天河区广州中学2018届初三一模数学试卷.pdf
- 格式:pdf
- 大小:555.87 KB
- 文档页数:4
2017年下学期广州市一中九年级第一次模拟考试数学第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个数的相反数是3,则这个数是( ).A .-13B .13C .﹣3D .32.下列运算正确的是( ).A .x 2·x 3=x 6B .x 6÷x 5=x 6C .(-x 2)4=x 6D .x 2+x 3=x 63.甲、乙两同学近期5次百米跑测试成绩的平均数相同,甲同学成绩的方差2甲S =4,乙同学成绩的方差2乙S 等于3.1,则对他们测试成绩的稳定性判断正确的是( ).A .甲的成绩较稳定B .乙的成绩较稳定C .甲、乙成绩的稳定性相同D .甲、乙成绩的稳定性无法比较4.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有( ).A .1个B .2个C .3个D .4个5.在平面直角坐标系中,已知线段AB 的两个端点分别是A (﹣4,﹣1),B (1,1),将线段AB 平移后得到线段A'B',若点A'的坐标为(﹣2,2),则点B'的坐标为( ).A .(4,3)B .(3,4)C .(﹣1,﹣2)D .(﹣2,﹣1)6.如图,是由4个相同小正方体组合而成的几何体,它的左视图是( ).A .B .C .D .7.关于x 的二次函数y =-(x -1)2+2,下列说法正确的是( ). A .图象的开口向上 B .图象与y 轴的交点坐标为(0,2)C .当x >1时,y 随x 的增大而减小D .图象的顶点坐标是(-1,2)8.如图,将一个Rt △ABC 形状的楔子从木桩的底端点P 沿水平方向打入木桩底下,使木桩向上运动.已知楔子斜面的倾斜角为15°,若楔子沿水平方向前进6cm (如箭头所示),则木桩上升了( ).A .6sin15°cmB .6cos15°cmC .6tan15°cmD .6 tan15°cm。
2017~2018学年真光教育集团初三年级数学中考一模试题第一部分选择题(共30分)一、选择题(本大题共10小题,每题3分,共30分)1.2018的相反数是()A. 2018B. -2018C.12018 D.-120182.近几年来,我市加大教育信息化投入,投资221000000元,初步完成了济宁市教育公共云服务平台基础工程,教学点数字教育资源全覆盖.将221000000用科学记数法表示为()A. 22.1×107B. 2.21×108C. 2.21×109D. 0.221×10103.如图,直线AB与直线CD相交于点O,E是∠COB内一点,且OE⊥AB,∠AOC=35°,则∠EOD的度数是()A. 155°B. 145°C. 135°D. 125°4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 2 1A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.85.在函数中y=x+4x,自变量x的取值范围是()A. x>0B. x≥-4C. x≥-4且x≠0D. x>0且x≠-46.下列计算正确的是()A. a+a=a2B. a2ꞏa3=a6C. (-a3)2=-a6D.a7÷a5=a27.一元二次方程x2-8x-1=0配方后可变形为()A.(x+4)2=17B.(x+4)2=15C.(x-4)2=17D.(x-4)2=158.若有理数在数轴上的对应点如下图所示,则下列结论中正确的是()A. a>|b|B. a<bC. |a|>|b|D. |a|<|b|9.如图是某几何体的三视图,则该几何体的全面积等于()A. 112B. 136C. 124D. 8410.如图,在菱形纸片ABCD 中,AB =2,∠A =60°,将菱形纸片翻折,使点A 落在CD 的中点E 处,折痕为FG ,点F ,G 分别在边AB ,AD 上,则cos ∠EFG 的值为( )A. 217B. 107C. 12D. 32第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分) 11.计算:(12)-2+(π-3)0-9= . 12.分解因式:2x 3-8x = .13.Rt △ABC 中,∠C =90°,BC =15,tan A =158,则AB = .14.如图,⊙O 是△ABC 的外接圆,∠AOB =70°,AB =AC ,则∠ABC = .15.如图,把两个等腰直角三角板如图放置,点F 为BC 中点,AG =1,BG =2,则CH 的长为 .16.现有6个质地、大小完全相同的小球上分别标有数字-2,-1,0.5,1,2,3,先将标有数字-2,0.5,2的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里,先从第一个盒子里随机取出一个小球,把小球上的数字记为m ,再从第二个盒子里随机取出一个小球,将小球上的数字分别记为n .则使关于x 的二次函数y =mnx 2+(m +n )x +3的对称轴在y 轴右边的概率为 .三、解答题(本大题共9小题,共102分,解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分9分)如果实数x ,y 满足方程组⎩⎨⎧x +3y =02x +3y =3,求代数式(xy x +y +2)÷1x +y .18.(本小题满分9分)如图,四边形ABCD 中,∠A =∠C =90°,DE 平分∠ADC 交AB 边于点E ,BF 平分∠ABC 交DC 边于点F .求证:DE ∥BF .19.(本小题满分10分)某中学为了解八年级学生的体能情况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A ,B ,C ,D 四个等级.