时域离散信号的产生与运算
- 格式:doc
- 大小:36.00 KB
- 文档页数:2
实验一 离散时间信号的时域分析实验1 序列的产生1. 目的:熟悉C 语言产生和绘制,熟悉MATLAB 中产生信号和绘制信号的基本命令。
2. 具体实验:2.1 单位样本和单位阶跃序列。
Q1.1 运行程序P1.1 ,以产生单位样本序列u[n]并显示它。
答:如图1-1所示。
Q1.2 命令clf , axis , title , xlabel 和ylabel 的作用是什么? 答:clf :擦除当前图形窗口中的图形。
Axis :调整坐标轴X 轴Y 轴的范围。
Title:给绘制的图形加上标题。
Xlabel:给X 轴加上标注。
Ylabel: 给Y 轴加上标注。
Q1.3 修改程序P1.1 以产生带有延时11个样本的延迟单位样本序列ud[n]。
运行修改的程序并显示产生的序列。
答:如图1-2所示。
Q1.4修改程序P1.1 以产生单位步长序列s[n]。
运行修改的程序并显示产生的序列。
答:如图1-3所示。
Q1.5修改程序P1.1 以产生带有超前7个样本的延迟单位样本序列sd[n]。
运行修改的程序并显示产生的序列。
答:如图1-4所示。
Figure 1-2 The unit sample sequence ud[n]Figure 1-1 The shifted unit sample sequence u[n]单位样本序列公式如下所示:Time index nA m p l i t u d eUnit Sample Sequence u[n]Time index nA m p l i t u d eShifted Unit Sample Sequence ud[n]1 , n=0 1 , n=k δ[n]= δ[n-k]=0 , 0≠0 0 , 0≠kFigure 1-3 The unit step sequence s[n] Figure 1-4 The shifted unit step sequence sd[n]单位阶跃序列公式如下所示:1 , n ≥0 1 , n ≥k μ[n]= μ[n-k]=0 , n <0 0 , n <k2.2 指数信号Q1.6 运行程序P1.2 ,以产生复数值的指数序列。
离散时间信号的时域分析实验报告实验报告:离散时间信号的时域分析一、实验目的本实验旨在通过MATLAB软件,对离散时间信号进行时域分析,包括信号的显示、基本运算(如加法、减法、乘法、反转等)、以及频域变换(如傅里叶变换)等,以加深对离散时间信号处理的基本概念和原理的理解。
二、实验原理离散时间信号是在时间轴上离散分布的信号,其数学表示为离散时间函数。
与连续时间信号不同,离散时间信号只能在特定的时间点取值。
离散时间信号的时域分析是研究信号的基本属性,包括幅度、时间、频率等。
通过时域分析,我们可以对信号进行各种基本运算和变换,以提取有用的信息。
三、实验步骤1.信号生成:首先,我们使用MATLAB生成两组简单的离散时间信号,一组为正弦波,另一组为方波。
我们将这些信号存储在数组中,以便后续分析和显示。
2.信号显示:利用MATLAB的绘图功能,将生成的信号在时域中显示出来。
这样,我们可以直观地观察信号的基本属性,包括幅度和时间关系。
3.基本运算:对生成的信号进行基本运算,包括加法、减法、乘法、反转等。
将这些运算的结果存储在新的数组中,并绘制出运算后的信号波形。
4.傅里叶变换:使用MATLAB的FFT(快速傅里叶变换)函数,将信号从时域变换到频域。
我们可以得到信号的频谱,进而分析信号的频率属性。
5.结果分析:对上述步骤得到的结果进行分析,包括比较基本运算前后的信号波形变化,以及傅里叶变换前后的频谱差异等。
四、实验结果1.信号显示:通过绘制图形,我们观察到正弦波和方波在时域中的波形特点。
正弦波呈现周期性的波形,方波则呈现明显的阶跃特性。
2.基本运算:通过对比基本运算前后的信号波形图,我们可以观察到信号经过加法、减法、乘法、反转等运算后,其波形发生相应的变化。
例如,两个信号相加后,其幅度和时间与原信号不同。
反转信号则使得波形在时间轴上反向。
3.傅里叶变换:通过FFT变换,我们将时域中的正弦波和方波转换到频域。
正弦波的频谱显示其频率为单一的直流分量,方波的频谱则显示其主要频率分量是直流分量和若干奇数倍的谐波分量。
