WKT-E 无线电波透视仪
- 格式:ppt
- 大小:2.11 MB
- 文档页数:25
无线电波坑道透视法一、无线电波坑道透视法的定义无线电波坑道透视法(又称坑透法)是一种电磁波探测方法。
是在钻孔或坑道中,利用无线电波在岩、矿媒质传播过程中观测到的一些现象,来探测地下目标物的一种方法。
由于电磁波在煤层中传播时,不同电阻率的介质对电磁波的吸收不同,电阻率小的介质,对无线电波吸收强,接收到的无线电波强度就小,和理论场强相比较,会形成“阴影区”。
根据“阴影区”的情况,就可以判断出地质异常体的存在。
二、无线电波坑道透视法的基本原理电磁波在地下岩层中传播时,由于各种岩、矿石电性(电阻率P和介电常数ε)的不同,它们对电磁波能量吸收不同,低阻岩层对电磁波具有较强的吸收作用,当波在前进方向遇到断裂构造所出现的界面时,电磁波将在界面上产生反射和折射作用,从而造成能量的损耗。
在实际工作中,电磁波在穿过煤层途中遭到断层、陷落柱或其它构造时,波能量被吸收或完全被屏蔽,则在接收巷道收到微弱信号或收不到透射信号,形成所谓的透视异常(又称阴影异常)。
研究采区煤层、各种构造及地质体对电磁波的影响所造成的各种无线电波透视异常,从而进行地质推断和解释,这就是无线电波透视的基本工作原理。
三、无线电波坑道透视技术的应用范围应用无线电波透视技术,可以对煤层的地质构造、煤层的赋存与煤层结构等方面做较系统的探测研究,通过在两条巷道对工作面进行探测的实践证明,该项技术目前能探测的范围及精度为:1、探测煤层中落差大于三分之一煤层厚度的断层;2、探测富含水区域的大致范围;3、探测煤层顶底板起伏变化情况,起伏变化的幅度大于三分之一的煤层厚度;4、探测陷落柱,直径大于10米以上。
就晋城矿区而言,通过多年的实践,坑透可以达到的探测目的包括:1、探测出工作面煤层中长轴大于20m的陷落柱。
2、探测出工作面煤层中落差大于或等于1/3煤层厚度的断层。
3、探测出工作面煤层中大于等于1/3煤厚的冲刷带、煤层变薄带及无煤区。
四、无线电波坑道透视法的特点和局限性1、特点:⑴仪器轻便,接收机与发射机一般都在5kg左右,加上辅助设备总重要也不很大,有利于在煤矿井下工作。
无线电波透视仪工操作规程一、上岗条件1、按技术要求,完成相应的物探作业。
2、上岗前必须经过安全技术培训,考试合格后,方可上岗。
3、认真操作设备,准确记录数据,核实技术资料。
3、熟练掌握所有工具、设备和材料的性能、工作原理、操作方法以安全注意事项。
4、无线电波透视仪必须实行“一人操作、二人监护”制,必须熟练掌握无线电波透视仪的性能,原理及岗位操作规程。
5、升井后及时计算机出图完善物探资料。
二、岗位职责1、按时进入工作地点,向上级人员详细了解设备工作情况及本班工作注意事项和遗留问题。
2、查看上次的记录台账。
3、下班前整理好当班的各种运行记录,清点工具、材料、配件。
三、岗位知识技能操作启动前准备(一)开机开机前应先按下“复位”键(不松开),再开启电源开关,然后松开“复位”键。
此时接收机先后显示:“Ε- - ××”(仪器型号、当前频率)“×××××.×”(当前频率和当前接收值或叫开机状态)(二)原有数据处理在“×××××.×”(当前频率和当前接收值或叫开机状态)状态下键入“有效”,接收机可能出现两种情况:1.接收机内存有数据,则显示- -TR- -。
对接收机内的原有数据可执行清零和不清零两种操作。
此时键入“清零”,接收机显示“4-C 1-CH”,按“1”不清零,按“4”清零,并用“有效”键确认之。
完成上述操作后,接收机显示:“PS 005”(此意为发射点号为005号),接收机在清除数据后频率自动到默认的0.5MHz。
2. 接收机内存没有数据,接收机直接显示:“PS 005”。
(三)频率设置按步骤①、②后,按“复位”键进入开机状态,按“重显/重写”键,接收机显示:“ 1-3 2-5 ”此时键入1则选中频率为0.3MHz; 键入2 则所选频率为0.5MHz;键入其它数字键则1.5MHz频率被选中,用户可根据需要选择所需频率。
NewView TM 600s SpecificationsZYGO CORPORATIONLAUREL BROOK ROAD • MIDDLEFIELD, CT 06455VOICE: 860 347-8506 • FAX: 860 346-4188•EMAIL:****************SS-0036 06/09 © 2009 Zygo Corporation SYSTEMMeasurementTechniqueNon-contact, three-dimensional, scanningwhite light interferometryScanner Closed-loop piezo-based, with highlylinear capacitive sensorsField of View 0.05 to 3.5 mm (0.002 to 0.138 in.);objective dependentIlluminator Integrated long-life white-light LED withcomputer-controlled light levelObjectiveMountingQuick mount single objective dovetailControls Optical Filter Tray and Focus AidMeasurementArray640x480; user-selectablePart Viewing On-screen live display standard;second LCD monitor optionalFine FocusStageMedium and fine manual control, with 1.2in. (30 mm) of travelCoarse Z-StageCoarse, large range manual control, with10 in. (250 mm) of travel; actual travel isconfiguration dependentDimensions(HWD)27.6 x 12 x 16.5 in.