请根据两幅统计图中的信息回答下列问题: (1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C 等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D 等级的学生有多少名?(4)若从体能为A 等级的2名男生2名女生中随机的抽取2名学生,作为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(本小题满分10分)21.(本小题满分12分)已知,如图,在Rt△ABC中,∠C=90°,∠BAC的角平分线AD交BC边于D.某玩具点采购人员第一次用100元去采购“企鹅牌”玩具,很快售完.第二次去采购时发现批发价上涨了0.5元,用去了150元,所购玩具数量比第一次多了10件.两批玩具的售价均为2.8元.问第二次采购玩具多少件?23.(本小题满分12分)图1为真光中学运动会终点计时台侧面示意图,已知:AB=1米,DE=5米,AB∥DC,BC ⊥DC.小明在A处观测地面D的俯角为30°,在B处观测地面E的俯角为60°.(1)求AD的长度.(2)如图2,为了避免计时台AB和AD的位置受到与水平面成45°角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG长度)?已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动. (1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;(2)如图2,当b>2a时,点M在运动的过程中,是否存在∠BMC=90°,若存在,请给与证明;若不存在,请说明理由;(3)如图3,当b<2a时,(2)中的结论是否仍然成立?请说明理由.25.(本小题满分14分)在平面直角坐标系中,已知抛物线y=-12x2+bx+c(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,-1),C的坐标为(4,3),直角顶点B在第四象限.。
2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a34.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930 B.=930 C.x(x+1)=930 D.x(x﹣1)=9309.(3分)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把103000000这个数用科学记数法表示为.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是cm.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A (1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm,CD=(16﹣a)cm,∴cos∠BDC==,∴a=10.∴在Rt△BCD中,CD=6cm,BD=10cm,∴BC=8cm.故选:A.8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930 B.=930 C.x(x+1)=930 D.x(x﹣1)=930【解答】解:设全班有x名同学,则每人写(x﹣1)份留言,根据题意得:x(x﹣1)=930,故选:D.9.(3分)如图,PA和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°【解答】解:连接OB,如图,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,∵OB=OC,∴∠OCB=∠OBC,而∠AOB=∠OCB+∠OBC,∴∠OCB=×130°=65°,即∠ACB=65°.故选:A.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,故③正确;在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是 1.5cm.【解答】解:解得R=1.5cm.故答案为:1.5.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=,BP=,CP=BC﹣BP=3﹣=,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.【解答】解:,①+②得,4x=12,解得x=3,将x=3代入①得,3+2y=1,解得y=﹣1,所以,方程组的解是.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x 1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A (1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(2)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0),∵S=S△ABD﹣S△OBD=•OD•y A﹣•OD•y B,△AOB=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8 ,∴S扇形AOE∴S=4π﹣8.阴影25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E (0,﹣4);当EC=DE 时,(m ﹣8)2+(m ﹣4)2=(m ﹣3)2+(m ﹣4)2解得m 5=5.5, ∴E (,﹣).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P 作y 轴的平行线交x 轴于点F , ∵P 点的横坐标为m ,∴P 点的纵坐标为m 2﹣m ﹣4,∵△PBD 的面积S=S 梯形﹣S △BOD ﹣S △PFD =m [4﹣(m 2﹣m ﹣4)]﹣(m ﹣3)[﹣(m 2﹣m ﹣4)]﹣×3×4 =﹣m 2+m=﹣(m ﹣)2+∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,﹣).。