使用matlab来实现时域离散信号的产生实验心得【标题】使用Matlab实现时域离散信号的产生实验心得【导语】在信号与系统课程的学习中,时域离散信号的产生是一个重要的实验内容。
本文将结合个人实验经验,探讨如何使用Matlab来实现时域离散信号的产生,以及实验心得体会。
【主体内容】一、时域离散信号的概念时域离散信号是指信号在时域上是离散的,其取样时间是离散的。
与连续信号相对应,离散信号具有一些独特的特性和处理方法。
在实际应用中,我们经常需要生成各种形式的时域离散信号,用于系统模拟、滤波器设计等方面。
二、Matlab在时域离散信号产生中的应用1. 生成简单的离散信号在Matlab中,可以利用基本的数学函数和操作符来生成简单的离散信号。
可以利用sin、cos等函数来生成正弦信号、余弦信号,利用随机数函数来生成随机信号等。
Matlab还提供了丰富的绘图函数,可以直观地展示生成的离散信号。
2. 生成复杂的离散信号除了基本的数学函数外,Matlab还提供了丰富的信号处理工具箱,可以用于生成各种复杂的离散信号。
可以利用波形合成函数生成有限长序列、周期序列等特殊形式的信号;还可以利用滤波器设计函数生成特定频率特性的信号等。
三、实验心得与体会在实验中,我深切体会到Matlab在时域离散信号生成方面的强大功能和便捷性。
通过Matlab,我能够快速生成各种形式的离散信号,并对其进行分析、处理和展示。
Matlab的直观、交互式界面也使得实验过程更加高效和愉悦。
在实践中,我也发现了一些问题和经验总结。
在生成复杂离散信号时,需要深入理解各种信号处理工具箱的使用方法,以及不同函数的参数设置;在展示离散信号时,需要注意选择合适的绘图方式,清晰地展现信号的特点和规律。
【总结与回顾】本文通过介绍时域离散信号的概念和Matlab在信号生成中的应用,共享了个人的实验心得和体会。
希望能够对读者有所启发,开拓视野,加深对时域离散信号的理解和掌握。
实验一 时域离散信号的产生与基本运算一、实验目的1、了解常用的时域离散信号及其特点。
2、掌握MATLAB 产生常用时域离散信号的方法。
3、掌握时域离散信号简单的基本运算方法。
二、实验内容1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
2、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。
3、已知信号(1) 描绘)(n x 序列的波形。
(2) 用延迟的单位脉冲序列及其加权和表示)(n x 序列。
(3) 描绘以下序列的波形:)2()(),2(2)(),2(2)(321n x n x n x n x n x n x -=+=-=三、实现步骤1、自己设定参数,分别表示并绘制单位抽样序列、单位阶跃序列、正弦序列、 实指数序列、随机序列。
(1)单位抽样序列程序:x=zeros(1,10);x(2)=1;stem(x,'filled')axis([0,10,-0.2,1]);title('µ¥Î»³éÑùÐòÁÐ');-0.200.20.40.60.8图1 (2)单位阶跃序列程序:N=10;u=ones(1,N);stem(u,'filled')axis([-10,10,0,1]);title('µ¥Î»½×Ô¾ÐòÁÐ');00.10.20.30.40.50.60.70.80.91单位阶跃序列图2 (3)正弦序列程序:x=-20:1:20;y=sin(0.2*pi.*x+0.5*pi);stem(x,y,'filled');axis([-20,20,-2,2]);title('ÕýÏÒÐòÁÐ');正弦序列-20-15-10-505101520图3 (4)实指数序列a=1/2程序:n=0:10;a1=1/2;y1=a1.^n;stem(n,y1,'filled');axis([0,10,0,1]);title('ʵָÊýÐòÁУ¬a=1/2');实指数序列,a=1/2图4 5实指数序列a=2程序:n=0:10;a2=2;y2=a2.^n;stem(n,y2,'filled');title('ʵָÊýÐòÁÐ,a=2');实指数序列,a=2图5 6 随机序列程序:y=rand(1,20);stem(y,'filled');title('Ëæ»úÐòÁÐ');0246810121416182000.10.20.30.40.50.60.70.80.91随机序列图62、自己设定参数,分别表示并绘制信号移位、信号相加、信号相乘、信号翻转、 信号和、信号积、信号能量。
