1.2 不等式的基本性质及答案
- 格式:doc
- 大小:62.50 KB
- 文档页数:1
不等式的基本性质与解法不等式在数学中起着重要的作用,它描述了数值之间的大小关系。
解不等式是解决问题、推导结论的常用方法之一。
本文将介绍不等式的基本性质与解法,帮助读者更好地理解和应用不等式。
一、不等式的基本性质1.1 传递性:若a>b,b>c,则a>c。
这个性质说明了不等式在数值之间的传递性,即如果一个数大于另一个数,而后者又大于第三个数,则第一个数一定大于第三个数。
1.2 加法性:若a>b,则a+c>b+c。
这个性质说明了不等式在两边同时加上一个相同的数时,不等号的方向不变。
1.3 减法性:若a>b,则a-c>b-c。
与加法性类似,减法性说明了不等式在两边同时减去一个相同的数时,不等号的方向不变。
1.4 乘法性:若a>b且c>0,则ac>bc;若a>b且c<0,则ac<bc。
乘法性说明了不等式在两边同时乘以一个正数或负数时,不等号的方向会发生变化。
1.5 除法性:若a>b且c>0,则a/c>b/c;若a>b且c<0,则a/c<b/c。
除法性说明了不等式在两边同时除以一个正数或负数时,不等号的方向会发生变化。
二、不等式的解法2.1 图解法:对于一元一次不等式,可以通过图像来解决。
首先将不等式转换为等式,画出等式对应的直线,然后根据不等号的方向确定直线上的某一边的解集。
这种方法适用于简单的线性不等式。
2.2 求解法:对于更复杂的不等式,通常需要应用一些不等式性质和运算法则。
例如,可以通过加、减、乘、除等操作将不等式化简为简单的形式,再求解。
2.3 分类讨论法:对于一元高次不等式,可以将不等式中的变量分别取不同的值,然后根据不等式的性质进行分类讨论。
通过逐个排除不符合条件的情况,最终得到解集。
2.4 绝对值法:对于含有绝对值的不等式,可以通过拆分绝对值的定义,建立不等式的多种情况,然后分别求解。
不等式的基本性质知识导引不等式和方程一样,也是代数里的一种重要模型,在概念方面,它与方程很类似,尤其重要的是不等式具有一系列基本性质,而且数学的基本结果往往是一些不等式而不是等式. 本讲的主要知识点:1、不等号有“≠”,“>”,“<”,“≥”,“≤”。
“≥”表示大于或等于;“≤”表示小于或等于.2、一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,即不等式的解集.3、不等式性质1:不等式两边同时加上或减去一个相同的数,不等号方向不变;不等式性质2:不等式两边同时乘以或除以同一个正数,不等号方向不变;不等式性质3:不等式两边同时乘以或除以同一个负数,不等号方向改变;4、在数轴上表示解集,必须注意空心圈与实心点表示的不同含义.5、不等式解集口诀:大大取大,小小取小,小大大小连起写,大大小小题无解.6、解决与不等式相关的问题,常用到分类讨论、数形结合等相关概念和方法.典例精析例1:下列四个命题中,正确的有( )①若a >b ,则a +1>b +1;②若a >b ,则a -1>b -1;③若a >b ,则-2a <-2b ;④若a >b ,则2a <2b .A 、1个B 、2个C 、3个D 、4个例1—1:已知a ,b ,c 是有理数,且a >b >c ,则下列式子中正确的是( )A 、ab >bcB 、a +b >b +cC 、a -b >b -cD 、c b c a > 例2:若实数a >1,则实数a M =,32+=a N ,312+=a P 的大小关系为( ) A 、P >N >M B 、M >N >P C 、N >P >M D 、M >P >N例3:解不等式5456110312-≥+--x x x ,并把它的解集在数轴上表示出来.例3—1:请你写出一个满足不等式2x -1<6的正整数x 的值: .例3—2:若关于x 的不等式3m -2x <5的解集是x >2,则实数m 的值为 .例4:某童装加工企业今年五月份,工人每人平均加工童装150套,最不熟练的工人加工的童装套数为平均套数的60%,为了提高工人的劳动积极性,按时完成外商订货任务,企业计划从六月份起进行工资改革,改革后每位工人的工资分两部分:一部分为每人每月基本工资200元;另一部分为每加工1套童装奖励若干元.(1)为了保证所有工人每月的工资收入不低于市有关部门规定的最低工资标准450元,按五月份工人加工的童装套数计算,工人每加工1套童装企业至少应奖励多少元?(精确到分)(2)根据经营情况,企业决定每加工1套童装奖励5元,工人小张争取六月份工资不少于1200元,则小张在六月份至少应加工多少套童装?探究活动例:三边均不相等的△ABC 的两条高的长度分别为4和12,若第三条高的长也是整数,试求它的长.