2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B.C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5C.6a﹣5a=1D.a6÷a2=a3 4.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4B.﹣C.0D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC 于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930B.=930C.x(x+1)=930D.x(x﹣1)=9309.(3分)如图,P A和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)把103000000这个数用科学记数法表示为.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是cm.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组:.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE =CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标.(2)连接AB,求三角形AOB的面积S.△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B.C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5C.6a﹣5a=1D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3)B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4B.﹣C.0D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC 于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm,CD=(16﹣a)cm,∴cos∠BDC==,∴a=10.∴在Rt△BCD中,CD=6cm,BD=10cm,∴BC=8cm.故选:A.8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x名学生,根据题意,列出方程为()A.=930B.=930C.x(x+1)=930D.x(x﹣1)=930【解答】解:设全班有x名同学,则每人写(x﹣1)份留言,根据题意得:x(x﹣1)=930,故选:D.9.(3分)如图,P A和PB是⊙O的切线,点A和B的切点,AC是⊙O的直径,已知∠P=50°,则∠ACB的大小是()A.65°B.60°C.55°D.50°【解答】解:连接OB,如图,∵P A、PB是⊙O的切线,∴OA⊥P A,OB⊥PB,∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°,∵OB=OC,∴∠OCB=∠OBC,而∠AOB=∠OCB+∠OBC,∴∠OCB=×130°=65°,即∠ACB=65°.故选:A.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵AB=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,故③正确;在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是3cm.【解答】解:解得R=3cm.故答案为:3.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P∽△AE′A′,∴=,即=,BP=,CP=BC﹣BP=3﹣=,S四边形AEPQ=S正方形ABCD﹣S△ADQ﹣S△PCQ﹣S BEP=9﹣AD•DQ﹣CQ•CP﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组:.【解答】解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE =CF,求证:BE=DF.【解答】证明:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,又∵AE=CF,∴AD﹣AE=BC﹣CF,即ED=BF,而ED∥BF,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(1)该校初三学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y =2x 与反比例函数y =(k ≠0,x >0)的图象交于点A (1,a ),B 是反比例函数图象上一点,直线OB 与x 轴的夹角为α,tan α=.