当前位置:文档之家› 6、因动点问题产生的面积问题

6、因动点问题产生的面积问题

6、因动点问题产生的面积问题
6、因动点问题产生的面积问题

1.6 因动点产生的面积问题

例1 2013年苏州市中考第29题

如图1,已知抛物线2

12

y x bx c =

++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0).

(1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示);

(2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式;

(3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S .

①求S 的取值范围;

②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个.

图1

满分解答

(1)b =1

2

c +

,点B 的横坐标为-2c . (2)由2111

()(1)(2)222

y x c x c x x c =+++=++,设E 1(,(1)(2))2x x x c ++.

过点E 作EH ⊥x 轴于H .

由于OB =2OC ,当AE //BC 时,AH =2EH .

所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --.

当C 、D 、E 三点在同一直线上时,

EH CO DH DO =.所以1212

c c

c --=

--. 整理,得2c 2+3c -2=0.解得c =-2或1

2

c =(舍去).

所以抛物线的解析式为213

222

y x x =--.

(3)①当P 在BC 下方时,过点P 作x 轴的垂线交BC 于F . 直线BC 的解析式为1

22

y x =-. 设213(,2)2

2P m m m -

-,那么1(,2)2F m m -,21

22

FP m m =-+. 所以S △PBC =S △PBF +S △PCF =221

()24(2)42

B C FP x x FP m m m -==-+=--+.

因此当P 在BC 下方时,△PBC 的最大值为4.

当P 在BC 上方时,因为S △ABC =5,所以S △PBC <5. 综上所述,0<S <5.

②若△PBC 的面积S 为正整数,则这样的△PBC 共有11个.

考点伸展

点P 沿抛物线从A 经过C 到达B 的过程中,△PBC 的面积为整数,依次为(5),4,3,2,1,(0),1,2,3,4,3,2,1,(0).

当P 在BC 下方,S =4时,点P 在BC 的中点的正下方,F 是BC 的中点.

例 2 2012年菏泽市中考第21题

如图1,在平面直角坐标系中放置一直角三角板,其顶点为A (0, 1)、B (2, 0)、O (0, 0),将此三角板绕原点O 逆时针旋转90°,得到三角形A ′B ′O .

(1)一抛物线经过点A ′、B ′、B ,求该抛物线的解析式;

(2)设点P 是第一象限内抛物线上的一个动点,是否存在点P ,使四边形PB ′A ′B 的面积是△A ′B ′O 面积的4倍?若存在,请求出点P 的坐标;若不存在,请说明理由;

(3)在(2)的条件下,试指出四边形PB ′A ′B 是哪种形状的四边形?并写出它的两条性质.

图1

满分解答

(1)△AOB 绕着原点O 逆时针旋转90°,点A ′、B ′的坐标分别为(-1, 0) 、(0, 2). 因为抛物线与x 轴交于A ′(-1, 0)、B (2, 0),设解析式为y =a (x +1)(x -2), 代入B ′(0, 2),得a =1.

所以该抛物线的解析式为y =-(x +1)(x -2) =-x 2+x +2. (2)S △A ′B ′O =1.

如果S 四边形PB ′A ′B =4 S △A ′B ′O =4,那么S 四边形PB ′OB =3 S △A ′B ′O =3. 如图2,作PD ⊥OB ,垂足为D . 设点P 的坐标为 (x ,-x 2+x +2).

232'1111

(')(22)22222PB OD S DO B O PD x x x x x x =+=-++=-++梯形. 2321113

(2)(2)22222

PDB

S DB PD x x x x x ?=?=--++=-+. 所以2'''2+2PDB PB A D PB OD S S S x x ?=+=-+四边形梯形. 解方程-x 2+2x +2=3,得x 1=x 2=1.

所以点P 的坐标为(1,2).

图2 图3 图4

(3)如图3,四边形PB ′A ′B 是等腰梯形,它的性质有:等腰梯形的对角线相等;等腰梯形同以底上的两个内角相等;等腰梯形是轴对称图形,对称轴是经过两底中点的直线.

考点伸展

第(2)题求四边形PB ′OB 的面积,也可以如图4那样分割图形,这样运算过程更简单.

'11

'222PB O P S B O x x x ?=?=?=. 2211

2(2)222

PBO

P S BO y x x x x ?=?=?-++=-++. 所以2'''2+2PB O PBO PB A D S S S x x ??=+=-+四边形.