学力训练A 组 务实基础1、若a >b ,c 为有理数,则下列各式一定成立的是( )A 、ac >bcB 、ac <bcC 、22bc ac >D 、22bc ac ≥2、不等式121>-x 的解集是( ) A 、21->x B 、2->x C 、2-<x D 、21-<x3、四个小朋友玩跷跷板,他们的体重分别为P 、Q 、R 、S ,如图所示,则他们体重的大小关系是( )A 、P >R >S >QB 、Q >S >P >RC 、S >P >Q >RD 、S >P >R >Q4、如果不等式(a -1)x >a -1的解为x <1,则a 必须满足( )A 、a <1B 、a >1C 、a >0D 、a <05、已知三角形的两边分别是2,6,第三边长也是偶数,则三角形的周长是 .6、关于x 的方程2(x +a )=a +x -2的解是非负数,在a 的取值范围是 .7、如果x ≥-5的最小值是a ,x ≤5的最大值是b ,则a +b = .8、规定一种新运算:a △b =ab -a -b +1,如3△4=12-3-4+1,请比较:(-3)△4 4△(-3)(填“>”、“<”或“=”).9、已知关于x 的方程3(x -2a )+2=x -1的解适合不等式2(x -5)≥8a ,求a 的取值范围.10、关于x 的不等式64141a x x ->-+的解都是不等式2214x x -<-的解,求a 的取值范围.B 组 瞄准中考1、(邵阳中考)如图,数轴上表示的关于x 的一元一次不等式的解集为( )A 、x ≤1 B、x ≥1 C、x <1 D 、x >12、(烟台中考)不等式4-3x≥2x-6的非负整数解有( )A 、1个B 、2个C 、3个D 、4个3、(深圳中考)已知a 、b 、c 均为实数,若a >b ,c ≠0,下列结论不一定正确的是( )A 、a +c >b +cB 、c -a <c -bC 、22cb c a > D 、22b ab a >> 4、(凉山中考)下列不等式变形正确的是( )A 、由a >b ,得ac >bcB 、由a >b ,得-2a <-2bC 、由a >b ,得-a >-bD 、由a >b ,得a -2<b -25、(乐山中考)下列不等式变形正确的是( )A 、由a >b ,得a -2<b -2B 、由a >b ,得-2a <-2bC 、由a >b ,得b a >D 、由a >b ,得22b a > 6、解不等式x x 329721-≤-,得其解的范围为( ) A 、61≥x B 、61≤x C 、23≥x D 、23≤x 7、(永州中考)某市打市电话的收费标准是:每次3分钟以内(含3分钟)收费0.2元,以后每分钟收费0.1元(不足1分钟按1分钟计).某天小芳给同学打了一个6分钟的市话,所用电话费为0.5元;小刚现准备给同学打市电话6分钟,他经过思考以后,决定先打3分钟,挂断后再打3分钟,这样只需电话费0.4元.如果你想给某同学打市话,准备通话10分钟,则你所需的电话费至少为( )A 、0.6元B 、0.7元C 、0.8元D 、0.9元8、(临沂中考)有3人携带会议材料乘坐电梯,这三人的体重共210kg ,每捆材料重20kg ,电梯的最大负荷为1050kg ,则该电梯在此3人乘坐的情况下最多还能搭载 捆材料.9、(重庆中考)解不等式3132+<-x x ,并把解集在数轴上表示出来.10、(苏州中考)解不等式:1)1(23<--x .11、(广州中考)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案.方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.一直小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算:所购买商品的价格在什么范围内时,采用方案一更合算?C 组 冲击金牌1、⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=++=++=++=++52154154354324321321a x x x a x x x a x x x a x x x a x x x ,其中1a ,2a ,3a ,4a ,5a 是常数,且1a >2a >3a >4a >5a ,则1x ,2x ,3x ,4x ,5x 的大小顺序是( )A 、1x >2x >3x >4x >5xB 、4x >2x >1x >3x >5xC 、3x >1x >4x >2x >5xD 、5x >3x >1x >4x >2x2、不等式100<+y x 有 组整数解.3、已知121219991998++=M ,121220001999++=N ,那么M ,N 的大小关系是 . 4、已知x <0,-1<y <0,将x ,xy ,2xy 按从小到大的顺序排列.5、实数a ,b 满足不等式b a a b a a +-<+-)(,试判定a ,b 的符号.6、解不等式:1325<+--x x .7、已知:正有理数1a 是3的一个近似值,设12112++=a a ,求证:3介于1a 和2a 之间.8、某地区举办初中数学联赛,有A、B、C、D四所中学参加.