纳什均衡的应用案例分析
- 格式:ppt
- 大小:598.50 KB
- 文档页数:14
好的纳什均衡例子(一)好的纳什均衡什么是纳什均衡?纳什均衡是博弈论中的一个重要概念,指的是在博弈参与者之间形成的一种稳定和平衡的策略选择状态。
在纳什均衡下,任何一个参与者都无法通过改变自己的策略来获得更大的利益。
好的纳什均衡指的是存在多个纳什均衡时,其中某些纳什均衡比其他纳什均衡更为理想。
例子一:囚徒困境囚徒困境是博弈论中最经典的例子之一。
假设有两个犯人,他们因为涉嫌合谋犯罪被捕,警察只有有限的证据。
警察与每个犯人分别进行单独审讯,并给他们提供了合作和背叛两个选项,这两个选项对应于认罪和抵赖。
如果两个人都选择合作,即认罪,则每个人都会被判刑2年;如果两个人都选择背叛,即抵赖,则每个人都会被判刑5年;如果一个人选择合作而另一个选择背叛,则合作的人会被判刑6年,而背叛的人会被判刑1年。
在这个案例中,存在两个纳什均衡:互相背叛和互相合作。
然而,互相合作是更为理想的纳什均衡,因为如果两个人都选择合作,他们的总刑期将会最短,只有2年。
例子二:拍卖拍卖是另一个常见的博弈场景。
假设有两个竞拍者A和B,他们在一个拍卖会上竞价购买一件物品。
物品的最低价格为100元。
竞拍者A知道他的估值是200元,而竞拍者B知道他的估值是150元。
他们每次可以按照一定幅度加价,但不能超过自己的估值。
在这个案例中,存在两个纳什均衡:A出价200元,B不出价;B 出价150元,A不出价。
然而,对于卖家来说,A出价200元,B不出价是更好的纳什均衡,因为这样卖家可以以更高的价格售出物品。
例子三:价格战价格战是市场竞争中常见的博弈情景。
假设有两家公司A和B,它们在同一个市场上销售类似的产品。
它们可以根据自己的利润目标制定价格。
如果两家公司的价格相等,则它们将平分市场份额;如果一家公司的价格比另一家低,则它将获得更大的市场份额。
在这个案例中,存在两个纳什均衡:价格相等和一家公司的价格低于另一家。
然而,价格相等是更好的纳什均衡,因为这样两家公司可以共享更多的市场份额,并且避免因为价格战而导致的利润下降。
混合策略纳什均衡例子混合策略纳什均衡是博弈论中的一个重要概念,指的是各参与者选择一个概率分布作为他们的策略,从而达到一个稳定的状态。
在混合策略纳什均衡中,没有任何参与者可以通过单独改变自己的策略来获得更好的结果。
一个经典的混合策略纳什均衡的例子是“岩石-剪刀-布”游戏。
在这个游戏中,两个参与者(称为玩家1和玩家2)可以选择出岩石、剪刀或布中的任意一种。
每一种选择都有一定的胜负规则:岩石胜剪刀,剪刀胜布,布胜岩石。
假设玩家1选择出岩石、剪刀和布的概率分别为p1、q1和r1,玩家2选择出岩石、剪刀和布的概率分别为p2、q2和r2。
两个玩家的利益可以用一个支付矩阵表示如下:| 岩石 | 剪刀 | 布-----------------------------岩石 | 0 | -1 | 1-----------------------------剪刀 | 1 | 0 | -1-----------------------------布 | -1 | 1 | 0在混合策略纳什均衡中,每个玩家选择的概率分布必须使得对于每一种选择,玩家都不希望改变自己的概率分布。
在这个例子中,我们可以通过计算来找到混合策略纳什均衡。
假设玩家1选择出岩石的概率为p1,则选择剪刀的概率为q1=1-p1-0=1-p1,选择布的概率为r1=0-0=0。
同样地,玩家2选择出岩石的概率为p2,则选择剪刀的概率为q2=1-p2-0=1-p2,选择布的概率为r2=0-0=0。
为了找到混合策略纳什均衡,我们需要检查每一种选择,并确保玩家对于每一种选择都不希望改变自己的概率分布。
在这个例子中,无论玩家1选择什么概率分布,玩家2都可以通过选择相应的概率分布来获得更好的结果。