甚至我们可以更大胆地根据抛物线的对称性直接得到点P :

作△A ′OB ′关于抛物线的对称轴对称的△BOE ,那么点E 的坐标为(1,2).

而矩形EB ′OD 与△A ′OB ′、△BOP 是等底等高的,所以四边形EB ′A ′B 的面积是△A ′B ′O 面积的4倍.因此点E 就是要探求的点P .

例 3 2012年河南省中考第23题

如图1,在平面直角坐标系中,直线112

y x =

+与抛物线y =ax 2

+bx -3交于A 、B 两点,点A 在x 轴上,点B 的纵坐标为3.点P 是直线AB 下方的抛物线上的一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点C ,作PD ⊥AB 于点D .

(1)求a 、b 及sin ∠ACP 的值; (2)设点P 的横坐标为m .

①用含m 的代数式表示线段PD 的长,并求出线段PD 长的最大值;

②连结PB ,线段PC 把△PDB 分成两个三角形,是否存在适合的m 的值,使这两个三角形的面积比为9∶10?若存在,直接写出m 的值;若不存在,请说明理由.

图1

满分解答

(1)设直线1

12

y x =

+与y 轴交于点E ,那么A (-2,0),B (4,3),E (0,1). 在Rt △AEO 中,OA =2,OE =1,所以5AE =.所以25

sin 5

AEO ∠=. 因为PC //EO ,所以∠ACP =∠AEO .因此25

sin 5

ACP ∠=

. 将A (-2,0)、B (4,3)分别代入y =ax 2+bx -3,得4230,

1643 3.a b a b --=??+-=?

解得12a =

,12

b =-. (2)由211(,3)22P m m m --,1

(,1)2

C m m +,

得221111

(1)(3)42222

PC m m m m m =+---=-++.

所以2225251595

sin (4)(1)55255

PD PC ACP PC m m m =∠==-++=--+

. 所以PD 的最大值为

955

. (3)当S △PCD ∶S △PCB =9∶10时,52

m =; 当S △PCD ∶S △PCB =10∶9时,329

m =

图2

考点伸展

第(3)题的思路是:△PCD 与△PCB 是同底边PC 的两个三角形,面积比等于对应高DN 与BM 的比.

而252511

cos cos (4)(2)(4)5525

DN PD PDN PD ACP m m m m =∠=∠=?-++=-+-,

BM =4-m .

①当S △PCD ∶S △PCB =9∶10时,19(2)(4)(4)510m m m -+-=-.解得5

2m =.

②当S △PCD ∶S △PCB =10∶9时,110(2)(4)(4)59

m m m -+-=-.解得32

9m =.

例 4 2011年南通市中考第28题

如图1,直线l 经过点A (1,0),且与双曲线m

y x

=

(x >0)交于点B (2,1).过点(,1)P p p -(p >1)作x 轴的平行线分别交曲线m y x =(x >0)和m

y x

=-(x <0)于M 、N 两点.

(1)求m 的值及直线l 的解析式;

(2)若点P 在直线y =2上,求证:△PMB ∽△PNA ;

(3)是否存在实数p ,使得S △AMN =4S △AMP ?若存在,请求出所有满足条件的p 的值;若不存在,请说明理由.

图1

满分解答

(1)因为点B (2,1)在双曲线m

y x

=

上,所以m =2.设直线l 的解析式为y kx b =+,代入点A (1,0)和点B (2,1),得0,2 1.k b k b +=??+=? 解得1,1.

k b =??

=-? 所以直线l 的解析式为

1y x =-. (2)由点(,1)P p p -(p >1)的坐标可知,点P 在直线1y x =-上x 轴的上方.如图2,

当y =2时,点P 的坐标为(3,2).此时点M 的坐标为(1,2),点N 的坐标为(-1,2).

由P (3,2)、M (1,2)、B (2,1)三点的位置关系,可知△PMB 为等腰直角三角形. 由P (3,2)、N (-1,2)、A (1,0)三点的位置关系,可知△PNA 为等腰直角三角形. 所以△PMB ∽△PNA .

图2 图3 图4

(3)△AMN 和△AMP 是两个同高的三角形,底边MN 和MP 在同一条直线上. 当S △AMN =4S △AMP 时,MN =4MP .

①如图3,当M 在NP 上时,x M -x N =4(x P -x M ).因此222()4(1)x x x x ????--=-- ? ?????.解

得1132x +=

或1132x -=(此时点P 在x 轴下方,舍去).此时113

2

p +=. ②如图4,当M 在NP 的延长线上时,x M -x N =4(x M -x P ).因此

222

()4(1)x x x x ????--=-- ? ?????