选手中,A,B两校共16名,B,C脸两校共20名,C,D两校共34名,并且各校选手人数的多少是按A、B、C、D中学的顺序选派的,试求各中学的选手人数.不等式的基本性质参考答案典例精析1、C 1—1、B2、D3、x ≤2,数轴上表示略 3—1、1或2或33—2、3 4、(1)设企业每套奖励x 元,由题意得:200+60%×150x ≥450,解得x ≥2.78,因此,该企业每套至少应奖励2.78元.(2)设小张在六月份加工y 套,由题意得:200+5y ≥1200,解得y ≥200.因此,小张在六月份至少应加工200套童装.探究活动解:设长度为4和12的高所对的边为a 、b ,又设第三边及其边上的高为c 、h ,则4a =12b =ch .a :b =3:1=3h :h ,b :c =h :12,∴a :b :c =3h :h :12,可设三边长为3hk ,hk ,12k (k 为正整数),∵3hk >hk ,∴3hk +hk >12k ,hk +12k >3hk ,即3<h <6,又∵h 是整数,∴h =4(舍去),5,∴h =5.学力训练A 组1、D2、C3、D4、A5、146、a ≤-27、08、=9、a ≤-6.5 10、a ≤14.5B 组1、D2、C3、D4、B5、B6、A7、B8、429、解集为x <2,数轴上表示略. 10、x >2 11、(1)120×0.95=114(元),所以实际应支付114元.(2)设购买商品的价格为x 元,由题意得:0.8x +168<0.95x ,解得x >1120,所以当购买商品的价格超过1120元时,采用方案一更合算.C 组1、C2、197023、m >n4、∵x -xy =x (1-y ),且x <0,-1<y <0,所以x(1-y )<0,即x <xy ,∵0)1(2<-=-y xy xy xy ,∴xy xy <2,因为)1)(1(2y y x xy x =+=-<0,∴2xy x <,综上所述,x <2xy <xy .5、a 为负,b 为正6、x <-7或31>x 7、略 8、A 校7人,B 校9人,C 校11人,D 校23人.。
专题1.2 一元一次不等式与不等式组章末重难点题型【沪科版】【考点1 不等式的基本性质】【方法点拨】不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。
不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
【例1】(2019春•南平期中)下列四个不等式:(1)ac>bc;(2)﹣ma<mb;(3)ac2>bc2;(4)>1,一定能推出a>b的有()A.1个B.2个C.3个D.4个【分析】根据不等式的性质逐个判断即可求得答案.【答案】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有﹣a<b,即a>﹣b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选:A.【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.【变式1-1】(2018春•江汉区期末)若a>b,则下列结论:①a+x>b+x;②>;③ax2>bx2;④ab<b2;⑤﹣|a|<﹣|b|.其中一定成立的个数是()A.1 B.2 C.3 D.4【分析】根据不等式的基本性质逐项判断即可.【答案】解:①∵a>b,∴根据不等式的基本性质1可得:a+x>b+x;所以,正确的个数为1个;②当x<0时,>不成立;③ax2>bx2;④当b>0时,ab<b2不成立;⑤当0>a>b时,﹣|a|<﹣|b|不成立.故选:A.【点睛】主要考查了不等式的基本性质.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【变式1-2】(2019春•冠县期末)下列式子正确的是()A.若<,则x<y B.若bx>by,则x>yC.若=,则x=y D.若mx=my,则x=y【分析】根据不等式的基本性质,以及等式的性质,逐项判断即可.【答案】解:∵若<,则a>0时,x<y,a<0时,x>y,∴选项A不符合题意;∵若bx>by,则b>0时,x>y,b<0时,x<y,∴选项B不符合题意;∵若=,则x=y,∴选项C符合题意;∵若mx=my,且m=0,则x=y或x≠y,∴选项D不符合题意.故选:C.【点睛】此题主要考查了不等式的基本性质,以及等式的性质,要熟练掌握,解答此题的关键是要明确:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变【变式1-3】(2019春•宜宾县校级期中)若ab<0,且a<b,下列解不等式正确的是()A.由ax<b,得x<B.由(a﹣b)x>2,得x>C.由bx<a,得x>D.由(b﹣a)x<2,得x<【分析】先求出a,b的大小关系,再运用不等式的基本性质判定.