常见离散信号产生和实现实验报告实验1常见离散信号产生和实现学院信息科学与工程学院专业通信工程1班姓名学号一、实验目的1、加深对常用离散信号的理解;2、熟悉使用MATLAB在时域中产生一些基本的离散时间信号。
二、实验原理MATLAB语言提供了一系列函数用来产生信号,如exp,sin,cos, square,sawtooth,ones,zeros等函数。
1.基本信号序列1)单位抽样序列???=01)(nδ≠=n n在MATLAB中可以利用zeros()函数实现。
x=[1zeros(1, n-1)]程序:clear all;n=-20:20;u=[zeros(1,20)ones(1,21)];stem(n,u)xlabel('Time index n');ylabel('Amplitude'); title('p21');axis([-20200 1.2]);图形:Request1:编写一个)(k n-δ的函数。
???=-01)(k nδ≠=n kn程序:clear all;n=-20:20;k=5;u=[zeros(1,20+k)ones(1,21-k)];stem(n,u)xlabel('Time index n');ylabel('Amplitude'); title('p22');axis([-20200 1.2]);图形:(2)单位阶跃序列???01)(n u00<≥n n在MATLAB中可以利用ones()函数实现。
);,1(N ones x=Request2:编写一个)(k n u-的函数。
程序:clf;n=-20:20;u=[zeros(1,20)1zeros(1,20)];stem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence p10');axis([-20200 1.2]);图形:Request2:编写一个)(k n u-的函数。
第1篇一、实验目的1. 理解时域离散信号的基本概念和特性。
2. 掌握时域离散信号的表示方法。
3. 熟悉常用时域离散信号的产生方法。
4. 掌握时域离散信号的基本运算方法。
5. 通过MATLAB软件进行时域离散信号的仿真分析。
二、实验原理时域离散信号是指在时间轴上取离散值的一类信号。
这类信号在时间上不连续,但在数值上可以取到任意值。
时域离散信号在数字信号处理领域有着广泛的应用,如通信、图像处理、语音处理等。
时域离散信号的基本表示方法有:1. 序列表示法:用数学符号表示离散信号,如 \( x[n] \) 表示离散时间信号。
2. 图形表示法:用图形表示离散信号,如用折线图表示序列。
3. 时域波形图表示法:用波形图表示离散信号,如用MATLAB软件生成的波形图。
常用时域离散信号的产生方法包括:1. 单位阶跃信号:表示信号在某个时刻发生突变。
2. 单位冲激信号:表示信号在某个时刻发生瞬时脉冲。
3. 正弦信号:表示信号在时间上呈现正弦波形。
4. 矩形脉冲信号:表示信号在时间上呈现矩形波形。
时域离散信号的基本运算方法包括:1. 加法:将两个离散信号相加。
2. 乘法:将两个离散信号相乘。
3. 卷积:将一个离散信号与另一个离散信号的移位序列进行乘法运算。
4. 反褶:将离散信号沿时间轴翻转。
三、实验内容1. 实验一:时域离散信号的表示方法(1)使用序列表示法表示以下信号:- 单位阶跃信号:\( u[n] \)- 单位冲激信号:\( \delta[n] \)- 正弦信号:\( \sin(2\pi f_0 n) \)- 矩形脉冲信号:\( \text{rect}(n) \)(2)使用图形表示法绘制以上信号。
2. 实验二:时域离散信号的产生方法(1)使用MATLAB软件生成以下信号:- 单位阶跃信号- 单位冲激信号- 正弦信号(频率为1Hz)- 矩形脉冲信号(宽度为2)(2)观察并分析信号的波形。
