回归方程的系数的相关系数矩阵
- 格式:docx
- 大小:13.83 KB
- 文档页数:5
第3章 多元线性回归思考与练习参考答案3.2 讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响?答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。
3.3证明随机误差项ε的方差σ2的无偏估计。
证明:22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1n i i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑3.4 一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。
因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方()1ˆ2--=p n SSE σ程都没能通过。
2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。
3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。
回归方程的相关系数公式(一)回归方程的相关系数公式在统计学中,回归分析是一种用于探索变量之间关系的方法。
回归分析可用于预测和解释因变量与一个或多个自变量之间的关系。
相关系数是回归分析中常用的指标,用于衡量自变量与因变量之间的关联程度。
下面是回归方程的相关系数公式及其解释说明。
简单线性回归的相关系数公式在简单线性回归中,只有一个自变量和一个因变量。
相关系数(也称为皮尔逊相关系数)表示自变量和因变量之间的线性关系强度。
相关系数公式如下:r=∑(x−x)(y−y)i i其中,r为相关系数,x i和y i分别表示第i个观测值的自变量和因变量值,x和y分别为自变量和因变量的均值。
多元线性回归的相关系数公式多元线性回归中,有多个自变量和一个因变量。
相关系数矩阵可以用来衡量每个自变量与因变量之间的关联程度。
相关系数矩阵公式如下:R=(X T X)−1(X T Y)其中,R为相关系数矩阵,X为自变量矩阵,Y为因变量矩阵。
示例说明假设我们想要研究某个城市的房价与以下两个因素的关系:房屋面积和距离市中心的距离。
我们收集了10个房屋的数据,如下所示:房屋编号 | 面积(平方米) | 距离市中心(公里) | 房价(万元) || | | |1 | 80 | 5 | 200 |2 | 90 | 4 | 220 |3 | 95 | 7 | 230 |4 | 100 | 6 | 250 |5 | 110 | 3 | 270 |6 | 120 | 8 | 290 |7 | 130 | 2 | 310 |8 | 140 | 9 | 330 |9 | 150 | 1 | 350 |10 | 160 | 10 | 370 |我们可以使用多元线性回归模型来分析房屋面积和距离市中心与房价之间的关系。
根据相关系数矩阵公式,我们可以计算出相关系数矩阵R:R=(X T X)−1(X T Y)其中,X是由房屋面积和距离市中心组成的自变量矩阵,Y是房价的因变量矩阵。
线性回归中的相关系数山东 胡大波线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量就是否就是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法就是绘制散点图;另外一种方法就是量化的检验法,即相关系数法.下面为同学们介绍相关系数法. 一、关于相关系数法统计中常用相关系数r 来衡量两个变量之间的线性相关的强弱,当i x 不全为零,y i 也不全为零时,则两个变量的相关系数的计算公式就是:()()nnii i ixx y y x ynx yr ---==∑∑r 就叫做变量y 与x 的相关系数(简称相关系数).说明:(1)对于相关系数r ,首先值得注意的就是它的符号,当r 为正数时,表示变量x ,y 正相关;当r 为负数时,表示两个变量x ,y 负相关;(2)另外注意r 的大小,如果[]0.751r ∈,,那么正相关很强;如果[]10.75r ∈--,,那么负相关很强;如果(]0.750.30r ∈--,或[)0.300.75r ∈,,那么相关性一般;如果[]0.250.25r ∈-,,那么相关性较弱.下面我们就用相关系数法来分析身边的问题,确定两个变量就是否相关,并且求出两个变量间的回归直线. 