【答案】解:∵ab<0,且a<b,∴a<0<b.A、由ax<b,得x>,故A选项错误;B、由(a﹣b)x>2,得x<,故B选项错误;C、由bx<a,得x<),故C选项错误;D、由(b﹣a)x<2,得x<,故D选项正确.故选:D.【点睛】本题主要考查了不等式的基本性质,解题的关键是确定x系数的正负值.【考点2 由实际问题抽象出一元一次不等式】【方法点拨】由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【例2】(2019春•湘桥区期末)某种商品的进价为600元,出售时标价为900元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则最低可打()A.6折B.7折C.8折D.9折【分析】设该商品打x折销售,根据利润=销售价格﹣进价结合利润率不低于5%,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.【答案】解:设该商品打x折销售,依题意,得:900×﹣600≥600×5%,解得:x≥7.故选:B.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【变式2-1】(2019春•威远县校级期中)将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x人,则可列不等式为()A.8(x﹣1)<5x+12<8 B.0<5x+12<8xC.0<5x+12﹣8(x﹣1)<8 D.8x<5x+12<8【分析】设有x人,由于每位小朋友分5个苹果,则还剩12个苹果,则苹果有(5x+12)个;若每位小朋友分8个苹果,则有一个小朋友分不到8个苹果,就是苹果数﹣8(x﹣1)大于0,并且小于8,根据不等关系就可以列出不等式【答案】解:设有x人,则苹果有(5x+12)个,由题意得:0<5x+12﹣8(x﹣1)<8,故选:C.【点睛】此题主要考查由实际问题抽象出一元一次不等式组,关键是正确理解题意,找出题目中的不等关系.【变式2-2】(2019春•肥城市期中)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队预计在2016﹣2017赛季全部32场比赛中最少得到48分,才有希望进入季后赛.假设这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是()A.2x+(32﹣x)≥48 B.2x﹣(32﹣x)≥48C.2x+(32﹣x)≤48 D.2x≥48【分析】根据题意表示出胜与负所得总分数大于等于48,进而得出不等关系.【答案】解:这个队在将要举行的比赛中胜x场,要达到目标,x应满足的关系式是:2x+(32﹣x)≥48.【点睛】此题主要考查了由实际问题抽象出一元一次不等式,正确得出不等关系是解题关键.【变式2-3】(2019•江北区一模)某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A.3×5+3×0.8x≤27 B.3×5+3×0.8x≥27C.3×5+3×0.8(x﹣5)≤27 D.3×5+3×0.8(x﹣5)≥27【分析】设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.【答案】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x﹣5)≤27.故选:C.【点睛】本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.【考点3 解一元一次不等式】【方法点拨】解一元一次不等式组的步骤:(1)求出每个不等式的解集;(2)求出每个不等式的解集的公共部分;(一般利用数轴)(3)用代数符号语言来表示公共部分。
8.1.2不等式的基本性质1.2x ﹣4≥0的解集在数轴上表示正确的是( )A 、B 、C 、D 、2.在下列表示的不等式的解集中,不包括-5的是 ( )A.x ≤ 4B.x ≥ -5 C .x ≤ -6 D .x ≥ -73.不等式 -21x > 1 的解集是 ( ) A.x >-21 B .x >-2 C.x <-2 D.x < -21 4.已知x <y ,下列不等式成立的有 ( )①x -3<y -3 ②-5x < -6y ③-3x +2 <-3y +2 ④-3x +2 > -3y +2A.①②B.①③C.①④D.②③5.若不等式(m -2)x > n 的解集为x > 1,则m ,n 满足的条件是 ( )A.m = n -2 且 m >2B. m = n - 2 且 m < 2C.n = m -2 且 m >2D. n = m -2且 m < 26.在二元一次方程12x +y = 8中,当 y <0 时,x 的取值范围是 ( )A. x < 32B. x >- 32C. x > 32D. x <- 32 7.不等式5(x – 1)< 3x + 1 的解集是8.若关于x 的方程kx – 1 = 2x 的解为正实数,则k 的取值范围是9.已知关于x 的不等式x – m <1的解集为x <3,则m 的值为10.解下列不等式:(1)21-x < 354-x (2)- 31+x > 3(3)2 -24+x ≥ 31x - (4)1- 23-y > 3 + 4y(5)21-x - 312+x < 6x (6)25+x - 1 < 223+x11.已知不等式5x -2 < 6x +1的最小正整数解是方程 3x - 23ax = 6的解,求 a 的值。