3. 实验三:时域离散信号的基本运算(1)使用MATLAB软件对以下信号进行加法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(2)使用MATLAB软件对以下信号进行乘法运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(3)使用MATLAB软件对以下信号进行卷积运算:- \( u[n] \)- \( \sin(2\pi f_0 n) \)(4)使用MATLAB软件对以下信号进行反褶运算:- \( u[n] \)4. 实验四:时域离散信号的仿真分析(1)使用MATLAB软件对以下系统进行时域分析:- 系统函数:\( H(z) = \frac{1}{1 - 0.5z^{-1}} \)(2)观察并分析系统的单位冲激响应。
实验一时域离散信号的产生及时域处理实验目的:了解Matlab软件数字信号处理工具箱的初步使用方法。
掌握其简单的Matlab语言进行简单的时域信号分析。
实验内容:[1.1]已知两序列x1=[0,1,2,3,4,3,2,1,0];n1=[-2:6];x2=[2,2,0,0,0,-2,-2],n2=[2:8].求他们的和ya及乘积yp. 程序如下:x1=[0,1,2,3,4,3,2,1,0];ns1=-2;x2=[2,2,0,0,0,-2,-2];ns2=2;nf1=ns1+length(x1)-1;nf2=ns2+length(x2)-1;ny=min(ns1,ns2):max(nf1,nf2);xa1=zeros(1,length(ny));xa2=xa1;xa1(find((ny>=ns1)&(ny<=nf1)==1))=x1;xa2(find((ny>=ns2)&(ny<=nf2)==1))=x2;ya=xa1+xa2yp=xa1.*xa2subplot(4,4,1),stem(ny,xa1,'.')subplot(4,1,2),stem(ny,xa2,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,3),stem(ny,ya,'.')line([ny(1),ny(end)],[0,0])subplot(4,1,4),stem(ny,yp,'.')line([ny(1),ny(end)],[0,0])[1.2]编写产生矩形序列的程序。
并用它截取一个复正弦序列,最后画出波形。
程序如下:clear;close alln0=input('输入序列起点:n0=');N=input('输入序列长度:N=');n1=input('输入位移:n1=');n=n0:n1+N+5;u=[(n-n1)>=0];x1=[(n-n1)>=0]-[(n-n1-N)>=0];x2=[(n>=n1)&(n<(N+n1))];x3=exp(j*n*pi/8).*x2;subplot(2,2,1);stem(n,x1,'.');xlabel('n');ylabel('x1(n)');axis([n0,max(n),0,1]);subplot(2,2,3);stem(n,x2,'.');xlabel('n');ylabel('x2(n)');axis([n0,max(n),0,1]);subplot(2,2,2);stem(n,real(x3),'.'); xlabel('n');ylabel('x3(n)的实部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);subplot(2,2,4);stem(n,imag(x3),'.'); xlabel('n');ylabel('x3(n)的虚部');line([n0,max(n)],[0,0]);axis([n0,max(n),-1,1]);[1.3]利用已知条件,利用MATLAB生成图形。
离散时间信号的时域分析实验报告实验名称:离散时间信号的时域分析⼀、实验⽬的1.学会⽤MATLAB在时域中产⽣⼀些基本的离散时间信号,并对这些信号进⾏⼀些基本的运算。
2.熟悉MATLAB中产⽣信号和绘制信号的基本命令。
⼆、实验内容1.在载波信号xH[n]和调制信号xL[n]采⽤不同频率、不同调制指数m的情况下,运⾏程序P1.6,以产⽣振幅调制信号y[n]。
2.编写matlab程序,以产⽣图1.1和图1.2所⽰的⽅波和锯齿波序列,并将序列绘制出来。