(702 x 300 x 420 mm) NewView onlyWeight ~70 lb (32 kg), including part stageInput Voltage 100/120/220/240 VAC, 50/60 HzComputer High-performance Pentium-based Dell PCwith LCD monitorSoftware ZYGO MetroPro software running underMicrosoft Windows XPA CCESSORIES (O PTIONS)Objectives Infiniteconjugateinterferometricobjectives; 2X, 2.5X, 5X, 10X, 20X, 50X,100X.Refer to the NewView Objective Chart forobjective specifications.Turrets • Manual 6-position turret• Motorized 6-position turretPart Stage • Manual Tip/Tilt/X/Y, with±6° tip/tilt, 4 in. (100 mm) x/y travelVibrationIsolationSystem• Table, 31 x 24 x 24 in. (HWD)(787 x 610 x 610 mm); weight ~600 lb(272 kg); requires compressed air at60 psi (4 bar) with 1/4 in. input hose• Platform, tabletop, 2.75 x 20 x 24 in.(HWD) (70 x 508 x 610 mm); includesair pumpWorktable • Wrap-around, 34 x 52 x 35 in. (HWD)(864 x 1321 x 889 mm); nests next tothe vibration isolation tableMeasurementStandards• Lateral Calibration Standard• Precision Lateral Calibration Standard• SiC Reference Flat• Step Height StandardsGREAT PHOTOGOES HEREP ERFORMANCEVertical ScanRange ≤ 150 µm (5906 µin)Vertical Res. < 0.1 nm (0.004 µin)Lateral Res. 0.36 to 5.18 µm (14.2 to 204 µin);objective dependentDataScan Rate ≤ 15 µm/sec (591 µin/sec)MaximumData Points307,200RMSRepeatability< 0.01 nm (0.0004 µin) RMSσStep Height Accuracy ≤ 0.75%Repeatability≤ 0.1% @ 1σT EST P ART C HARACTERISTICSMaterial Various surfaces: opaque, transparent,coated, uncoated, specular, andnonspecularReflectivity 1-100%ENVIRONMENTAL R EQUIREMENTSTemperature15 to 30°C (59 to 86°F)Rate ofTemp. Change<1.0°C (1.8°F) per 15 minHumidity 5 to 95% relative, noncondensingVibrationIsolationRequired for vibration frequencies in therange of 1 Hz to 120 Hz。
ISO9001:2000认证企业煤炭科学研究总院重庆分院产品使用说明书WKT-E具通讯功能无线电波透视仪感谢您选购本产品!为了保证安全并获得最佳效能,安装、使用产品前,请详细阅读本使用说明书并妥善保管,以备今后参考。
执行标准:Q/MKC 114—2005 版本号: 2.0版出版日期:2006-11-2006 编写:胡运兵方有令概述一、概述1.型号及名称使用环境条件及应用范围WKT-E具通讯功能无线电波透视仪型号的组成及其代表意义:使用环境条件及应用范围W K T – E编号透视坑道无线电波说明:WKT系列无线电波坑道透视仪从上世纪70年代开始在煤矿应用,WKT已被广大用户认同为无线电波坑道透视的专用词,无线电波坑道透视仪的型号从现在以至今后只在编号上改动, WKT不变。