专题10不等式基本性质1.设{}2560,A x x x x R =--=∈,{}260,B x mx x x R =-+=∈,且A B B ⋂=,则m 的取值范围为 . 【难度】★★【答案】1024m m >=或2.设集合{}{}2135,322,A x a x a B x x A B =+≤≤-=≤≤⊆恒成立,则实数a 的取值范围为 . 【难度】★★ 【答案】(,9]-∞3.设全集{}R y x y x U ∈=,|),(,⎭⎬⎫⎩⎨⎧∈=--=,,,123|),(R y x x y y x A ,{}R y x x y y x B ∈+==,,1|),(,则UC AB =.热身练习【难度】★★ 【答案】(){}2,3⎧⎪⎪⎨⎪⎪⎩基本性质比较大小不等式基本性质不等式范围问题不等式综合1.不等式的性质(1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇔a +c >b +d ;知识梳理模块一:(4)可乘性:a>b,c>0⇔ac>bc;a>b,c<0⇔ac<bc;a>b>0,c>d>0⇔ac>bd;(5)可乘方:a>b>0⇔a n>b n(n⇔N,n≥2);(6)可开方:a>b>0⇔na>nb(n⇔N,n≥2);(7) a>b,ab>0⇔11a b<;a>b>0,0<c<d⇔a b c d>.【例1】判断下列命题的真假。
(1)若a>b,那么ac>2bc2。
()(2)若ac>2bc2,那么a>b。
()(3)若a>b,c>d,那么a-c>b-d。
励志长廊:打开失败旁边的窗户,也许你就看到了希望。
寒假作业之六 不等式的基本性质(答案)学习目标及导航预习课本P 7—10内容,弄懂例1、例2的解题思路和步骤。
等式基本性质1:等式的两边都加上(或减去)同一个整式,等式仍旧成立。
等式基本性质2:等式的两边都乘以(或除以)同一个不为0的数,等式仍旧成立。
不等式基本性质1:不等式的两边都加上(或减去)同一个整式,不等号的方向不变。
不等式基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。
不等式基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。
题型归类:不等式的基本性质的简单应用:1. 将下列不等式化成“x a >”或“x a <”的形式. (1)51x -<;(2)34x x >-; (3)132x >-;(4)52x -<-.答案:解:(1)根据不等式的基本性质1,两边都加上5,得15x <+,即6x <. (2)根据不等式的基本性质1,两边都减去x ,得34x x ->-,即24x >-. 根据不等式的基本性质3,两边都除以2,得2x >-. (3)根据不等式的基本性质2,两边都乘以2,得6x >-. (4)根据不等式的基本性质3,两边都除以5-,得25x >.不等式的基本性质的综合应用: 2.(1)若a <b ,则-3a +1________-3b +1. (2)若-35x >5,则x ________-3.答案:(1)>;(2)<;必做题目:1. 如果b a <,则下面不等式错误的是( B )A.b a 66<B.34+<+b aC.33-<-b aD.22b a ->-2.已知x >y 且xy <0,a 为任意实数,下列式子正确的是( C )A.-x >yB.a 2x >a 2y C.a -x <a -y D.x >-y 3.若a +3>b +3,则下列不等式中错误的是( B ) A.-55b a -< B.-2a >-2b C.a -2<b -2 D.-(-a )>-(-b )4.若a >b ,c <0,则下列不等式成立的是( B )A.ac >bcB.cb c a < C.a -c <b -c D.a +c <b +c5.根据不等式的基本性质,把下列不等式化成x a >或x a <的形式. (1)100x ->; (2)162x x >-; (3)350x +<;(4)125x -<-.答案:(1)10x <(2)12x >- (3)53x <-(4)10x >6.如果3415x -<,那么3154x <+,其根据是 ,如果33a b ->-ππ,则a b <,其根据是 .