(1)求k 的值及点B 坐标.(2)连接AB ,求三角形AOB 的面积S △AOB .【解答】解:(1)把点A (1,a )代入y =2x ,得a =2,则A (1,2).把A (1,2)代入y =,得k =1×2=2;过B 作BC ⊥x 轴于点C .∵在Rt △BOC 中,tan α=,∴可设B (2h ,h ).∵B (2h ,h )在反比例函数y =的图象上,∴2h 2=2,解得h =±1,∵h >0,∴h =1,∴B (2,1);(2)∵A (1,2),B (2,1),∴直线AB 的解析式为y =﹣x +3,设直线AB 与x 轴交于点D ,则D (3,0),∵S △AOB =S △ABD ﹣S △OBD =•OD •y A ﹣•OD •y B ,=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC 交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE =4π,S△AOE=8,∴S阴影=4π﹣8.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n <0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m﹣8)2+(m﹣4)2=52,解得m1=8﹣2,m2=8+2(舍去),∴E(8﹣2,﹣);当DC=DE时,ED2=(m﹣3)2+(m﹣4)2=CD2,即(m﹣3)2+(m﹣4)2=52,解得m3=0,m4=8(舍去),∴E(0,﹣4);当EC=DE时,(m﹣8)2+(m﹣4)2=(m﹣3)2+(m﹣4)2解得m5=5.5,∴E(,﹣).综上,存在点E,使得△CDE为等腰三角形,所有符合条件的点E的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P作y轴的平行线交x轴于点F,∵P点的横坐标为m,∴P点的纵坐标为m2﹣m﹣4,∵△PBD的面积S=S梯形﹣S△BOD﹣S△PFD=m[4﹣(m2﹣m﹣4)]﹣(m﹣3)[﹣(m2﹣m﹣4)]﹣×3×4=﹣m2+m=﹣(m﹣)2+∴当m=时,△PBD的最大面积为,∴点P的坐标为(,﹣).。
2018年广东省广州市天河区中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣32.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a34.(3分)下列图形中,不是中心对称有()A.B.C.D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.37.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A .=930B .=930C .x (x +1)=930D .x (x ﹣1)=9309.(3分)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P=50°,则∠ACB 的大小是( )A .65°B .60°C .55°D .50°10.(3分)如图,菱形ABCD 中,AB=AC ,点E 、F 分别为边AB 、BC 上的点,且AE=BF ,连接CE 、AF 交于点H ,则下列结论:①△ABF ≌△CAE ;②∠AHC=120°;③△AEH ∽△CEA ;④AE•AD=AH•AF ;其中结论正确的个数是( )A .1个B .2个C .3个D .4个二、填空题(共6小题,每小题3分,满分18分) 11.(3分)分解因式:x 2+3x= .12.(3分)在函数y=中,自变量x 的取值范围是 .13.(3分)把103000000这个数用科学记数法表示为 .14.(3分)若a 、b 、c 为三角形的三边,且a 、b 满足+(b ﹣2)2=0,则第三边c 的取值范围是 .15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm ,则这个扇形的半径是 cm .16.(3分)如图,已知正方形ABCD 边长为3,点E 在AB 边上且BE=1,点P ,Q 分别是边BC ,CD 的动点(均不与顶点重合),当四边形AEPQ 的周长取最小值时,四边形AEPQ 的面积是.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.18.(10分)已知,如图,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF,求证:BE=DF.19.(10分)先化简,再求值:÷(1+),其中x=﹣1.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标.(2)连接AB,求三角形AOB的面积S.△AOB24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.2018年广东省广州市天河区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)3的相反数是()A.B.C.3 D.﹣3【解答】解:3的相反数是:﹣3.故选:D.2.(3分)如图所示的几何体是由四个完全相同的正方体组成的,这个几何体的主视图是()A.B. C.D.【解答】解:从正面看易得主视图的形状:.故选:C.3.(3分)下面的运算正确的是()A.a+a2=a3B.a2•a3=a5 C.6a﹣5a=1 D.a6÷a2=a3【解答】解:A、a+a2无法计算,故此选项错误;B、a2•a3=a5,故此选项正确;C、6a﹣5a=a,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.4.