所以,不存在一个混合策略纳什均衡。
总结起来,混合策略纳什均衡是博弈论中一种稳定的策略选择状态,即不存在任何参与者可以通过单独改变自己的策略来获得更好的结果。
岩石-剪刀-布游戏是一个经典的混合策略纳什均衡的例子,其中玩家的选择概率分布是关键因素。
三方博弈纳什均衡例题全文共四篇示例,供读者参考第一篇示例:三方博弈是博弈论中一种常见的情形,指的是有三方参与并且彼此之间存在竞争和合作关系的博弈情况。
纳什均衡是博弈论中的一个重要概念,指的是在博弈中每个玩家都做出最佳决策的情况下所达到的一个稳定状态。
在三方博弈中,如果存在某种情况下所有玩家都无法通过改变自身策略而获益,这种状态就是三方博弈的纳什均衡。
下面我们通过一个例子来说明三方博弈纳什均衡的概念。
假设有三位学生A、B、C参加了一个考试竞赛,在这个竞赛中,他们可以选择合作作弊,也可以选择正当的考试。
如果三位学生都选择正当考试,那么每个人都能得到10分的成绩;如果某一位学生作弊而其他两人选择正当考试,那么作弊的学生可以得到15分,而其他两人得0分;如果所有人都选择作弊,那么每个人只能得到5分。
同理,对于学生B和C来说,选择作弊也是更有利的策略。
第二篇示例:三方博弈是博弈论中的一个重要概念,指的是有三个各自独立的决策者同时做出决策的情况。
在三方博弈中,每个决策者都会考虑其他两方的利益和行为,以最大化自己的利益。
纳什均衡是博弈论中一个非常重要的概念,是指在一个博弈当中,每个参与者都选择了最优的行动策略,没有任何一方可以通过改变自己的策略来获得更好的结果。
下面我们来看一个关于三方博弈纳什均衡的例题。
假设有三个玩家A、B、C,他们在一个零和博弈中,并且每个玩家都只有两种可行的策略,分别是合作和背叛。
博弈的收益矩阵如下表所示:| | 合作| 背叛|| ---- | ------ | ------ || 合作| 3,3,3 | 1,4,4 || 背叛| 4,4,1 | 0,2,2 |在这个收益矩阵中,每个元素表示每个玩家在不同组合下的收益,例如当A、B、C都选择合作时,他们的收益分别是3,当A、B、C都选择背叛时,他们的收益分别是2。
现在我们来分析一下这个博弈的纳什均衡。
我们来看一下玩家A的最佳策略。
玩家A会根据其他两个玩家的策略来选择自己的策略,如果B、C都选择合作,那么玩家A选择背叛可以得到更高的收益4;如果B、C都选择背叛,那么玩家A也选择背叛可以得到更高的收益4。
首先我们先简单看一下纳什均衡的经济学含义:所谓纳什均衡,指的是参与人的这样一种策略组合,在该策略组合上,任何参与人单独改变策略都不会得到好处。
换句话说,如果在一个策略组合上,当所有其他人都不改变策略时,没有人会改变自己的策略,则该策略组合就是一个纳什均衡。
大家可以现有一个简单的印象,结合下面的案例再回来看这个定义。
案例一、智猪博弈猪圈里有两头猪,一头大猪,一头小猪。
猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。
如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。
当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。
对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。
反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
案例二、囚徒困境(1950年,数学家塔克任斯坦福大学客座教授,在给一些心理学家作讲演时,讲到两个囚犯的故事。
)假设有两个小偷A和B联合犯事、私入民宅被警察抓住。
警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。