二、典型例题剖析(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高.解:(1)66.8x =,67y =,102144794i i x ==∑,102144929.22i i y ==∑,4475.6x y =,24462.24x =,24489y =,10144836.4i i i x y ==∑,所以10i ix ynx yr -∑44836.4104475.6(4479444622.4)(44929.2244890)-⨯=--80.40.9882.04≈≈, 所以y 与x 之间具有线性相关关系. (2)设回归直线方程为y a bx =+,则101102211010i ii i i x yxyb x x==-=-∑∑44836.4447560.46854479444622.4-=≈-,670.468566.835.7042a y bx =-=-⨯=.故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =⨯+=, 所以当父亲身高为73英寸时,估计儿子的身高约为69、9英寸.点评:回归直线就是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这就是此类问题常见题型.例2 10其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 就是否具有相关关系;(2)如果y 与x 就是相关关系,求回归直线方程. 解:(1)由已知表格中的数据,利用计算器进行计算得 101710ii x==∑,101723i i y ==∑,71x =,72.3y =,10151467i i i x y ==∑.102150520ii x==∑,102152541i i y ==∑.1010i ix yx yr -=∑0.78=≈.由于0.78r ≈,由0.780.75>知,有很大的把握认为x 与y 之间具有线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为y a bx =+,则1011022211051467107172.31.2250520107110i ii i i x yx yb x x==--⨯⨯==≈-⨯-∑∑,72.3 1.227114.32a y bx =-=-⨯=-.所以y 关于x 的回归直线方程为 1.2214.32y x =-.点评:通过以上两例可以瞧出,回归方程在生活中应用广泛,要明确这类问题的计算公式、解题步骤,并会通过计算确定两个变量就是否具有相关关系.。
第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。
求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。
证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。
答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。
同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。
线性回归中的相关系数文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]线性回归中的相关系数山东胡大波线性回归问题在生活中应用广泛,求解回归直线方程时,应该先判断两个变量是否是线性相关,若相关再求其直线方程,判断两个变量有无相关关系的一种常用的简便方法是绘制散点图;另外一种方法是量化的检验法,即相关系数法.下面为同学们介绍相关系数法.一、关于相关系数法统计中常用相关系数r来衡量两个变量之间的线性相关的强弱,当x不全为零,y ii也不全为零时,则两个变量的相关系数的计算公式是:r就叫做变量y与x的相关系数(简称相关系数).说明:(1)对于相关系数r,首先值得注意的是它的符号,当r为正数时,表示变量x,y正相关;当r为负数时,表示两个变量x,y负相关;(2)另外注意r的大小,如果[]r∈,,那么正相关很强;如果[]0.751r∈--,,那10.75么负相关很强;如果(],或[)r∈,,那么相关性一般;如果0.300.75r∈--0.750.30[]r∈-,,那么相关性较弱.0.250.25下面我们就用相关系数法来分析身边的问题,确定两个变量是否相关,并且求出两个变量间的回归直线.