(3分)下列图形中,不是中心对称有()A.B.C.D.【解答】解:A、是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项正确.故选:D.5.(3分)在平面直角坐标系中,二次函数y=2(x﹣1)2+3的顶点坐标是()A.(1,3) B.(1,﹣3)C.(﹣1,3)D.(﹣1,﹣3)【解答】解:∵二次函数y=2(x﹣1)2+3,∴该函数的顶点坐标是(1,3),故选:A.6.(3分)若y=kx﹣4的函数值y随x的增大而增大,则k的值可能是下列的()A.﹣4 B.﹣ C.0 D.3【解答】解:∵y=kx﹣4的函数值y随x的增大而增大,∴k>0,而四个选项中,只有D符合题意,故选:D.7.(3分)如图,△ABC中,∠C=90°,AC=16cm,AB的中垂线MN交AC于点D,连接BD,若cos∠BDC=,则BC=()A.8cm B.4cm C.6cm D.10cm【解答】解:∵MN为AB的中垂线,∴BD=AD.设AD=acm,∴BD=acm ,CD=(16﹣a )cm ,∴cos ∠BDC==,∴a=10.∴在Rt △BCD 中,CD=6cm ,BD=10cm , ∴BC=8cm . 故选:A .8.(3分)祁中初三66班学生毕业时,每个同学都要给其他同学写一份毕业留言作为纪念,全班学生共写了930份留言.如果全班有x 名学生,根据题意,列出方程为( )A .=930B .=930C .x (x +1)=930D .x (x ﹣1)=930【解答】解:设全班有x 名同学,则每人写(x ﹣1)份留言, 根据题意得:x (x ﹣1)=930, 故选:D .9.(3分)如图,PA 和PB 是⊙O 的切线,点A 和B 的切点,AC 是⊙O 的直径,已知∠P=50°,则∠ACB 的大小是( )A .65°B .60°C .55°D .50° 【解答】解:连接OB ,如图, ∵PA 、PB 是⊙O 的切线, ∴OA ⊥PA ,OB ⊥PB , ∴∠OAP=∠OBP=90°,∴∠AOB=360°﹣90°﹣90°﹣50°=130°, ∵OB=OC , ∴∠OCB=∠OBC , 而∠AOB=∠OCB +∠OBC ,∴∠OCB=×130°=65°, 即∠ACB=65°.10.(3分)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE=BF,连接CE、AF交于点H,则下列结论:①△ABF≌△CAE;②∠AHC=120°;③△AEH∽△CEA;④AE•AD=AH•AF;其中结论正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵A B=AC,∴AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形∴∠B=∠EAC=60°,在△ABF和△CAE中,,∴△ABF≌△CAE(SAS);故①正确;∴∠BAF=∠ACE,∵∠AEH=∠B+∠BCE,∴∠AHC=∠BAF+∠AEH=∠BAF+∠B+∠BCE=∠B+∠ACE+∠BCE=∠B+∠ACB=60°+60°=120°故②正确;∵∠BAF=∠ACE,∠AEC=∠AEC,∴△AEH∽△CEA,在菱形ABCD中,AD=AB,∵△AEH∽△CEA,∴△ABF≌△CAE,∴△AEH∽△AFB,∴=,∴=,∴AE•AD=AH•AF,故④正确,故选:D.二、填空题(共6小题,每小题3分,满分18分)11.(3分)分解因式:x2+3x=x(x+3).【解答】解:x2+3x=x(x+3).12.(3分)在函数y=中,自变量x的取值范围是x≥.【解答】解:根据题意得:2x﹣1≥0,解得,x≥.13.(3分)把103000000这个数用科学记数法表示为 1.03×108.【解答】解:将103000000用科学记数法表示为:1.03×108.故答案为:1.03×108.14.(3分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是1<c<5.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.15.(3分)如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1cm,则这个扇形的半径是 1.5cm.【解答】解:解得R=1.5cm.故答案为:1.5.16.(3分)如图,已知正方形ABCD边长为3,点E在AB边上且BE=1,点P,Q分别是边BC,CD的动点(均不与顶点重合),当四边形AEPQ的周长取最小值时,四边形AEPQ的面积是.【解答】解:如图1所示:作E关于BC的对称点E′,点A关于DC的对称点A′,连接A′E′,四边形AEPQ的周长最小,∵AD=A′D=3,BE=BE′=1,∴AA′=6,AE′=4.∵DQ∥AE′,D是AA′的中点,∴DQ是△AA′E′的中位线,∴DQ=AE′=2;CQ=DC﹣CQ=3﹣2=1,∵BP∥AA′,∴△BE′P ∽△AE′A′,∴=,即=,BP=,CP=BC ﹣BP=3﹣=,S 四边形AEPQ =S 正方形ABCD ﹣S △ADQ ﹣S △PCQ ﹣S BEP=9﹣AD•DQ ﹣CQ•CP ﹣BE•BP=9﹣×3×2﹣×1×﹣×1×=.故答案为:.三、解答题(本题有9个小题,共102分)17.(8分)解方程组.【解答】解:,①+②得,4x=12, 解得x=3,将x=3代入①得,3+2y=1, 解得y=﹣1,所以,方程组的解是.18.(10分)已知,如图,E 、F 分别为矩形A BCD 的边AD 和BC 上的点,AE=CF ,求证:BE=DF .