正方体的涂色问题
- 格式:docx
- 大小:38.28 KB
- 文档页数:5
正方体各面涂色规律
将一个棱长为整数的立方体各面均涂色,小明用刀在它的上表面、前表面、右侧面各切数刀,
变式1:由若干个小正方体堆成的大正方体,其表面被涂成红色,在所有小正方体中,三面被涂成红的有a 个,两面被涂成红的有b 个,一面被涂成红的有c 个,那么在a ,b ,c 三个数中( D )
A 、a 最大
B 、b 最大
C 、c 最大
D 、哪一个最大与堆成大正方体的小正方体个数有关变式2:一个木制的立方体,棱长为n (n 是大于2的整数),表面涂上黑色,用刀片平行于立方体的各面,将它切成
3n 个棱长为1的小立方体,若恰有一个面涂黑色的小立方体的个数等
于没有一个面涂黑色的小立方体的个数,则n = 8 .
变式3:将一个正方体木块表面涂上红色, 如果每面等距离地切4刀, 则可以得到 _8__ 个三面红色的小正方体, __36__ 个两面红色的小正方体, __54__ 个一面红色的小正方体, __27__ 个没有涂色的小正方体; 如果要得到各面都没有涂色的小正方体1000个, 则每面至少需切__11_ 刀.
变式4:由若干个单位立方体组成一个较大的立方体,然后把这个大立方体的某些面上涂上油漆,油漆干后,把大立方体拆开成单位立方体,发现有45个单位立方体上任何一面都没有漆。
那么大立方体被涂过油漆的面数是( C )
A :2
B :3
C :4
D :5。
五年级:美妙数学之“正方体涂色问题”(0807五)
我们人教版五年级下册学过了探索图形,你还记得吗?
探索图形中的其中一类就是正方体涂色问题,把小正方体拼成大正方体,这样的大正方体的规格可以简单地表示成2×2×2,3×3×3……n×n×n,问,三面涂色,两面涂色,一面涂色的和没有涂色的小正方体各有几个?
大家回忆一下这样的问题我们一般怎样解决呢?
算三面涂色的小正方体的个数方法是这样的:三面涂色的小正方体都是大正方体的顶点所在的小正方体,大正方体一共有8个顶点也就是三面涂色的小正方体有8个;两面涂色的小正方体分布在大正方体的棱处,但要去掉头尾,所以两面涂色小正方体个数为(n-2)×12;一面涂色小正方体分布在大正方体的面上,但是要去掉面上一圈,也就是(n-2)×(n-2)×6;没有涂色的小正方体分布在内心,也就是要剥去大正方体华丽的外表,所以没有涂色的小正方体个数是(n-2)×(n-2)×(n-2)。
同学们想起来了吗?那我的问题来了,正方体是这样那长方体呢?敬请期待下一期的分享。
五年级正方体涂色规律公式
五年级正方体涂色规律公式是:a=(n—2)×12、b=(n—2)的平方×6,用六个完全相同的正方形围成的立体图形叫正六面体,也可称为立方体、正方体。
解析:
1、如果把正方体的棱三等分,然后沿等分线把正方体切开,能够得到27个小正方体,我们可以发现这些小正方体中有8个是三面涂有颜色的,有12个是两面涂有颜色的,有6个是一面涂有颜色的,还有1个面没有涂色。
2、如果把正方体的棱四等分,然后沿等分线把正方体切开,能够得到64个小正方体,我们可以发现这些小正方体中有8个是三面涂有颜色的,有24个是两面涂有颜色,有24个面是一面涂有颜色的,还有8个面没有涂色。
3、如果把正方体的棱五等分,然后沿等分线把正方体切开,能够得到125个小正方体,我们可以发现这些小正方体中有8个是三面涂有颜色的,有36个是两面涂有颜色,有54个面是一面涂有颜色的,还有27个面没有涂色。
4、如果把正方体的棱n等分,然后沿等分线把正方体切开,能够得到n3个小正方体,我们可以发现这些小正方体中有8个是三面涂有颜色的,有12(n—2)个是两面涂有颜色,有6(n—2)(n—2)个是一面涂有颜色的,还有(n—2)3个面没有涂色。
生活趣味数学题:涂色的正方体一个棱长1分米的正方体木块,表面涂满了红色,把它切成棱长1厘米的小正方体。