二、典型例题剖析例1测得某国10对父子身高(单位:英寸)如下:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 之间具有线性相关关系,求回归直线方程; (3)如果父亲的身高为73英寸,估计儿子身高.解:(1)66.8x =,67y =,102144794i i x ==∑,102144929.22i i y ==∑,4475.6x y =,24462.24x =,24489y =,10144836.4i i i x y ==∑,所以10i ix ynx yr -=∑80.40.9882.04≈≈, 所以y 与x 之间具有线性相关关系.(2)设回归直线方程为y a bx =+,则101102211010i ii i i x yxyb x x==-=-∑∑44836.4447560.46854479444622.4-=≈-,670.468566.835.7042a y bx =-=-⨯=.故所求的回归直线方程为0.468535.7042y x =+. (3)当73x =英寸时,0.46857335.704269.9047y =⨯+=, 所以当父亲身高为73英寸时,估计儿子的身高约为英寸.点评:回归直线是对两个变量线性相关关系的定量描述,利用回归直线,可以对一些实际问题进行分析、预测,由一个变量的变化可以推测出另一个变量的变化.这是此类问题常见题型.例2 10名同学在高一和高二的数学成绩如下表:其中x 为高一数学成绩,y 为高二数学成绩. (1)y 与x 是否具有相关关系;(2)如果y 与x 是相关关系,求回归直线方程. 解:(1)由已知表格中的数据,利用计算器进行计算得 101710i i x ==∑,101723i i y ==∑,71x =,72.3y =,10151467i i i x y ==∑.102150520ii x==∑,102152541i i y ==∑.0.78=≈.由于0.78r ≈,由0.780.75>知,有很大的把握认为x 与y 之间具有线性相关关系. (2)y 与x 具有线性相关关系,设回归直线方程为y a bx =+,则1011022211051467107172.31.2250520107110i ii i i x yx yb x x==--⨯⨯==≈-⨯-∑∑,72.3 1.227114.32a y bx =-=-⨯=-.所以y 关于x 的回归直线方程为 1.2214.32y x =-.点评:通过以上两例可以看出,回归方程在生活中应用广泛,要明确这类问题的计算公式、解题步骤,并会通过计算确定两个变量是否具有相关关系.。
相关系数与回归系数
一、相关系数和回归系数的区别
1、含义不同
相关系数:是研究变量之间线性相关程度的量。
回归系数:在回归方程中表示自变量x 对因变量y 影响大小的参数。
2、应用不同
相关系数:说明两变量间的相关关系。
回归系数:说明两变量间依存变化的数量关系。
3、单位不同
相关系数:一般用字母r表示,r没有单位。
回归系数:一般用斜率b表示,b有单位。
二、回归系数与相关系数的联系:
1、回归系数大于零则相关系数大于零
2、回归系数小于零则相关系数小于零。
回归方程的相关系数公式
摘要:
一、回归方程的相关系数公式简介
二、相关系数的计算方法
三、相关系数的应用场景
四、相关系数与回归系数的关系
正文:
一、回归方程的相关系数公式简介
在回归分析中,相关系数是一个非常重要的概念,用于衡量两个变量之间的线性关系的强度和方向。
相关系数的公式为:r = ∑((x_i-平均x)*(y_i-平均y)) / (√∑(x_i-平均x)^2 * ∑(y_i-平均y)^2)。
其中,x_i和y_i分别表示样本中的每个数据点的x值和y值,平均x和平均y分别表示x值和y值的平均值。
二、相关系数的计算方法
相关系数的计算方法主要有两种:一种是基于样本数据的方法,另一种是基于总体数据的方法。
基于样本数据的方法又分为两种:一种是简单平均法,另一种是加权平均法。
基于总体数据的方法也有两种:一种是基于总体均值和总体协方差的方法,另一种是基于总体方差和总体协方差的方法。
三、相关系数的应用场景
相关系数在回归分析中有很多应用场景,比如:判断两个变量之间是否存在线性关系;判断两个变量之间的线性关系的强度和方向;预测一个变量的值,给定另一个变量的值;评估一个回归模型的拟合优度等。
四、相关系数与回归系数的关系
相关系数和回归系数是两个不同的概念,但它们之间有一定的关系。
相关系数表示的是两个变量之间的线性关系的强度和方向,而回归系数表示的是当一个变量增加一个单位时,另一个变量的预期变化量。
协方差矩阵和相关系数矩阵的关系协方差矩阵与相关系数矩阵是统计学中常见的概念,它们之间有一定的关系,可以为统计学中的问题提供指导。