2.系统组成WKT-E型具通讯功能无线电波坑道透视系统由便携式井下WKT-E型无线电波坑道透视仪和地面资料处理系统组成,见下图。
WKT-E型具通讯功能无线电波坑道透视仪由井下发射机、接收机、发射天线、接收天线、钻孔发射探头、钻孔接收探头及地面充电器组成;地面资料处理系统由计算机、打印机及软件系统等组成。
该系统整机重量轻;操作简单;仪器为数字显示;自动纪录和存储;并由分析软件处理成图。
仪器探测距离100~300M,最大350M。
获煤炭部科学技术进步二等奖。
WKT-E系列无线电波坑道透视系统3.应用情况WKT-E型无线电波坑道透视系统在全国已经推广应用了150多套。
除了西山、阳泉、大同、潞安、晋城、汾西、霍州、开滦、峰峰、邯郸、平顶山、义马、焦作、永城、徐州、淮北、淮南、皖北、新汶、兖州、肥城、铜川、韩城、神华、石炭井、石嘴山、靖远、乌海、鸡西、南桐、攀枝花等矿务局部分煤矿应用外,中国矿业大学、山东科技大学、焦作工业学院、淮南矿业学院、黑龙江矿业学院、西安工程学院、西安分院等院校购买该系统作为教学设备和工程探测设备。
4.使用环境条件及应用范围4.1 使用环境条件无线电波坑道透视是用来探测:顺煤层两煤巷、两钻孔或煤巷与钻孔之间的各种地质构造异常体。
ICS73.020D81备案号:MT 中华人民共和国煤炭行业标准MT/T 693—2021代替MT/T 693-1997矿用无线电波透视仪通用技术条件The general technical condition of the underground electromagnetic wave penetrator201X-XX-XX 发布201X-XX–XX 实施国家煤矿安全监察局发布目次前言 (II)1 范围 (1)2 规范性引用文件 (1)3 术语和定义 (1)4 型号、组成与防爆型式 (2)5 技术要求 (2)6 试验方法 (4)7 检验规则 (7)8 标志、包装、运输和贮存 (8)前言本标准按GB/T 1.1《标准化工作导则第1部分:标准的结构和编写》的要求进行编写。
请注意文件的某些内容可能涉及专利。
本文件的发布机构不承担识别这些专利的责任。
本标准是对MT/T 693-1997《矿用无线电波透视仪通用技术条件》的修订,本标准替代MT/T 693-1997。
本标准与MT/T 693-1997相比主要变化如下:a)删除GB3836.2-83爆炸性环境用防爆电气设备隔爆型电气设备“d”;b)增加术语和定义(见3);c)增加产品型号(见4.1);d)更改“大气压力 86~106 kPa”为“大气压力 80 kP a~110 kPa”(见5.2,1997年版3.2);e)增加工作频率“透视仪应至少具有3个可选工作频率。
”(见5.4.1);f)更改“频率稳定度优于5×10-5”为“工作频率偏差≤±25 Hz”(见5.4.1,1997年版3.9);g)更改“输出功率不小于1W,其输出功率的误差应不大于规定值的±10%”为“具体发射功率由防爆检验确定,其发射功率的误差应不大于产品规定值的±10%。
”(见5.4.2,1997年版3.9);h)增加“透视仪接收机灵敏度应优于0.03 μVrms”(见5.4.3);i)更改“透视仪接收机相邻两次的指示值绝对差应小于0.5 dB”为“透视仪接收机连续十次的测量值绝对差应小于测量范围的0.5%”(见5.4.4,1997年版3.10);j)更改“坑透仪应能连续工作3h”为“透视仪应能连续工作5 h以上”(见5.4.5,1997年版3.11);k)增加了“接收机显示功能”、“接收机数据存储功能”、“接收机数据传输功能”和“选频功能”要求(见5.5)。
建筑物对地面坑透实验电磁波信号的影响吴荣新;左汪会;肖玉林【摘要】为在地面模拟煤层工作面坑透探测,利用地面建筑物作为探测目标体,采用矿井工作面坑透探测的工作方法布置观测系统进行探测实验.结果表明:(1)穿过地面建筑物路径的电磁波场强值显著降低,建筑物的高低及结构不同,对电磁波信号影响程度不同;(2)建筑物范围在场强平面图上表现为较低的场强值,在电磁波吸收系数平面图上表现为较高的电磁波吸收系数值;(3)建筑物适用于作为探测目标体进行地面坑透实验.%In order to simulate coal face radiowave gallery penetration prospecting on ground surface, taking surface buildings as the tar-get, in accordance with mine working face radiowave gallery penetration working mode laid out field setup and carried out prospecting experiment. The result has shown that:(1) the field intensity values of electromagnetic wave pass through buildings have significant re-duction, buildings with different heights and structures have different impacting degrees