答案:不等式的基本性质1,不等式的基本性质3. 7.用“<”或“>”号填空. ①已知a <b<0,则-a ______-b ;a1______b1;②若a >b ,则a -6______b -6;③若a <b ,c ≠0,则-ac 2______-bc 2. 答案:①> > ②> ③>;8.若0a b >>,则b a - 0,22a b - 0答案:<>>,, 9.若2x >时,化简|2|x -= .解:由2x >,得2x <.20x ∴-<.|2|(2)2x x x ∴-=--=-.选做题目:1.方程组3133x y k x y +=+⎧⎨+=⎩,的解为x y ,,且24k <<,则x y -的取值范围是( )A .102x y <-< B .01x y <-< C .31x y -<-<- D .11x y -<-<解:方程组中两个方程相减得222x y k -=-.22k x y -∴-=.24k << , 022k ∴<-<,2012k -<<.01x y ∴<-<.应选B .2.已知x y x x y y ->+<,,则下列不等式中正确的是( ) A .0xy < B .x y > C .0x y +> D .0x y -<解:由x y x x y y ->+<,,得00y x -><,. 00y x ∴<<,.000xxy x y y ∴>>+<,,. 000xxy x y y∴>>+<,,.x y< 不一定成立.0x y ∴-<也不一定成立.综上,0x y >.应选B .3.若实数1a >,比较实数M a =,23a N +=,213a P +=的大小关系,并说明原因。
不等式与不等式组一、知识要点概述1、不等式的基本性质(1)不等式的两边都加上(或减去)同一个数或同一个整式不等号的方向不变.(2)不等式的两边都乘以(或除以)同一个正数,不等号的方向不变.(3)不等式的两边都乘以(或除以)同一个负数,不等号的方向改变.2、不等式(组)的解法(1)解一元一次不等式和解一元一次方程相类似,但要特别注意不等式的两边都乘以(或除以)同一个负数时,不等号的方向必须改变.(2)解不等式组一般先分别求出不等式组中各个不等式的解集,再求出它们的公共部分,就得到不等式组的解集.(3)设a<b,那么:①不等式组的解集是x>b(大大取大);②不等式组的解集是x<a(小小取小);③不等式组的解集是a<x<b(大小、小大中间找);④不等式组的解集是空集(大大、小小题无解).3、不等式(组)的应用会列一元一次不等式(组)解决实际问题,其步骤是:(1)找出实际问题的不等关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.二、典例剖析例1、(1)已知不等式3x-a≤0的正整数解恰是1,2,3,则a的取值范围是________.(2)已知关于x的不等式组无解,则a的取值范围是________.分析:对于(1),由题意知不等式的解在x<4的范围内;对于(2),从数轴上看,原不等式组中两个不等式的解集无公共部分.解:(1)由题意得,∴9≤a<12.(2)由(1)得x>a,由(2)得x≤3,因不等式组无解,∴a≤3.说明:确定不等式(组)中参数的取值或范围常用的方法有:(1)逆用不等式(组)解集确定;(2)分类讨论确定;(3)借助数轴确定.例2、解下列关于x的不等式(组).(1)|x-2|≤2x-10;(2)(2mx+3)-n<3x.分析:对于(1)确定“零界点”x=2(令x-2=0得x=2)分x≥2和x<2,去掉绝对值后求出不等式的解集;对于(2),化为ax<b的形式,再就a的正负性讨论.说明:涉及未知系数或绝对值式子的题目,均可用零点分段讨论法解答.例3、已知3a+2b-6=ac+4b-8=0且a≥b>0求c的取值范围.分析:消去a,b得到关于c的不等式组,解不等式组得c的取值范围.分析:已知不等式组的解集,求某些字母的值(或范围)是不等式组解集确定方法的逆向应用,处理这类问题时,可先求出原不等式组含有字母的解集,然后对照已知“对号入座”,应取有针对性的方法.例6、东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠方法:甲:买一支毛笔就赠送一本书法练习本;乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10支,书法练习本x(x≥10)本.(1)写出每种优惠办法实际付款金额y甲(元)、y乙(元)与x(本)之间的关系式;(2)比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;(3)如果商场允许可以任意选择一种优惠办法购买,也可以同时用两种优惠办法购买,请你就购买这种毛笔10支和书法练习本60本设计一种更省钱的购买方案.分析:(2)中比较哪种优惠办法更省钱与购买练习本的数量有关,因此应分类讨论;(3)中因为可同时用两种优惠办法购买,所以需要重新建立关于毛笔枝数的关系式求解.