【解答】证明:∵四边形ABCD 为矩形, ∴AD ∥BC ,AD=BC , 又∵AE=CF , ∴AD ﹣AE=BC ﹣CF , 即ED=BF , 而ED ∥BF ,∴四边形BFDE为平行四边形,∴BE=DF(平行四边形对边相等).19.(10分)先化简,再求值:÷(1+),其中x=﹣1.【解答】解:原式=÷,=×,=.∵x=﹣1,∴原式==.20.(12分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:(2)求表中a,b,c的值,并补全条形统计图.(3)初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.【解答】解:(1)由题意可得:该校初三学生共有:105÷0.35=300(人),答:该校初三学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,c==0.2;如图所示:(3)画树形图得:∵一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.21.(12分)如图,在平行四边形ABCD中,AB<BC.(1)利用尺规作图,在BC边上确定点E,使点E到边AB,AD的距离相等(不写作法,保留作图痕迹);(2)若BC=8,CD=5,则CE=3.【解答】解:(1)如图所示:E点即为所求.(2)∵四边形ABCD是平行四边形,∴AB=CD=5,AD∥BC,∴∠DAE=∠AEB,∵AE是∠A的平分线,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BE=BA=5,∴CE=BC﹣BE=3.故答案为:3.22.(12分)白溪镇2012年有绿地面积57.5公顷,该镇近几年不断增加绿地面积,2014年达到82.8公顷.(1)求该镇2012至2014年绿地面积的年平均增长率;(2)若年增长率保持不变,2015年该镇绿地面积能否达到100公顷?【解答】解:(1)设绿地面积的年平均增长率为x,根据意,得57.5(1+x)2=82.8解得:x1=0.2,x2=﹣2.2(不合题意,舍去)答:增长率为20%;(2)由题意,得82.8(1+0.2)=99.36公顷,答:2015年该镇绿地面积不能达到100公顷.23.(12分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值及点B坐标..(2)连接AB,求三角形AOB的面积S△AOB【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(2)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0),=S△ABD﹣S△OBD=•OD•y A﹣•OD•y B,∵S△AOB=×3×2﹣×3×1,=3﹣,=.24.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.【解答】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,=4π,S△AOE=8 ,∴S扇形AOE8.∴S阴影=4π﹣25.(14分)如图,在平面直角坐标系xOy中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)求该二次函数的解析式;(2)如图1,连结BC,在线段BC上是否存在点E,使得△CDE为等腰三角形?若存在,求出所有符合条件的点E的坐标;若不存在,请说明理由;(3)如图2,若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,求△BDP面积的最大值及此时点P的坐标.【解答】解:(1)∵二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于A(﹣2,0)、C(8,0)两点,∴,解得,∴该二次函数的解析式为y=x2﹣x﹣4;(2)由二次函数y=x2﹣x﹣4可知对称轴x=3,∴D(3,0),∵C(8,0),∴CD=5,由二次函数y=x2﹣x﹣4可知B(0,﹣4),设直线BC的解析式为y=kx+b,∴,解得,∴直线BC的解析式为y=x﹣4,设E(m,m﹣4),当DC=CE时,EC2=(m﹣8)2+(m﹣4)2=CD2,即(m ﹣8)2+(m ﹣4)2=52,解得m 1=8﹣2,m 2=8+2(舍去),∴E (8﹣2,﹣);当DC=DE 时,ED 2=(m ﹣3)2+(m ﹣4)2=CD 2,即(m ﹣3)2+(m ﹣4)2=52,解得m 3=0,m 4=8(舍去), ∴E (0,﹣4);当EC=DE 时,(m ﹣8)2+(m ﹣4)2=(m ﹣3)2+(m ﹣4)2解得m 5=5.5,∴E (,﹣).综上,存在点E ,使得△CDE 为等腰三角形,所有符合条件的点E 的坐标为(8﹣2,﹣)、(0,﹣4)、(,﹣).(3)过点P 作y 轴的平行线交x 轴于点F , ∵P 点的横坐标为m ,∴P 点的纵坐标为m 2﹣m ﹣4,∵△PBD 的面积S=S 梯形﹣S △BOD ﹣S △PFD =m [4﹣(m 2﹣m ﹣4)]﹣(m ﹣3)[﹣(m 2﹣m﹣4)]﹣×3×4=﹣m 2+m=﹣(m ﹣)2+∴当m=时,△PBD 的最大面积为,∴点P 的坐标为(,﹣).。