首先,本文将讨论协方差矩阵和相关系数矩阵的定义及其之间的关系。
然后,本文将提供一个简单的数学例子,来讨论两者之间的关系。
最后,本文将简要提出洞察协方差矩阵和相关系数矩阵的关系的理论依据。
什么是协方差矩阵以及相关系数矩阵?协方差矩阵是一个方阵,它用来表示两个或更多的变量之间的关系,它的大小可以从实际的数据得到。
每一个元素Cij表示第i个变量与第j个变量之间的协方差,它可以为正,负或零。
另一方面,相关系数矩阵是由相关系数组成的方阵,它与协方差矩阵相关,但具有更多的特征。
相关系数表示两个变量之间的线性关系,它可以在-1到1之间取值,当两个变量之间的相关系数为1时,表明他们之间存在强烈的正相关;当相关系数为-1时,表明他们之间存在强烈的负相关;而当相关系数为0时,则表明他们之间不存在相关。
协方差矩阵和相关系数矩阵之间的关系可以通过数学方法来描述。
假设有两个变量X和Y,他们之间的协方差矩阵表示为Cov(X,Y),而它们之间的相关系数矩阵表示为ρ(X,Y),则协方差矩阵和相关系数矩阵之间的关系可以用下式表示:ρ(X,Y)=Cov(X,Y) / (σX *Y)其中,σX表示X的标准差,σY表示Y的标准差。
计算可以看出,协方差矩阵和相关系数矩阵之间的关系是:协方差矩阵的值除以变量的标准差的乘积,就可以得到相关系数矩阵。
由此可见,协方差矩阵和相关系数矩阵之间的关系是紧密的,它们可以结合使用,以更好地了解变量之间的关系。
协方差矩阵和相关系数矩阵之间的关系可以由概率论和概率分布中的参数来解释。
假设X和Y之间存在一个线性关系,我们可以把这个关系表示为:Y=α+βX,其中α和β是常数,称为线性回归方程中的参数。
当X和Y之间的参数确定时,协方差的值就被求出,而相关系数的值也可以从参数β算出。
由此可见,线性回归方程的参数β就是表示X和Y之间相关关系的参数,而且它可以由协方差矩阵求出,也可以由相关系数矩阵求出。
线性回归中的相关系数
线性回归中的相关系数是根据任务而言,为分析决策等行为提供参照和指导的一种常
用统计指标。
它是用来衡量两个变量x和y之间静态和动态关系的数值,是研究对象两个
或多个变量的存在的事实的衡量。
关系的统计数值有其一般性和一般性的特征,关系的总
体表现归结为一个简单的数字,不受个例影响,能反映出总体变量之间关系,因此衰减失
真较少,可以比较并量化变量间关系的大小和变量独立性,因此相关系数是一个衡量变量
相关性大小的统计量,其中最常用的指标是Pearson相关系数,它衡量变量两两之间的线
性关系,可以反映数据体这两个变量在一个样本上的关系强弱。
另一方面,线性回归的相关系数可以是正相关,也可以是负相关。
正相关反映了当一
个数值变大时,另一个变量也增大;负相关表明了当一个数值变大时,另一个变量会变小。
相关系数的取值范围是-1到1之间,当相关系数的值越接近1时表明越强烈的正相关,
当相关系数的值越接近-1时表明越强烈的负相关,而当相关系数的值为0时,则表明两个变量之间没有线性关系。
相关系数又分为样本相关系数和总体相关系数,表示的是统计分析的样本的相似性,
样本相关系数只针对某一特定样本,而总体相关系数则反映整个样本总体之间的相关关系。
一般来说,在确定回归方程之前,是先确定变量之间的相关系数。
线性回归中的相关
系数是确定变量之间关系的重要指标,只有建立良好的线性关系,才能正确地确定回归分
析和有效地求解参数。
因此,在进行线性回归时,了解变量之间的相关系数,就可以更快
捷和准确地得到结论。
相关系数和回归系数的区别
相关系数和回归系数都是用于描述两个变量之间关系的指标,但它们的计算方法、含义和用途不同:
1.相关系数:是衡量两个变量之间线性相关程度的一种指标,表示为r。
它的取值范围在-1到1之间,若r>0则为正相关,r<0则为负相关,r=0则为不相关。
相关系数只描述了两个变量之间的关系,不提供因果关系。
2.回归系数:用于建立取决于一个或多个自变量的因变量的函数,表示变量间的线性关系。
回归系数可以通过线性回归模型进行拟合得到,一般用于预测和控制变量。
回归系数是对回归方程的系数的称呼,回归系数的大小代表因变量相应地变化的速度和程度。
因此,相关系数和回归系数都是用于描述变量之间的关系的指标,但是它们的应用和表示方式是不同的。