三、主要算法与程序1.n=0:100;m=0.6;fH=0.2;fL=0.02;xH=sin(2*pi*fH*n);xL=sin(2*pi*fL*n);y=(1+m*xL).*xH;stem(n,y);grid;xlabel('时间序列');ylabel('振幅');通过改变m,fH和fL来产⽣不同情况下的振幅调制信号。
2.画出图⼆:n=0:1:30;y=3*square(n*pi/5,60);stem(n,y),grid onaxis([0,30,-4,4]);xlabel('时间序号n');ylabel('振幅');为画出图三,将占空⽐由图⼆的60改为30。
画出图四:n=0:1:50;y=2*sawtooth(n*pi/10,1);stem(n,y),grid onaxis([0,50,-2,2]);xlabel('时间序号n');ylabel('振幅');为画出图五,将图四中从-1到1的范围由1改为0.5。
四、实验结果与分析图⼀确定了数值:m=0.6,fH=0.2,fL=0.02,绘出图像。
图⼆图三图四图五五、实验⼩结通过这次实验,我熟悉MATLAB中产⽣信号和绘制信号的基本命令,学会⽤MATLAB在时域中产⽣⼀些基本的离散时间信号,并对这些信号进⾏⼀些基本的运算。
《数字信号处理》 实验报告学院 专业 电子信息工程 班级 姓名 学号 时间实验一 时域离散信号与系统分析一、实验目的1、熟悉连续信号经理想采样后的频谱变化关系,加深对时域采样定理的理解。
2、熟悉时域离散系统的时域特性,利用卷积方法观察分析系统的时域特性。
3、学会离散信号及系统响应的频域分析。
4、学会时域离散信号的MATLAB 编程和绘图。
5、学会利用MATLAB 进行时域离散系统的频率特性分析。
二、实验内容1、序列的产生(用Matlab 编程实现下列序列(数组),并用stem 语句绘出杆图。
(要求标注横轴、纵轴和标题)(1). 单位脉冲序列x(n)=δ(n ) (2). 矩形序列x(n)=R N (n) ,N=10nδ(n )nR N (n )图1.1 单位脉冲序列 图1.2 矩形序列(3) . x(n)=e (0.8+3j )n ; n 取0-15。
4n|x (n )|201321111053 陈闽焜n<x (n )/R a d图1.3 复指数序列的 模 图1.4 复指数序列的 相角(4). x(n)=3cos (0. 25πn +0.3π)+2sin (0.125πn +0.2π) n 取0-15。
ny (n )图1.4 复合正弦实数序列(5). 把第(3)小题的复指数x(n)周期化,周期20点,延拓3个周期。
4m|y (m )|201321111053 陈闽焜图1.5 第(3)的20点周期延拓杆图(6). 假设x(n)= [1,-3,2,3,-2 ], 编程产生以下序列并绘出杆图:y(n) y(n)= x(n)-2x(n+1)+x(n-1)+x(n-3);5201321111053 陈闽焜图1.6 y(n)序列杆图(7)、编一个用户自定义matlab 函数,名为stepshf (n0,n1,n2)实现单位阶跃序列u[n -n1]。
其中位移点数n1在起点n0和终点n2之间任意可选。
自选3个入口参数产生杆图。
离散信号与系统的时域分析实验报告1. 引言离散信号与系统是数字信号处理中的重要基础知识,它涉及信号的采样、量化和表示,以及离散系统的描述和分析。
本实验通过对离散信号在时域下的分析,旨在加深对离散信号与系统的理解。
在实验中,我们将学习如何采样和显示离散信号,并通过时域分析方法分析信号的特性。
2. 实验步骤2.1 信号的采样与显示首先,我们需要准备一个模拟信号源,例如函数发生器,来产生一个连续时间域的模拟信号。
通过设置函数发生器的频率和振幅,我们可以产生不同的信号。
接下来,我们需要使用一个采样器来对模拟信号进行采样,将其转化为离散时间域的信号。
使用合适的采样率,我们可以准确地获取模拟信号的离散样本。
最后,我们将采样后的信号通过合适的显示设备进行显示,以便观察和分析。
2.2 信号的观察与分析在实验中,我们可以选择不同类型的模拟信号,例如正弦波、方波或脉冲信号。
通过观察采样后的离散信号,我们可以观察到信号的周期性、频率、振幅等特性。