on electromagnetic wave signal;( 2) on the field intensity plan, within the range of buildings shown lower field intensity values, on the electromagnetic wave adsorption coefficient plan shown higher adsorption coefficient values;(3) buildings are suitable to use as prospecting target to carry out ground surface radiowave gallery penetration experiment.【期刊名称】《中国煤炭地质》【年(卷),期】2017(029)001【总页数】4页(P69-72)【关键词】建筑物;坑透;电磁波;场强;工作面【作者】吴荣新;左汪会;肖玉林【作者单位】安徽理工大学地球与环境学院,安徽淮南 232001;安徽理工大学地球与环境学院,安徽淮南 232001;安徽理工大学地球与环境学院,安徽淮南 232001【正文语种】中文【中图分类】P631.3由于坑透具有工作效率高、探测精度高和费用低等特点,已成为在煤层工作面地质构造探测中广泛应用的矿井物探技术,很多煤矿企业要求所有煤层工作面均进行坑透探测,以查明工作面内的地质异常,为工作面的安全生产提供地质保障[1-8]。
煤与瓦斯突出预警方法探讨赵旭生;宁小亮;张庆华;马国龙【摘要】给出了煤与瓦斯突出预警的定义,明确指出了突出预警与预测的区别;从空间、时间和指标体系的角度对突出预警进行了分类,并根据突出灾害特点提出了突出预警应该具有的特征;以系统论和事故理论为指导,分析了突出预警系统构成和实现途径,并阐述了从警源监测、警兆识别、警情分析、警度发布和预警响应5个方面进行突出预警的步骤,同时给出了采用预警总准确率、漏报率和虚报率3个指标进行预警效果评价的方法.现场应用结果表明,所提突出预警方法的平均状态预警总准确率为89.1%,平均趋势预警总准确率为92.5%,漏报率为0.%Definition of early warning of coal and gas outburst was given,and difference between the early warning and forecasting was clearly pointed out.The early warning of coal and gas outburst was classified from angle of space,time and index system,and features of the early warning were put forward according to specific characteristics of coal and gas outburstdisaster.System structure and implementation of the early warning were analyzed guided by system theory and accident theory.Steps of the early warning were described from five aspects of detection of risksource,warning sign identification,analysis of warning situation,alert release and early warning response.Method of effect evaluation of the early warning was put forward by using three indicators of initial warning accuracy,false negative rate and false alarm rate.The field application results show that the average accuracy rate of state warning is 89.1%,theaverage accuracy rate of trend warning is 92.5 %,and the false negative rate is 0.【期刊名称】《工矿自动化》【年(卷),期】2018(044)001【总页数】5页(P6-10)【关键词】煤与瓦斯突出;突出预警;预警分类;平均状态预警总准确率;平均趋势预警总准确率;漏报率【作者】赵旭生;宁小亮;张庆华;马国龙【作者单位】中煤科工集团重庆研究院有限公司,重庆 400039;瓦斯灾害监控与应急技术国家重点实验室,重庆400037;中煤科工集团重庆研究院有限公司,重庆400039;瓦斯灾害监控与应急技术国家重点实验室,重庆400037;中煤科工集团重庆研究院有限公司,重庆 400039;瓦斯灾害监控与应急技术国家重点实验室,重庆400037;中煤科工集团重庆研究院有限公司,重庆 400039;瓦斯灾害监控与应急技术国家重点实验室,重庆400037【正文语种】中文【中图分类】TD713【编者按】煤与瓦斯突出是煤炭开采过程中产生的瓦斯动力现象,对煤矿安全生产危害很大。