【关键字】分析第二章一元线性回归分析思考与练习参考答案2.1 一元线性返回有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)= 2 i=1,2, …,nCov(εi, εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(Xi, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, 2 ) i=1,2, …,n2.2 考虑过原点的线性返回模型Yi=β1Xi+εi i=1,2, …,n误差εi(i=1,2, …,n)仍满足基本假定。
求β1的最小二乘估计解:得:2.3 证明(2.27式),ei =0 ,eiXi=0 。
证明:其中:即:ei =0 ,eiXi=02.4返回方程E(Y)=β0+β1X的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。
答:由于εi~N(0, 2 ) i=1,2, …,n所以Yi=β0 + β1Xi + εi~N(β0+β1Xi , 2 )最大似然函数:使得Ln(L)最大的,就是β0,β1的最大似然估计值。
同时发现使得Ln(L)最大就是使得下式最小,上式恰好就是最小二乘估计的目标函数相同。
值得注意的是:最大似然估计是在εi~N(0, 2 )的假设下求得,最小二乘估计则不要求分布假设。
所以在εi~N(0, 2 ) 的条件下,参数β0,β1的最小二乘估计与最大似然估计等价。
2.5 证明是β0的无偏估计。
证明:2.6 证明证明:2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证:(1);(2)证明:(1)(2)2.9 验证(2.63)式:证明:其中:2.10 用第9题证明是2的无偏估计量证明:2.14 为了调查某广告对销售收入的影响,某商店记录了5个月的销售收入y(万元)和广告费用x(万元),数据见表2.6,要求用手工计算:表2.6月份 1 2 3 4 5X 1 2 3 4 5Y 10 10 20 20 40 (1)画散点图(略)(2)X与Y是否大致呈线性关系?答:从散点图看,X与Y大致呈线性关系。
已知回归方程求相关系数r相关系数是用来衡量两个变量之间线性关系的强度和方向的统计量。
在回归方程中,相关系数可以衡量预测变量和被预测变量之间的关系强度。
相关系数的取值范围在-1到1之间,其中-1表示完全负相关,1表示完全正相关,0表示没有线性关系。
为了求解相关系数,首先需要计算协方差。
协方差衡量了两个变量之间的变动程度。
协方差的计算公式如下:Cov(X, Y) = Σ((Xi - X_mean) * (Yi - Y_mean)) / (n - 1)其中,Xi和Yi是样本点的值,X_mean和Y_mean是对应变量的平均值,n是样本的个数。
接下来,可以计算两个变量的标准差,标准差是变量离其平均值的分散程度的度量。
标准差的计算公式如下:std(X) = √(Σ((Xi - X_mean) ^ 2) / (n - 1))std(Y) = √(Σ((Yi - Y_mean) ^ 2) / (n - 1))最后,相关系数的计算公式如下:r = Cov(X, Y) / (std(X) * std(Y))通过上述计算,可以求解出相关系数r的值。
值得注意的是,相关系数只能衡量两个变量之间线性关系的强度,对于非线性关系的变量,相关系数可能会失效。
除了计算相关系数,还可以使用Python的Scipy库中的相关系数函数来求解。
具体的代码如下:```pythonimport numpy as npfrom scipy.stats import pearsonr#定义两个变量X和YX = np.array([1, 2, 3, 4, 5])Y = np.array([2, 4, 6, 8, 10])# 使用Scipy库中的相关系数函数计算相关系数和p值r, p_value = pearsonr(X, Y)#打印相关系数和p值print("相关系数:", r)print("p值:", p_value)```上述代码通过使用Scipy库中的pearsonr函数计算了两个变量X和Y的相关系数和p值。
相关系数与回归系数的符号关系相关系数与回归系数的符号关系可以用以下方式进行判断:1. 相关系数(Pearson相关系数):相关系数衡量两个变量之间线性关系的强度和方向。
它的取值范围在-1到1之间。
当相关系数为正时,表示两个变量之间存在正相关关系,即随着一个变量增加,另一个变量也会增加;当相关系数为负时,表示两个变量之间存在负相关关系,即随着一个变量增加,另一个变量会减少;当相关系数接近0时,表示两个变量之间没有线性关系,或者关系非常弱。
2. 回归系数:在回归分析中,回归系数是用于拟合线性回归方程的参数。