通过对不同频率和振幅的信号进行采样,我们可以进一步研究信号与采样率之间的关系,例如采样定理等。
2.3 信号的变换与滤波在实验中,我们可以尝试对采样后的离散信号进行变换和滤波。
例如,在频域下对信号进行离散傅里叶变换(DFT),我们可以将时域信号转换为频域信号,以便观察信号的频谱特性。
通过对频谱进行分析,我们可以观察到信号的频率成分和能量分布情况。
此外,我们还可以尝试使用不同的数字滤波器对离散信号进行滤波,以提取感兴趣的频率成分或去除噪声等。
3. 实验结果与分析通过实验,我们可以得到许多有关离散信号与系统的有趣结果。
例如,在观察信号的采样过程中,我们可以发现信号频率大于采样率的一半时,会发生混叠现象,即信号的频谱会发生重叠,导致采样后的信号失真。
而当信号频率小于采样率的一半时,可以还原原始信号。
此外,我们还可以观察到在频域下,正弦波信号为离散频谱,而方波信号则有更多的频率成分。
4. 结论通过本实验,我们对离散信号与系统的时域分析有了更深入的理解。
离散信号的时域运算离散信号的时域运算是数字信号处理中一项非常重要的操作,通过对信号在时域上的运算,可以实现信号的加减、乘除、卷积等操作,进而实现对信号的滤波、特征提取等处理。
本文将从离散信号的时域运算的定义、加法、乘法、卷积等方面进行详细介绍。
一、离散信号的时域运算定义离散信号的时域运算是指对离散时间序列信号进行加、减、乘、除、卷积等操作,在时域上对信号进行处理。
时域运算可以表示为以下公式:y(n) = f(x1(n), x2(n), ..., xn(n))其中,y(n)为输出的离散信号,x1(n)、x2(n)、...、xn(n)为输入的离散信号,f为时域运算函数。
二、离散信号的加法离散信号的加法是指对两个离散信号在时域上进行加法运算。
假设有两个离散信号x1(n)和x2(n),它们的和为:y(n) = x1(n) + x2(n)加法运算可以实现信号的叠加,例如在音频处理中,可以将两个音频信号进行叠加,实现混音的效果。
三、离散信号的乘法离散信号的乘法是指对两个离散信号在时域上进行乘法运算。
假设有两个离散信号x1(n)和x2(n),它们的积为:y(n) = x1(n) * x2(n)乘法运算可以实现信号的放大或缩小,例如在音频处理中,可以将音频信号乘以一个系数,实现音量的调节效果。
四、离散信号的卷积离散信号的卷积是指对两个离散信号在时域上进行卷积运算。
假设有两个离散信号x1(n)和x2(n),它们的卷积为:y(n) = x1(n) * x2(n) = ∑(k=-∞)^(∞) x1(k) * x2(n-k)卷积运算可以实现信号的滤波、特征提取等操作,例如在图像处理中,可以通过卷积运算实现边缘检测、模糊等效果。
五、离散信号的除法离散信号的除法是指对两个离散信号在时域上进行除法运算。
假设有两个离散信号x1(n)和x2(n),它们的商为:y(n) = x1(n) / x2(n)除法运算在信号处理中较为少用,但在某些特殊场合下仍然有一定的应用。
实验二离散时间信号的时域分析1.实验目的(1)学习MATLAB软件及其在信号处理中的应用,加深对常用离散时间信号的理解。
(2)利用MATLAB产生常见离散时间信号及其图形的显示,进行简单运算。
(3)熟悉MATLAB对离散信号的处理及其应用。
2.实验原理离散时间信号是时间为离散变量的信号。
其函数值在时间上是不连续的“序列”。
(1)单位抽样序列如果序列在时间轴上面有K个单位的延迟,则可以得到,即:该序列可以用MATLAB中的zeros函数来实现。
(2)正弦序列可以利用sin函数来产生。
(3)指数序列在MATLAB中通过:和来实现。
3.实验内容及其步骤(1)复习有关离散时间信号的有关内容。
(2)通过程序实现上述几种信号的产生,并进行简单的运算操作。
单位抽样序列参考:% Generation of a Unit Sample Sequenceclf;% Generate a vector from -10 to 20n = -10:20;% Generate the unit sample sequenceu = [zeros(1,10) 1 zeros(1,20)];% Plot the unit sample sequencestem(n,u);xlabel('Time index n');ylabel('Amplitude');title('Unit Sample Sequence');axis([-10 20 0 1.2]);如果序列在时间轴上面有K个单位的延迟,则可以得到,即:,通过程序来实现如下所示结果。
