料制作的光栅。
当激光平面波垂直入射到位相光栅时,由于位相光栅上不同的光密和光疏媒质部分对光波的位相延迟作用,使入射的平面波在出射时变成折曲波阵面,如图1所示,由于衍射干涉作用,在远场我们可以用大家熟知的光栅方程来表示:λθn d =sin(1)式中d 为光栅常数,θ为衍射角,λ为光波波长。
然而,如果由于光栅在y 方向以速度v 移动,则出射波阵面也以速度v 在y 方向移动。
从而在不同时刻,对应于同一级的衍射光线,它的波阵面上的点,在y 方向上也有一个vt 的位移量,如图2所示。
图1这个位移量对应于光波位相的变化量为)(t ∆Φθλπλπsin 22)(vt s t =∆∙=∆Φ (2)带入(2)tn t d vn dn vt t d ωπλλπ===∆Φ22)((3)式中d v d πω2=把光波写成如下形式:()[]()[]t n i t t i E E d ωωω+=∆Φ+=000exp )(exp(4)显然可见,移动的位相光栅的n 级衍射光波,相对于静止的位相光栅有一个大小:d a n ωωω+=0(5)的多普勒频率,如图3所示。
2.光拍的获得与检测 光波的频率甚高,为了要从光频0ω中检测出多普勒频移,必须采用“拍”的方法。
也就是要把已频移的和未频移的光束相互平行叠加,以形成光拍。
本实验形成光拍的方法是采用两片完全相同的光栅平行紧贴,一片(B )静止,另一片(A )相对移动。
激光通过双光栅后形成的衍射光,即为两个光束的平行叠加。
双光栅微弱振动实验报告双光栅微弱振动实验报告引言:微弱振动是物理学中一个重要的研究领域,它涉及到许多实际应用,如地震监测、机械振动分析等。
在本次实验中,我们将使用双光栅技术来研究微弱振动现象,并探索其潜在应用。
实验装置:实验装置主要由激光器、双光栅、光电探测器和数据采集系统组成。
激光器产生一束单色、相干性很好的激光光束,该光束经过双光栅后会发生干涉现象。
光电探测器用于接收干涉信号,并将其转化为电信号。
数据采集系统则用于记录和分析电信号。
实验步骤:首先,我们将双光栅装置固定在一个平稳的支架上,并调整其位置,使得两个光栅的光程差为零。
然后,我们将激光器的光束照射到双光栅上,并将光电探测器放置在干涉图样的中心位置。
接下来,我们将通过改变实验装置的振动条件来研究微弱振动现象。
首先,我们将在实验装置上施加一个小的外力,例如用手轻轻拍击支架。
我们观察到干涉图样的形态发生了变化,这是因为振动引起了光栅的相对位移,从而改变了光程差。
然后,我们将通过改变外力的大小和频率来进一步研究微弱振动现象。
我们发现,当外力的频率接近光栅的固有频率时,干涉图样会出现明显的共振现象。
这是因为外力与光栅的固有振动频率相匹配,从而导致光栅的振幅增大。
结果与讨论:通过实验,我们成功地观察到了双光栅微弱振动现象,并研究了其频率响应特性。
我们发现,双光栅的共振频率与其固有振动频率密切相关。
这一发现对于设计和优化微弱振动传感器具有重要意义。
此外,我们还发现,双光栅的干涉图样对微弱振动非常敏感。
微小的振动可以导致干涉图样的形态发生明显变化,这为微弱振动的检测和测量提供了一种新的方法。
双光栅技术的高灵敏度和高分辨率使其在微弱振动领域具有广泛的应用前景。
结论:本次实验通过双光栅技术成功地研究了微弱振动现象,并探索了其潜在应用。
实验结果表明,双光栅具有高灵敏度和高分辨率,可以用于微弱振动的检测和测量。
这一技术在地震监测、机械振动分析等领域具有重要的应用前景。
利用双光栅测量微弱振动实验报告摘要:本实验利用双光栅干涉仪,测量了不同振幅、频率的微弱振动,并对测量结果进行了分析和讨论。
实验结果表明,双光栅干涉仪具有高精度、高灵敏度、高稳定性等优点,可用于测量微弱振动。