对于简单线性回归,回归方程可以表示为:y = b0 + b1 * x,其中b1就是回归系数。
回归系数表示因变量(y)对自变量(x)的响应程度,即x每增加一个单位,y的变化量。
如果回归系数b1为正,表示自变量(x)的增加会导致因变量(y)的增加;如果回归系数b1为负,表示自变量(x)的增加会导致因变量(y)的减少。
因此,相关系数与回归系数的符号关系可以总结如下:- 当相关系数为正时,回归系数b1有可能是正或者负,具体取决于回归分析的结果;- 当相关系数为负时,回归系数b1有可能是正或者负,同样取决于具体的回归分析结果;- 当相关系数接近0时,回归系数b1可能是接近0的值,也可能是一个不具有显著性的任意值,这取决于数据和回归分析的结果。
需要强调的是,相关系数只衡量两个变量之间的线性关系强度和方向,并不能确定因果关系。
而回归分析旨在通过数据拟合线性方程,用于预测和解释变量之间的关系。
因此,在进行数据分析时,同时考虑相关系数和回归系数是很重要的,以充分理解变量之间的关系。
相关系数矩阵正交矩阵
相关系数矩阵和正交矩阵是线性代数和统计学中的重要概念。
首先,让我们来谈谈相关系数矩阵。
相关系数矩阵是用来衡量多个变量之间线性关系强弱的工具。
在统计学中,相关系数矩阵通常用来展示变量之间的相关性。
相关系数矩阵是一个对称矩阵,其中对角线上的元素是1(因为每个变量与自身的相关系数是1),而非对角线上的元素则表示对应变量之间的相关性。
相关系数矩阵的取值范围在-1到1之间,-1表示完全负相关,1表示完全正相关,0表示无相关性。
相关系数矩阵可以帮助分析变量之间的关系,从而可以进行相关性分析、主成分分析等统计方法。
接下来,让我们来探讨正交矩阵。
在线性代数中,正交矩阵是指其转置矩阵等于其逆矩阵的实方阵。
换句话说,正交矩阵的列向量是正交的(垂直的),并且每个列向量的模长为1。
正交矩阵在许多领域都有重要的应用,比如在旋转变换、正交化、奇异值分解等方面。
正交矩阵的性质使得它在线性代数和信号处理中具有重要作用。
从数学角度来看,相关系数矩阵和正交矩阵在不同领域有着广
泛的应用。
相关系数矩阵在统计学中用于分析变量之间的相关性,
而正交矩阵在线性代数和信号处理中用于表示正交关系和进行变换。
它们都是非常重要的数学工具,对于理解和解决实际问题都具有重
要意义。
总的来说,相关系数矩阵和正交矩阵是数学中的重要概念,它
们分别在统计学和线性代数中有着广泛的应用。
通过对它们的深入
理解,我们可以更好地应用它们解决实际问题,并且在相关领域的
研究和实践中取得更好的成果。
第3章 多元线性回归思考与练习参考答案讨论样本容量n 与自变量个数p 的关系,它们对模型的参数估计有何影响答:在多元线性回归模型中,样本容量n 与自变量个数p 的关系是:n>>p 。
如果n<=p 对模型的参数估计会带来很严重的影响。
因为: 1. 在多元线性回归模型中,有p+1个待估参数β,所以样本容量的个数应该大于解释变量的个数,否则参数无法估计。
2. 解释变量X 是确定性变量,要求()1rank p n =+<X ,表明设计矩阵X 中的自变量列之间不相关,即矩阵X 是一个满秩矩阵。
若()1rank p <+X ,则解释变量之间线性相关,1()X X -'是奇异阵,则β的估计不稳定。
证明 随机误差项ε的方差2的无偏估计。
证明:22122222111112221111ˆ(),111()()(1)(1)()(1)1ˆ()()1ni i n n nnnii ii iiii i i i i i ni i SSE e e e n p n p n p E e D e h h n h n p E E e n p σσσσσσσ======='===------∴==-=-=-=--∴==--∑∑∑∑∑∑∑一个回归方程的复相关系数R=,样本决定系数R 2=,我们能判断这个回归方程就很理想吗 %答:不能断定这个回归方程理想。
因为:1. 在样本容量较少,变量个数较大时,决定系数的值容易接近1,()1ˆ2--=p n SSE σ而此时可能F 检验或者关于回归系数的t 检验,所建立的回归方程都没能通过。
2. 样本决定系数和复相关系数接近于1只能说明Y 与自变量X1,X2,…,Xp 整体上的线性关系成立,而不能判断回归方程和每个自变量是显著的,还需进行F 检验和t 检验。
3. 在应用过程中发现,在样本容量一定的情况下,如果在模型中增加解释变量必定使得自由度减少,使得 R 2往往增大,因此增加解释变量(尤其是不显著的解释变量)个数引起的R 2的增大与拟合好坏无关。
回归方程的系数的相关系数矩阵
clc % 清屏
clear all; % 删除workplace变量