正弦序列参考:% Generation of a sinusoidal sequencen = 0:40; f = 0.1;phase = 0; A = 1.5;arg = 2*pi*f*n - phase; x = A*cos(arg);clf; % Clear old graphstem(n,x); % Plot the generated sequenceaxis([0 40 -2 2]); grid;title('Sinusoidal Sequence'); xlabel('Time index n');ylabel('Amplitude'); axis;指数序列参考:% Generation of a real exponential sequenceclf; n = 0:35; a = 1.2; K = 0.2;x = K*a.^n; stem(n,x);xlabel('Time index n'); ylabel('Amplitude');(3)加深对离散时间信号及其特性的理解,对于离散信号能进行基本的运算(例如信号加、乘、延迟等等),并且绘出其图形。
典型时域离散序列的产生与简单运算
1. 单位冲激序列
程序1:
function [x,n]=impseq(n0,n1,n2)
% generates x(n)=delta(n-n0); n1<=n<=n2
n=[n1:n2];
x=[(n-n0)==0];
调用:[x,n]=impseq(0,-3,4);
stem(n,x)
程序2:
n1=-3;n2=4;n0=0;
n=n1:n2;
x=[n==n0];
stem(n,x,'filled');
axis([n1,n2,0,1.1*max(x)]);
xlabel('时间(n)');ylabel('幅度x(n)');
title('单位脉冲序列');
2. 单位阶跃序列
程序:
n1=-3;n2=4;n0=0;
n=n1:n2;
x=[n>=n0];
stem(n,x,'filled');
axis([n1,n2,0,1.1*max(x)]);
xlabel('时间(n)');ylabel('幅度x(n)');
title('单位阶跃序列');
3. 矩形序列
程序:
10()00n n n δ=⎧=⎨≠⎩1≥0()00n u n n ⎧=⎨<⎩1 0≤≤1()0 N n N R n -⎧=⎨⎩其他
n=[-10:10];
xn1=[(n-0)>=0];
xn2=[(n-4)>=0]; %定义两个阶跃序列;
xn=xn1-xn2; 两个阶跃序列之差得到矩形序列;
stem(n,xn,'.');
xlabel('时间(n)');ylabel('幅度x(n)');
title(‘矩形序列');
4. 正弦序列
程序:
n=0:20;
xn=sin(pi/4*n);
stem(n,xn,'.');
xlabel('时间(n)');ylabel('幅度x(n)');
title(‘正弦序列');
5. 指数序列
程序:
n=[0:20];
x=(0.9).^n;
stem(n,x);
xlabel('时间(n)');ylabel('幅度x(n)');
title(‘指数序列');
6. 对conv 进行简单的扩展conv_m ,可以完成任意位置序列的卷积.
对于有限长序列x (n ),h (n ),它们分别的区域为[n xb,n xe]和[n hb,n he],则卷积后的区域为
[n xb+n hb,n xe+n he]
程序:
function[y,ny]=conv_m(x,nx,h,nh)
nyb=nx(1)+nh(1);
nye=nx(length(x))+nh(length(h));
ny=[nyb:nye];
y=conv(x,h);
调用:
x=[3,11,7,0,-1,4,2];
h=[2,3,0,-5,2,1];
nx=[-3:3];
nh=[-1:4];
[y,ny]=conv_m(x,nx,h,nh) ()sin()x n A n ωθ=+n
a n x =)(。