解:(1)依题意,可得y甲=25×10+5(x-10)=5x+200(x≥10);y乙=(25×10+5x)×90%=4.5x+225(x≥10)(2)由(1)有y甲-y乙=0.5x-25当y甲-y乙=0时,解得x=50;当y甲-y乙>0时,解得x>50;当y甲-y乙<0时,解得x<50.所以,当购买50本书法练习本时,两种优惠办法的实际付款一样,即可任选一种办法付款,当购买本数在10~50之间时,选择优惠办法甲付款更省钱;当购买本数大于50本时,选择优惠办法乙更省钱.(3)①因为60>50,由(2)知不考虑单独选用优惠办法甲购买.若只用优惠办法乙购买10支毛笔和60本书法练习本需付款(25×10+5×60)×90%=495(元)②若用优惠办法乙购买m支毛笔,则须用优惠办法甲购买(10-m)支毛笔,用优惠办法乙购买60-(10-m)=m+50本书法练习本,设付款总金额为P,则:P=25(10-m)+[25m+5(m+50)]×90%=2m+475(0≤m≤10)所以,当m=0即用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本时,P取得最小值为:2×0+475=475(元)故选用优惠办法甲购买10支毛笔,再用优惠办法乙购买50本书法练习本的方案最省钱.例7、我市某化工厂现有甲种原料290kg,乙种原料212kg,计划利用这两种原料生产A、B 两种产品共80件,生产一件A产品需要甲种原料5kg,乙种原料1.5kg,生产成本是120元;生产一件B产品,需要甲种原料2.5kg,乙种原料3.5kg,生产成本是200元.(1)该化工厂现有的原料能否保证生产?若能的话,有几种生产方案?请你设计出来.(2)设生产A、B两种产品的总成本为y元,其中一种生产的件数为x,试写出y与x之间的关系式,并利用关系式说明(1)中哪种生产方案总成本最低?最低生产总成本是多少?分析:若设安排生产A种产品x件,根据题意可建立关于x的不等式组,解出不等式组得x 的取值范围.由x为整数在取值范围内确定x的取值,从而得出生产方案,然后由成本的已知条件求出x与y之间的关系式,根据此关系式求出最低生产总成本.解:(1)设安排生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:解得:34≤x≤36因为x为整数,所以x只能取34或35或36.所以该工厂现有的原料能保证生产,有三种生产方案:第一种:生产A种产品34件,B种产品46件;第二种:生产A种产品35件,B种产品45件;第三种:生产A种产品36件,B种产品44件.(2)设生产A种产品x件,则生产B种产品(80-x)件,依题意,可得:y=120x+200(80-x)即y=-80x+16000(x取34或35或36)由式子可知,当x取最大值36时,y取最小值为-80×36+16000=13120元,即第三种方案;生产A种产品36件,B种产品44件,总成本最低,最低生产成本是13120元.说明:利用列不等式组然后求出不等式组的集,在其解集内求出符合条件(一般是整数)的值,是解方案设计型应用题的常用方法.方程与方程组一、知识要点概述1、等式和方程的有关概念、等式的基本性质.2、一元一次方程的解法及最简方程ax=b解的三种情况.(1)解一元一次方程的一般步骤是去分母、去括号、移项、合并同类项和将未知数的系数化为1.(2)最简方程ax=b的解有以下三种情况:①当a≠0时,方程有唯一解;②当a=0,b≠0时,方程无解.③当a=0,b=0时,方程有无穷多解.3、一元二次方程的一般形式是ax2+bx+c=0(a≠0)其解法主要有:直接开平方法、配方法、因式分解法、求根公式法.4、一元二次方程ax2+bx+c=0(a≠0)的求根公式是:注意:求根公式成立的条件为:①a≠0;②b2-4ac≥0.5、一元二次方程ax2+bx+c=0(a≠0)的根的判别式是△=b2-4ac.当△>0时,方程有两个不相等的实数根.当△=0时,方程有两个相等的实数根,即;当△<0时,方程没有实根,反之成立.6、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则7、以两数α、β为根的一元二次方程(二次项系数为1)是x2-(α+β)x+αβ=0.8、解一次方程组的基本思想是消元,常用的消元方法是加减消元法和代入消元法.9、解简单的二元二次方程组的基本思想是“消元”与“降次”.①若方程组中有一个是一次方程,则一般用代入消元法求解;②若方程组中有能分解成两个一次方程的方程,则一般用“分解降次”的方法将原方程组化为两个或四个方程组求解.10、简单的分式方程组的解法,一般是用去分母或换元法将其转化为整式方程组求解,并要验解.11、方程组的解的存在性问题,一般转化为方程的解的存在性问题来研究.二、典例剖析点评:灵活解一元一次方程时常用到以下方法技巧.