如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。
如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
囚徒困境博弈A╲B坦白抵赖坦白-8,-80,-10抵赖-10,0-1,-1关于案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。
两个纳什均衡的例子
例子一:
假设有两家公司A和B竞争某一物品的售价。
公司A设定物品的
售价为12元,公司B设定物品的售价为10元。
由于物品的品质和需
求相同,消费者将选择购买价格更低的物品。
因此,在这种情况下,
公司B的销售量将高于公司A,从而获得更高的利润。
对于公司A来说,降低价格将导致利润下降,而提高价格将导致销量减少。
因此,这种
情况下的纳什均衡是公司B设定售价为10元,公司A设定售价为12元。
例子二:
假设有两个国家A和B争夺某一资源的开发权。
国家A选择全面
开发该资源,从而带来经济发展和利益增加,但同时对环境产生巨大
破坏。
而国家B选择保护环境,限制资源开发,从而减少环境破坏,
但也丧失了资源开发所能带来的经济利益。
如果国家A单方面全面开发,国家B将面临环境恶化的问题,而国家A将无法享受到经济发展
所带来的最大利益。
因此,这种情况下的纳什均衡是国家A选择限制
资源开发,保护环境,而国家B也选择限制资源开发,从而实现环境
保护和资源合理利用的共同利益。
生活中纳什均衡例子
纳什均衡是博弈论中的一个概念,指在双方或多方进行博弈时,
当每个参与者都选择了最优策略后,游戏的结果已经达到了一个稳定
状态。
生活中,我们可以看到很多纳什均衡的例子。
1.超市降价促销:当超市降价促销时,消费者可以选择是抢购或
等待。
如果大多数人都抢购,那么超市就会获得更多的销售额;如果
消费者等待,那么超市可以考虑再次降价吸引消费者购买。
2.交通拥堵:在道路狭窄且车流量大的情况下,司机们可以选择
是慢行还是超车。
如果每个司机都选择了超车,那么道路的拥堵就会
更加严重;如果司机们都选择慢行,那么车流量就会更加平缓。
3.竞拍:在竞拍中,每个竞拍者都会选择自己认为是最高的出价。
如果竞拍者们都认为这个物品的价值很高,那么竞拍的价格就会越来
越高。
如果有人放弃竞拍,价格就会下降,直到达到平衡。
4.恋爱:在恋爱中,每个人都希望自己的感情得到回报。
如果两
个人都对对方很有感情,那么他们就会在一起;如果只有一个人喜欢
对方,那么他们就不会在一起。
这是一个常见的纳什均衡例子。
总之,纳什均衡是在人与人之间相互影响,相互制约下的一种结果。
只有当每个人都选择自己认为最优的策略,才能形成稳定的状态。
纳什均衡的经典案例是“囚徒困境”。
在这个例子里,有两个小偷A和B联合犯事,被警方抓住并分别关在不同的房间里进行审讯。
警方对每个犯罪嫌疑人给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,那么证据确凿,两人都被判有罪。
如果另一个犯罪嫌疑人也坦白了罪行,那么两人各被判刑8年。
这个案例中,无论A还是B,最优策略都是坦白。
因为如果A选择坦白,B的最优策略也是坦白;如果A选择不坦白,B的最优策略也是坦白。
反之亦然。
因此,两人的最优策略是一致的——坦白。
这就是纳什均衡的一个体现。
在更复杂的情况下,例如狮群博弈中,总数是奇数和偶数时,狮子的策略会发生变化。
这同样可以通过纳什均衡来解释。
当狮子总数为奇数时,每只狮子都有可能成为狩猎者,因此它们会选择大胆去吃睡着的狮子;而当狮子总数为偶数时,没有狮子会成为狩猎者,因此它们会选择谨慎地不去吃睡着的狮子。
这也是纳什均衡的一个应用。
希望这个例子能够帮助你理解纳什均衡的概念和实际应用。