数学试题 第1页(共6页) 数学试题 第2页(共6页)绝密★启用前2018届九年级第一次模拟大联考【广东卷】数 学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:中考全部内容。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.–2的相反数是 A .2 B .12C .–2D .以上都不对2.用激光测距仪测量,从一座山峰发出的激光经过4×10–5秒到达另一座山峰,已知光速为3×108米/秒,则两座山峰之间的距离用科学记数法表示为 A .1.2×103米 B .12×103米C .1.2×104米D .1.2×105米3.已知∠α与∠β互为补角,∠α=120°30′,则∠β的余角是 A .29°30′ B .30°30′C .31°30′D .59°30′4.下列各数中,是方程2x 2+5x =3的根的是 A .–3 B.–1C .1D .35.一组数据:3,4,5,x ,7的众数是4,则x 的值是 A .3B .4C .5D .66.下图中是中心对称图形而不是轴对称图形的共有A .1个B .2个C .3个D .4个7.下列运算中,正确的是 A .x 3•x 3=x 6B .3x 2+2x 3=5x 5C .(x 2)3=x 5D .(ab )3=a 3b8.方程x 2+3x –1=0的根可视为函数y =x +3的图象与函数y =1x的图象交点的横坐标,那么用此方法可推断出方程x 2+2x –1=0的实数根x 0所在的范围是A .–1<x 0<0B .0<x 0<1C .1<x 0<2D .2<x 0<39.如图,∠DCE 是圆内接四边形ABCD 的一个外角,如果∠DCE =75°,那么∠BAD 的度数是A .65°B .75°C .85°D .105°10.如图,点O 为正方形ABCD 的中心,BE 平分∠DBC 交DC 于点E ,延长BC 到点F ,使FC =EC ,连结DF 交BE 的延长线于点H ,连结OH 交DC 于点G ,连结H C .则以下四个结论中:①OH ∥BF ,②GH =14BC ,③OD =12BF ,④∠CHF =45°.正确结论的个数为A .4个B .3个C .2个D .1个第Ⅱ卷二、填空题(本大题共6小题,每小题4分,共24分) 11.分解因式:x 2y –xy 2=__________.12.一个多边形的内角和与其外角和加起来是2160°,则这个多边形是__________.13.已知a 、b 两个实数在数轴上的对应点如图所示:a +b __________0(请你用“>”或“<”填空).14.已知袋子中的球除颜色外均相同,其中红球有3个,若从中随机摸得1个红球的概率为17,则袋子中共有__________个球.15.在有理数范围内定义一种运算“*”,其规则为a *b =aba b+,则2*(–3)=__________. 16.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C ′,再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB =3,BC =4,则折痕EF 的长为__________.三、解答题(一)(本大题共3小题,每小题6分,共18分)17.计算:021π)6tan 30()|12--︒++.18.(y –z )2+(x –y )2+(z –x )2=(y +z –2x )2+(z +x –2y )2+(x +y –2z )2.求222(1)(1)(1)(1)(1)(1)yz zx xy x y z ++++++的值.19.某种水果的价格如表:张欣两次共购买了25千克这种水果(第二次多于第一次),共付款132元.问张欣第一次、第二次分别购买了多少千克这种水果?四、解答题(二)(本大题共3小题,每小题7分,共21分)20.如图,已知:△ABC ,请按下列要求用尺规作图(保留痕迹,不写作法及证明):(1)作AB 边的垂直平分线l ,垂足为点D ;(2)在(1)中所得直线l 上,求作一点M ,使点M 到BC 边所在直线的距离等于MD .21.如图,已知菱形ABCD 的边AB 长为8,∠ABC =60°.求:(1)对角线BD 的长;(2)菱形的面积.22.为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.请根据以上图表,解答下列问题:(1)填空:这次被调查的同学共有__________人,a +b =__________,m =__________; (2)求扇形统计图中扇形C 的圆心角度数;(3)该校共有学生1000人,请估计每月零花钱的数额在60≤x <120范围的人数.数学试题 第5页(共6页) 数学试题 第6页(共6页)五、解答题(三)(本大题共3小题,每小题9分,共27分)23.如图,在平面直角坐标系xOy 中,抛物线y =–x 2+bx +c 经过点A (3,0)和点B (2,3),过点A 的直线与y 轴的负半轴相交于点C ,且tan ∠CAO =13. (1)求这条抛物线的表达式及对称轴; (2)连接AB 、BC ,求∠ABC 的正切值.24.已知等边△ABC ,M 是边BC 延长线上一点,连接AM 交△ABC 的外接圆于点D ,延长BD 至N ,使得BN =AM ,连接CN ,MN ,解答下列问题: (1)猜想△CMN 的形状,并证明你的结论; (2)请你证明CN 是⊙O 的切线;(3)若等边△ABC 的边长是2,求AD •AM 的值.25.我们把一直角边是另一直角边2倍的直角三角形称为“倍勾三角形”,如图1,在△ABC 中,AB =3,AC BAC =45°,CD ⊥AB 于D .P 是射线AB 上的一个动点(不与D 重合),E 是线段PC 的中点,将点E 绕点P 顺时针方向旋转90°得到点F ,连接FB ,FC ,FP .(1)下列三角形:①△PCF ,②△BCD ,③△ACD ,其中是“倍勾三角形”的有__________(填序号); (2)求证:CB ⊥BF ;(3)连接FA ,如图2,当F ,E ,A 三点在一直线上时,△BCF 是否为“倍勾三角形”,如果是,请证明;如果不是,求BFBC的值.。