在这些小正方体中:(1)三个面涂有红色的有多少个?(2)两个面涂有红色的有多少个?(3)一个面涂有红色的有多少个?(4)六个面都没有涂色的有多少个?下面咱们结合图示,别离来看看这几个问题。
(1)三个面都涂有红色的小正方体在大正方体的极点处,正方体有8个极点,因此三个面涂有红色的有8个。
(2)两个面都涂有红色的小正方体在大正方体的棱上,每条棱上有8个,正方体有12条棱,因此两个面涂有红色的有8×12=96个。
(3)一个面都涂有红色的小正方体在大正方体的面上,每一个面上有8×8=64个,正方体有6个面,因此一个面涂有红色的有8×8×6 =384个。
(4)六个面都没有涂色的在大正方体的中间,有两种算法:1. 1000-8-96-384=512(个);2. 8×8×8=512(个)。
注意正方体有8个极点、12条棱、6个面假设把棱n等分(n≥3),那么:N的三次方个小立方体组成的立方体的表面图涂上颜色, 那么未被涂色的小立方体有(n-2)的三次方个.那么一面被涂色的小立方体为(n-2)*(n-2)*6两面被涂色的小立方体有(n-2)*12三面被涂色的有8长方体, 有a*b*c个立方体组成的长方体表面涂上颜色.那么未被涂色的小立方体有(a-2)*(b-2)*(c-2)个一面被涂色的小立方体有(a-2)* (b-2)*2+(b-2)* (c-2)*2+(c-2)* (a-2)*2两面被涂色的小立方体有(a-2)*4+(b-2)*4+(c-2)*4三面被涂色的有8个。
数学———正⽅体涂⾊问题 将⼀个正⽅体的表⾯涂上颜⾊.把正⽅体的棱等分,然后沿等分线把正⽅体切开,能够得到个⼩正⽅体,通过观察我们可以发现个⼩正⽅体全是个⾯涂有颜⾊的. 如果把正⽅体的棱三等分,然后沿等分线把正⽅体切开,能够得到27个⼩正⽅体,我们可以发现这些⼩正⽅体中有8个是三⾯涂有颜⾊的,有12个是两⾯涂有颜⾊的,有6个是⼀⾯涂有颜⾊的,还有1个⾯没有涂⾊. 如果把正⽅体的棱四等分,然后沿等分线把正⽅体切开,能够得到64个⼩正⽅体,我们可以发现这些⼩正⽅体中有8个是三⾯涂有颜⾊的,有24个是两⾯涂有颜⾊,有24个⾯是⼀⾯涂有颜⾊的,还有8个⾯没有涂⾊。
如果把正⽅体的棱五等分,然后沿等分线把正⽅体切开,能够得到125个⼩正⽅体,我们可以发现这些⼩正⽅体中有8个是三⾯涂有颜⾊的,有36个是两⾯涂有颜⾊,有54个⾯是⼀⾯涂有颜⾊的,还有27个⾯没有涂⾊。
如果把正⽅体的棱n等分,然后沿等分线把正⽅体切开,能够得到n3个⼩正⽅体,我们可以发现这些⼩正⽅体中有 8个是三⾯涂有颜⾊的,有12(n-2)个是两⾯涂有颜⾊,有6(n-2)(n-2)个是⼀⾯涂有颜⾊的,还有(n-2)3个⾯没有涂⾊。
例:将棱长4厘⽶的正⽅体表⾯涂成蓝⾊,再将它锯成棱长1厘⽶的⼩正⽅体,则三⾯涂蓝,两⾯涂蓝,⼀⾯涂蓝和没有颜⾊的⾯各⼏个? 解: 1、以原来⼤正⽅体的顶点为顶点的⼩正⽅体才有可能三⾯涂⾊,共8个。
2、两个⾯相交成⼀条棱,所以只有以原来⼤正⽅体的棱为⼀条棱【此时不包括顶点】的⼩正⽅体才有可能两⾯涂⾊,⼀条棱上两⾯涂⾊的⼩正⽅体2个,12条棱共有12*2=24个。
3、⼀⾯涂⾊的正⽅体是被三⾯涂⾊和两⾯涂⾊的正⽅体包围在中间,且在⼤正⽅体表⾯的,原⼤正⽅体⼀⾯有(4-2)*(4-2)=4个,6个⾯有6*4=24个。
4、没有涂⾊的⼩正⽅体有:4*4*4-8-24-24=8个或(4-2)*(4-2)*(4-2)=8个。
正方体的涂色问题》
教学目标:
1进一步认识和理解正方体特征。
2 通过观察、列表、想象等活动经历“找规律”过程,获得“化繁为简”的解决问题的经验,培养学生的空间想象力,让学生体会分类、数形结合、归纳、推理、模型等数学思想。
积累数学思维的活动经验。
3 在相互交流中,学会倾听他人意见,及时自我修正、自我反思,增强学好数学的信心。
教学重点:学会从简单的情况找规律,解决复杂问题的化繁为简的思想方法。
教学难点:探索规律的归纳方法。
教学过程:小正方体学具课件
教学过程:
(一)激趣:引发问题
1. 谈话激趣
出示魔方(6 阶魔方):你们玩过吗?怎么玩呢?