.解得152x +=或152x -=(此时点P 在x 轴下方,舍去).此时15

2

p +=

考点伸展

在本题情景下,△AMN 能否成为直角三角形?

情形一,如图5,∠AMN =90°,此时点M 的坐标为(1,2),点P 的坐标为(3,2). 情形二,如图6,∠MAN =90°,此时斜边MN 上的中线等于斜边的一半. 不存在∠ANM =90°的情况.

图5 图6

例5 2010年广州市中考第25题

如图1,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1).点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线1

2

y x b =-

+交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究四边形O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由.

满分解答

(1)①如图2,当E 在OA 上时,由1

2

y x b =-+可知,点E 的坐标为(2b ,0),OE =2b .此时S =S △ODE =

11

2122

OE OC b b ?=??=. ②如图3,当E 在AB 上时,把y =1代入1

2y x b =-+可知,点D 的坐标为(2b -2,1),CD =2b -2,BD =5-2b .把x =3代入12y x b =-+可知,点E 的坐标为3

(3,)2

b -,AE

=32b -,BE =5

2

b -.此时

S =S 矩形OABC -S △OAE - S △BDE -S △OCD

=13151

33()()(52)1(22)22222b b b b -

?-----??- 25

2

b b =-+.

(2)如图4,因为四边形O 1A 1B 1C 1与矩形OABC 关于直线DE 对称,因此DM =DN ,那么重叠部分是邻边相等的平行四边形,即四边形DMEN 是菱形.

作DH ⊥OA ,垂足为H .由于CD =2b -2,OE =2b ,所以EH =2.

设菱形DMEN 的边长为m .在Rt △DEH 中,DH =1,NH =2-m ,DN =m ,所以12+(2-m )2=m 2.解得54

m =

.所以重叠部分菱形DMEN 的面积为54.

图2 图3 图4

考点伸展

把本题中的矩形OABC 绕着它的对称中心旋转,如果重叠部分的形状是菱形(如图5),那么这个菱形的最小面积为1,如图6所示;最大面积为

5

3

,如图7所示.

图5 图6 图7

例 6 2010年扬州市中考第28题

如图1,在△ABC 中,∠C =90°,A C =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y .

(1)求线段AD 的长;

(2)若EF ⊥AB ,当点E 在斜边AB 上移动时,

①求y 与x 的函数关系式(写出自变量x 的取值范围); ②当x 取何值时,y 有最大值?并求出最大值.

(3)若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.

图1 备用图

满分解答

(1) 在Rt △ABC 中, AC =3,BC =4,所以AB =5.在Rt △ACD 中,

39

cos 355

AD AC A ==?=.

(2) ①如图2,当F 在AC 上时,905x <<.在Rt △AEF 中,4

tan 3

EF AE A x ==.所以212

23

y AE EF x =

?=. 如图3,当F 在BC 上时,9

55

x <≤.在Rt △BEF 中,3

tan (5)4

EF BE B x ==-.所以21315288

y AE EF x x =

?=-+. ②当905x <<时,223y x =的最大值为54

25

当955x <≤时,231588y x x =-+23575)8232x =--+(的最大值为7532

. 因此,当52x =时,y 的最大值为75

32

图2 图3 图4

(3)△ABC 的周长等于12,面积等于6.

先假设EF 平分△ABC 的周长,那么AE =x ,AF =6-x ,x 的变化范围为3<x ≤5.因

此1142sin (6)(6)2255AEF S AE AF A x x x x ?=

??=-?=--.解方程2

(6)35

x x --=,得1

362

x =±

. 因为1

362

x =+在3≤x ≤5范围内(如图4)

,因此存在直线EF 将△ABC 的周长和面积同时平分.

考点伸展

如果把第(3)题的条件“点F 在直角边AC 上”改为“点F 在直角边BC 上”,那么就不存在直线EF 将△ABC 的周长和面积同时平分.

先假设EF 平分△ABC 的周长,那么AE =x ,BE =5-x ,BF =x +1.

因此21133

sin (5)(1)(45)22510

BEF S BE BF B x x x x ?=??=-+?=---. 解方程2

3(45)310

x x ---=.整理,得2450x x -+=.此方程无实数根.

例7 2009年兰州市中考第29题

如图1,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴上运动,当P 点到D 点时,两点同时停止运动,设运动的时间为t 秒.