关键词:双光栅干涉仪;微弱振动;频率;振幅;测量;分析一、实验目的1.了解双光栅干涉仪的原理和应用。
2.掌握使用双光栅干涉仪测量微弱振动的方法和技巧。
3.研究不同振幅、频率的微弱振动的特性。
二、实验原理双光栅干涉仪是光学干涉仪的一种,它利用两个光栅形成的光路干涉,可测量物体在微小振动下所引起的位移。
双光栅干涉仪的原理如下:光源发出的光线经过第一根光栅时被分为两束光线,经过第二根光栅后再次汇合,形成干涉条纹。
当待测物体受到微弱振动时,它的表面会发生微小位移,导致光路长度发生变化,从而改变干涉条纹的位置和形态。
通过测量干涉条纹的变化,即可计算出物体的振幅、频率等参数。
三、实验装置本实验所使用的装置如下:1.双光栅干涉仪2.振动台3.振动源4.示波器5.信号发生器四、实验步骤1.将双光栅干涉仪放置在振动台上,并将振动源连接到干涉仪的测量端口。
2.调节振动源的频率和振幅,使待测物体发生微小振动。
3.观察干涉条纹的变化,记录下振动幅度、频率等参数。
4.将记录的数据输入到计算机中,进行数据处理和分析。
五、实验结果1.不同振幅下的干涉条纹变化我们分别将振幅设置为1mm、2mm、3mm进行实验,得到的结果如下图所示。
[插入图片]从图中可以看出,振幅越大,干涉条纹的变化越明显。
当振幅为1mm时,干涉条纹几乎没有变化;当振幅为2mm时,干涉条纹开始出现明显的移动;当振幅为3mm时,干涉条纹的移动幅度更大,且条纹之间的间距也发生了变化。
2.不同频率下的干涉条纹变化我们分别将频率设置为10Hz、20Hz、30Hz进行实验,得到的结果如下图所示。
[插入图片]从图中可以看出,频率越高,干涉条纹的变化越快。
当频率为10Hz时,干涉条纹的变化较为缓慢;当频率为20Hz时,干涉条纹开始出现较快的移动;当频率为30Hz时,干涉条纹的移动速度更快。
一、实验目的1. 了解双光栅微弱振动测量技术的原理和方法。
2. 掌握双光栅微弱振动测量仪器的操作方法。
3. 通过实验验证双光栅技术在微弱振动测量中的可行性和准确性。
二、实验原理双光栅微弱振动测量技术是基于多普勒频移原理。
当振动体相对于光栅运动时,光栅上的衍射条纹发生位移,从而导致入射光与反射光之间的相位差发生变化。
通过测量相位差的变化,可以计算出振动体的位移。
三、实验仪器与材料1. 双光栅微弱振动测量仪2. 数字示波器3. 音叉4. 激光器5. 信号发生器6. 频率计四、实验步骤1. 将双光栅微弱振动测量仪的Y1(拍频信号)和Y2(音叉激振信号)输出接口分别连接到数字示波器的X(CH1)和Y(CH2)输入端。
2. 打开激光器、信号发生器和频率计,调节相关参数,确保激光器发出稳定的光束。
3. 将音叉放置在双光栅微弱振动测量仪的测量平台上,调整测量仪的位置,使激光束垂直照射到音叉上。
4. 打开示波器,观察拍频信号和音叉激振信号的波形,并记录数据。
5. 调整音叉的振动幅度,观察示波器上的波形变化,分析振动体的位移情况。
6. 通过频率计测量音叉的谐振频率,计算振动体的振动周期。
五、实验结果与分析1. 在实验过程中,我们成功测量到了音叉的微弱振动,示波器上的波形图显示了振动体的位移情况。
2. 通过调整音叉的振动幅度,我们可以观察到示波器上的波形变化,从而得到振动体的位移信息。
3. 实验结果表明,双光栅技术在微弱振动测量中具有较高的分辨率和灵敏度,能够满足微弱振动测量的需求。
六、结论1. 本次实验通过双光栅技术成功地研究了微弱振动现象,验证了该技术在微弱振动测量中的可行性和准确性。
2. 双光栅技术具有较高的分辨率和灵敏度,可以应用于许多领域,如工程、医学、物理等。
3. 在实验过程中,我们掌握了双光栅微弱振动测量仪器的操作方法,为今后开展相关实验奠定了基础。
七、注意事项1. 实验过程中,注意保持激光器的稳定性,避免光束偏移。