老师相信很多同学都会玩,而且玩的还很不错,那谁有知道在这个小小的魔方中还蕴含不少数学知识呢!你知道吗?
生:。
(这里学生会说到是正方体,正方体的特征,由小正方体组成及小正方体的个数,每个面都有颜色等)
2. 引出问题
刚才,同学们有说到魔方是正方体,有6 个面,每个面都是不同的颜色。
其实在魔方刚生产出来时是没有颜色的,这些颜色是工人叔叔涂上的,他们在组装和涂色的时候发现了一
些问题?
请同学们猜猜他们发现了什么样的涂色问题呢?
生试猜。
(学生可能会说出小正方体涂色的面是不同的)
那我们今天就来研究正方体的涂色问题。
(板书课题)
(二)体悟,化繁为简
正如同学们猜的一样,工人叔叔们在组装和涂色时就发现不是所有的小正方体都要涂色,有的小正方体只需要涂一面,有的需要涂二面,有的需要涂三面,还有的可以不用涂色,如果请你来数一数每一种涂色的情况的小正方体有多少个,你会有什么感觉呢?
生:这个正方体太大了,小正方体的个数太多了,我们数起来不方便。
怎样才能解决这个问题,你们有什么好办法吗?
老子曰:天下难事,必作于易。
教师引导学生先研究简单的图形,发现规律后,再利用规律去解决复杂的图
形。
(三)活动,探索规律
1. 初步体验
(1)你认为什么样的图形比较简单,我们容易找到答案?
(2)请把你认为简单的正方体摆出来,四人小组合作研究。
(3)四人一组,小组合作探究
①用正方体学具摆出正方体
②观察每类小正方体都在什么位置
③把结果用你喜欢的方式记录下来
(4)汇报交流
①适时提问:你们发现规律了吗?
生:没有。
师:那怎么办呢?
2、再次探究
摆一个稍为复杂些的正方体进行合作研究。
汇报交流,有发现些什么规律吗?(可能会有学生说出一些规律,但是不确定)
看来,通过对一、二个正方体的研究,发现的规律好像不太确定,没关系我们再来研究一个正方体,看看能不能发现规律。
3、对比发现
汇报交流(引导学生把三次研究的数据进行对比,同时要引导学生利用表格的形式进行记录更加方便)
追问:怎么计算没有涂色的个数?
初步发现规律
4、验证猜想
(1)按照这样的规律摆下去,你能猜想一下这2个大正方体的每种涂色的
个数吗?
(2)课件验证学生猜想
(四)、总结,归纳发现
师:这些正方体中,涂色的小正方体为什么会有这样的规律呢?
1文字表示
(1三面涂色的在正方体顶点位置,因为正方体有8顶点,所以都有8个.
(2)两面涂色的在正方体棱上除去两端的位置块数,因为正方体有12棱,所以有(每条棱上小正方体块数-2)X 12个
(3一面涂色的在正方体每个面除去周边一圈的位置,因为正方体有6个面,所以有(每条棱上小正方体块数-2)2X 6个
(4)没有涂色的在正方体里面除去表面一层的位置,所以有(每条棱上小正方体块数-2)3个
II)字母表示
若用n表示大正方体每条棱上小正方体块数,则小正方体涂色规律为
a三面涂色的小正方体块数:8
b两面涂色的小正方体块数:(n-2)X 12
c 一面涂色的小正方体块数:(n-2)2X 6
d 没有涂色的小正方体块数:(n-2)3
(五)、应用,解决问题解决开始的六阶魔方的涂色问题
(六)课堂小结
通过这节课的学习,你有什么收获?分类的思想,转化与化归的思想,...
板书设计:
若用n 表示大正方体每条棱上小正方体块数,则小正方体涂色规律为
a 三面涂色的小正方体块数:8
b两面涂色的小正方体块数:(n-2)x 12
c 一面涂色的小正方体块数:(n-2f x 6
d 没有涂色的小正方体块数:(n-2)3。