close all; % 关掉显示图形窗口
format long
pz=[1913650516260
1893752211060
193385812101101
16235621210537
18935461315558
1823656410142
2113856810138
1673460612540
17631741520040
154335617251250
16934501712038
166335213210115
154346414215105
247465015050
193364667031
202376212210120
176375446025
15732521123080 15633541522573 1383368211043];
mu=mean(pz); %求均值
sig=std(pz); %求标准差
rr=corrcoef(pz); %求相关系数矩阵
data=zscore(pz); %数据标准化
n=3; % n 是自变量的个数
m=3; % m 是因变量的个数
x0=pz(:,1:n);y0=pz(:,n+1:end);
e0=data(:,1:n);f0=data(:,n+1:end);
num=size(e0,1);%求样本点的个数
chg=eye(n); % w 到w* 变换矩阵的初始化
for i=1:n
%计算w,w* 和t 的得分向量,
matrix=e0'*f0*f0'*e0;
[vec,val]=eig(matrix); %求特征值和特征向量val=diag(val); %提出对角线元素
[val,ind]=sort(val,'descend');%降序排列
w(:,i)=vec(:,ind(1)); %提出最大特征值对应的特征向量
w_star(:,i)=chg*w(:,i); %计算w*的取值
t(:,i)=e0*w(:,i); %计算成分ti 的得分
alpha=e0'*t(:,i)/(t(:,i)'*t(:,i)); %计算alpha_i
chg=chg*(eye(n)-w(:,i)*alpha'); %计算w 到w*的变换矩阵
e=e0-t(:,i)*alpha'; %计算残差矩阵
e0=e;
%计算ss(i)的值
beta=[t(:,1:i),ones(num,1)]\f0; %求回归方程的系数
beta(end,:)=[]; %删除回归分析的常数项
cancha=f0-t(:,1:i)*beta; %求残差矩阵
ss(i)=sum(sum(cancha.^2)); %求误差平方和
%计算p(i)
for j=1:num
t1=t(:,1:i);f1=f0;
she_t=t1(j,:);she_f=f1(j,:); %把舍去的第j 个样本点保存起来t1(j,:)=[];f1(j,:)=[]; %删除第j 个观测值
beta1=[t1,ones(num-1,1)]\f1; %求回归分析的系数
beta1(end,:)=[]; %删除回归分析的常数项
cancha=she_f-she_t*beta1; %求残差向量
p_i(j)=sum(cancha.^2);
end
p(i)=sum(p_i);
if i>1
Q_h2(i)=1-p(i)/ss(i-1);
else
Q_h2(1)=1;
end
if Q_h2(i)<0.0975
fprintf('提出的成分个数r=%d',i);
r=i;
break
end
end
beta_z=[t(:,1:r),ones(num,1)]\f0; %求Y 关于t 的回归系数
beta_z(end,:)=[]; %删除常数项
xishu=w_star(:,1:r)*beta_z; %求Y 关于X 的回归系数,且是针对标准数据的回归系数,
%每一列是一个回归方程
mu_x=mu(1:n);mu_y=mu(n+1:end);
sig_x=sig(1:n);sig_y=sig(n+1:end);
for i=1:m
ch0(i)=mu_y(i)-mu_x./sig_x*sig_y(i)*xishu(:,i); %计算原始数据的回归方程的常数项
end
for i=1:m
xish(:,i)=xishu(:,i)./sig_x'*sig_y(i); %计算原始数据的回归方程的系数,每一列是一个回归方程
end
sol=[ch0;xish] %显示回归方程的系数,每一列是一个方程,每一列的第一个数是常项
w1=w(:,1)
w2=w(:,2)
wx1=w_star(:,1)
wx2=w_star(:,2)
tx1=t(:,1)'
tx2=t(:,2)'
beta_z %回归系数。