(1)若括号内有分数时,则由外向内先去括号,再去分母;(2)若有多重括号,则去括号与合并同类项交替进行;(3)恰当用整体思想.例2、解下列关于x的方程.(1)4x+b=ax-8(a≠4)(2)mx-1=nx(3)分析:把方程化为一般形式后,再对每个方程中字母系数可能取值的情况进行讨论.例4、已知m是整数,方程组有整数解,求m的值.分析:先求出y,运用整除的性质求出m的值,需注意所求的整数m要使得x也为整数.解:由原方程组解得,若y有整数解,则2m+9=±1或±2或±17或±34,经检验当2m+9=±1或±17时,m为整数且x也为整数,得m=4或-4或-5或-13.例5、已知关于x的一元二次方程有两个不等的实数根.(1)求m的取值范围;例7、解下列方程(2)3x2+x-7=0分析:对于(1)首先应回避复杂的小数运算,注意此时只运用分数的基本性质而未用到等式有关性质.对于(2)此方程用分解因式法难以行通,故考虑用求根公式.解:(1)原方程化简得方程两边都乘以12(即去分母)得3(35x-5)=4(5-x)-6(25x+5)去括号得:105x-15=20-4x-150x-30移项及合并同类项得:259x=5例8、如果关于x的一元二次方程kx2-2(k+2)x+k+5=0没有实根,试说明关于x的方程(k-5)x2-2(k+2)x+k=0必有实数根.分析:由一元二次方程kx2-2(k+2)x+k+5=0没有实数根,可以得出k≠0,b2-4ac<0,从而求出k的取值范围,再由k的取值范围来说明(k-5)x2-2(k+2)x+k=0必有实数根.解:∵关于kx2-2(k+2)x+k+5=0没有实数根,解得k>4当k=5时,方程(k-5)x2-2(k+2)x+k=0为一元一次方程,-14x+5=0,此时方程的根为.当k≠5时,方程(k-5)x2-2(k+2)x+k=0为一元二次方程∴△=[-2(k+2)]2-4(k-5)·k=4(9k+4)∵k>4且k≠5,∴△=4(9k+4)>0∴此时方程必有两不等实数根,综上可知方程(k-5)x2-2(k+2)x+k=0必有实数根.点评:(1)方程“有实数根”与“有两个实数根”有着质的区别.方程“有实数根”表示方程可能为一元一次方程,此时方程有一实数根,方程也可能为一元二次方程,此时方程有两个实数根,而方程“有两个实数根”,则表示此时方程一定为一元二次方程.点评:构造一元二次方程是解题的常用技巧,构造的主要方法有:(1)当已知等式具有相同的结构,就可以把两个变元看成关于某个字母的一元二次方程;(2)对于含有多个变元的等式,可以将等式整理为关于某个字母的一元二次方程.分式方程一、知识要点概述1、分式方程:分母中含有未知数的有理方程叫分式方程.2、解分式方程的基本思想方法是:3、解分式方程必须验根.二、典型例题剖析例1、解方程.分析:根据解分式方程的一般步骤来解此题.解:方程两边同乘以(x+3)(x-2)得:10+2(x-2)=(x+3)(x-2)化简,整理得:x2-x-12=0解之得x1=-3或x2=4经检验可知:x1=-3是原方程的增根,x2=4是原方程的根.∴原方程的根是x=4.分析:用换元法解这些分式方程.解:(1)设x2-x=y,则原方程变为解这个方程得y1=-2,y2=6,当y1=-2时,x2-x=-2,此方程无解;当y2=6时,x2-x=6,∴x1=-2,x2=3.经检验可知:x1=-2,x2=3都是原方程的根.∴原方程的解为x1=-2,x2=3.例3、当m为何值时,关于x的方程无实根?分析:先将分式方程化为整式方程,如果整式方程有实根,那么这些根均是原方程的增根,这样x=0或x=1是所得整式方程的根,如果整式方程无实根,那么原方程也无实根.解:原方程去分母,整理得:x2-x+2-m=0①(1)若方程①有实根,根据题意知,方程①的根为x=0或x=1.把x=0或x=1代入方程①得m=2.而x=0或x=1是原方程的增根.∴当m=2时原方程无实根.(2)若方程(1)无实根,则△=(-1)2-4(2-m)<0解之得∴当时,原方程无实根.综合之,当m=2或时,原方程无实根.例4、若方程有增根,试求m的值.分析:分式方程将会产生增根,即最简公分母x2-4=0,故方程产生增根有两种可能:x1=2,x2=-2.由增根的定义知:x1=2,x2=-2是原分式方程去分母化成整式方程的根,由根的定义即可求出m的值.解:将原方程去分母得:2(x+2)+mx=3(x-2)整理得:(m-1)x=-10 (1)∵原方程有增根,∴x2-4=0∴x1=2,x2=-2.将x1=2代入(1)得2(m-1)=-10∴m=-4将x2=-2代入(1)得-2(m-1)=-10∴m=6所以m的值为-4或6.点评:(1)增根的求法:令最简公分母为0;(2)求有增根的方程中参数的值,应先求出可能的增根,再将其代入化简后的整式方程即可.例5、已知a2-a-1=0且求x的值.分析:为求x的值,须将x与a2分离,联想到分式的基本性质,从而原等式含,这样应从条件出发构造倒数关系.解:。