7第二章2.3理想PN结的直流电流-电压特性
- 格式:ppt
- 大小:283.50 KB
- 文档页数:28
(完整版)PN结的特性PN结的特性实验目的与实验仪器【实验目的】1)研究PN结正向压降随温度变化的基本规律2)学习PN结测温的原理和方法3)学习一种测量玻尔兹曼常数的方法【实验仪器】DH-PN-2型PN结正向特性综合实验仪、DH-SJ温度传感实验装置实验原理(限400字以内)1)理想的PN结正向电流I F和压降U F之间满足关系式:I F=I S[e qU FkT?1]。
考虑到常温下,Ktq=0.016V,则理想的PN结正向电流I F和压降U F之间满足近似关系式:I F=I S e qU FkT。
其中,q为电子电荷,k为玻尔兹曼常量,T为热力学温度,I S为反向饱和电流,它是一个和PN结材料的禁带宽度以及温度等有关的系数,I S=CT r e?qU g(0)kT,其中,C是与结面积、掺杂浓度有关的常数,r是常数,其数值取决于少数载流子迁移率对温度的关系(通常取3.4),U g(0)为0K时PN结材料的导带底和价带顶的电势差。
2)将I S带入I F式中,两边取对数,得到:U F=U g(0)?(kq lnCI F)T?kTqlnT r=U l+U nl,其中U l=U g(0)?(kq lnCI F)T,U nl=?kTqlnT r。
这就是PN结正向压降作为电流和温度的函数表达式,是PN结温度传感器的基本方程。
3)对于杂质全部电离、本征激发可以忽略的温度区间,根据对U nl项所引起的线性误差的分析可知,在恒流供电条件下,PN结的U F 对T的依赖关系主要取决于线性项U l,即正向压降几乎随温度升高而线性下降,这就是PN结测温的依据。
U F?T的线性度在高温端优于低温端,这是PN结温度传感器的普遍规律。
实验步骤1.实验系统的检查与连接“加热电流”、“风扇电流”都置“关”,插好Pt100温度传感器和PN结温度传感器,PN结引出线分别插入测试仪上的+V、-V、+I、-I。
2.玻尔兹曼常数k的测定a)PN结I-U关系的测量I F=I S e qU FkT式表明,PN结正向电流随正向电压按指数规律变化。
P N结及其特性详细介绍1.PN结的形成在一块本征半导体在两侧通过扩散不同的杂质,分别形成N型半导体和P型半导体。
此时将在N型半导体和P型半导体的结合面上形成如下物理过程:扩散到对方的载流子在P区和N区的交界处附近被相互中和掉,使P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。
这样在两种半导体交界处逐渐形成由正、负离子组成的空间电荷区(耗尽层)。
由于P区一侧带负电,N区一侧带正电,所以出现了方向由N区指向P区的内电场PN结的形成当扩散和漂移运动达到平衡后,空间电荷区的宽度和内电场电位就相对稳定下来。
此时,有多少个多子扩散到对方,就有多少个少子从对方飘移过来,二者产生的电流大小相等,方向相反。
因此,在相对平衡时,流过PN结的电流为0。
对于P型半导体和N型半导体结合面,离子薄层形成的空间电荷区称为PN结。
在空间电荷区,由于缺少多子,所以也称耗尽层。
由于耗尽层的存在,PN结的电阻很大。
PN结的形成过程中的两种运动:多数载流子扩散少数载流子飘移PN结的形成过程(动画)2.PN结的单向导电性PN结具有单向导电性,若外加电压使电流从P区流到N区,PN结呈低阻性,所以电流大;反之是高阻性,电流小。
如果外加电压使PN结中:P区的电位高于N区的电位,称为加正向电压,简称正偏;P区的电位低于N区的电位,称为加反向电压,简称反偏。
(1)PN结加正向电压时的导电情况PN结加正向电压时的导电情况如图所示。
外加的正向电压有一部分降落在PN结区,方向与PN结内电场方向相反,削弱了内电场。
于是,内电场对多子扩散运动的阻碍减弱,扩散电流加大。
扩散电流远大于漂移电流,可忽略漂移电流的影响,PN结呈现低阻性。
PN结加正向电压时的导电情况(2)PN结加反向电压时的导电情况外加的反向电压有一部分降落在PN结区,方向与PN结内电场方向相同,加强了内电场。
内电场对多子扩散运动的阻碍增强,扩散电流大大减小。
pn 结电流电压特性1,pn 结的单向导电性(a)正向偏压下,pn结势垒的变化和载流子的运动处于热平衡状态的pn 结,空间电荷区内载流子浓度很低,电阻很大;p型和n型电中性区的载流子浓度很高,电阻很小。
因此,当给pn 结施加正向电压(即电源正极接p区,负极接n 区)时,外加偏压基本施加在势垒区。
正向偏压在势垒区产生了与内建电场的方向相反的电场,所以削弱了势垒区的内建电场。
因而,势垒区空间电荷相应减少,势垒区的宽度相应减小,同时势垒高度也从qVbi降低至q (Vbi-V)。
处于热平衡状态的pn 结,载流子的扩散电流Jdiff 与漂移电流Jdrift 完全相等,因而无净电流通过pn 结。
对pn结施加正向偏压后,势垒区电场强度减弱,漂移运动被削弱。
此时,扩散运动强于漂移运动(Jdiff > Jdrift),即产生了由电子从n 区指向p 区,空穴从p 区指向n 区的净扩散电流。
由于此时是多子的注入,当pn结被施加正向偏压时,可以产生很大的正向电流JF。
(b)反向偏压下,pn结势垒的变化和载流子的运动当pn 结被施加反向电压时,即电源正极接n区,负极接p 区时,反偏电压施加在势垒区的电场方向与内建电场的方向相同,势垒区的电场被增强,空间电荷区宽度增大,势垒高度由qVbi增高至q(Vbi + V)。
当pn 结被施加反向电压时,势垒区的电场被增强,载流子的漂移运动得到加强,使得漂移流大于扩散流(Jdiff < Jdrift),产生了空穴从n 区向p 区以及电子从p 区向n区的净漂移流。
这时,少子不断地被抽取出来,因而其浓度比平衡情况下的少子浓度还要低。
由于此时为少子的扩散运动,势垒区少子浓度已经很低,所以通过pn 结的反向电流JR 很小。
综上,当pn 结被施加正向偏压时,形成很大的正向扩散电流,pn 结呈现低电阻状态,pn 结导通;当pn 结被施加反向偏压时,形成很小的少子反向扩散电流,pn 结呈现高电阻状态,pn 结截止。