(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图2所示,请写出点Q 开始运动时的坐标及点P 运动速度;

(2)求正方形边长及顶点C 的坐标;

(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标.

(4)如果点P 、Q 保持原速度速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.

图1 图2

满分解答

(1)Q (1,0),点P 每秒钟运动1个单位长度.

(2)过点B 作BE ⊥y 轴于点E ,过点C 作x 轴的垂线交直线BE 于F ,交x 轴于H . 在Rt △ABE 中,BE =8,AE =10-4=6,所以AB =10.由△ABE ≌△BCF ,知BF =AE =4,CF =BE =6.所以EF =8+6=14,CH =8+4=12.因此点C 的坐标为(14,12).

(3)过点P 作PM ⊥y 轴于M ,PN ⊥x 轴于N .因为PM //BE ,所以AP AM MP

AB AF BF

==,即

1068t AM MP ==

.因此34,55AM t PM t ==.于是34

10,55PN OM t ON PM t ==-==. 设△OPQ 的面积为S (平方单位),那么2113347(1)(10)52251010

S OQ PN t t t t =??=+-=-++,

定义域为0≤t ≤10.

因为抛物线开口向下,对称轴为直线476t =,所以当47

6

t =时,△OPQ 的面积最大.此时P 的坐标为(

9415,53

10

). (4)当53t =或295

13

t =时, OP 与PQ 相等.

图3 图4

考点伸展

附加题的一般思路是:点Q 的横坐标是点P 的横坐标的2倍.先求直线AB 、BC 、CD 的解析式,根据直线的解析式设点P 的坐标,再根据两点间的距离公式列方程PO =PQ .

附加题也可以这样解:

①如图4,在Rt △AMP 中,设AM =3m ,MP =4 m ,AP =5m ,那么OQ =8m .根据AP 、OQ 的长列方程组5,81,

m t m t =??

=+?解得5

3t =.

②如图5,在Rt △GMP 中,设GM =3m ,MP =4 m ,GP =5m ,那么OQ =8m .在Rt △

GAD 中,GD =7.5.根据GP 、OQ 的长列方程组537.5,81,m t m t =-??=+?

解得295

13t =.

③如图6,设MP =4m ,那么OQ =8m .根据BP 、OQ 的长列方程组51010,81,

m t m t -=-??

=+?

解得

5

3

t ,但这时点P不在BC上.

例9 2011年上海市松江区中考模拟第24题

如图1,在平面直角坐标系xOy中,直角梯形OABC的顶点O为坐标原点,顶点A、C 分别在x轴、y轴的正半轴上,CB∥OA,OC=4,BC=3,OA=5,点D在边OC上,CD =3,过点D作DB的垂线DE,交x轴于点E.

(1)求点E的坐标;

(2)二次函数y=-x2+bx+c的图象经过点B和点E.

①求二次函数的解析式和它的对称轴;

②如果点M在它的对称轴上且位于x轴上方,满足S△CEM=2S△ABM,求点M的坐标.

图1

动感体验

请打开几何画板文件名“11松江24”,拖动点M在抛物线的对称轴上运动,观察面积比的度量值,可以体验到,有两个时刻,面积的比值等于2.

思路点拨

1.这三道题目步步为赢,错一道题目,就要影响下一道的计算.

2.点M 在抛物线的对称轴上且位于x 轴上方,要分两种情况讨论,分别为点M 在线段FB 和FB 的延长线上.因为用点M 的纵坐标表示△ABM 的底边长,因点M 的位置不同而不同.

满分解答

(1)因为BC ∥OA ,所以BC ⊥CD .因为CD =CB =3,所以△BCD 是等腰直角三角形.因此∠BCD =45°.又因为BC ⊥CD ,所以∠ODE =45°.所以△ODE 是等腰直角三角形,OE =OD =1.所以点E 的坐标是(1,0).

(2)①因为抛物线y =-x 2+bx +c 经过点B (3,4)和点E (1,0),所以934,

10.b c b c -++=??

-++=?

解得6,

5.

b c =??

=-?所以二次函数的解析式为y =-x 2+6x -5,抛物线的对称轴为直线x =3.

②如图2,如图3,设抛物线的对称轴与x 轴交于点F ,点M 的坐标为(3,t ).

CEM MEF COE OFMC S S S S ???=--梯形

111(4)321442222

t

t t =+?-??-??=+. (ⅰ)如图2,当点M 位于线段BF 上时,t t S ABM -=?-=

?42)4(2

1

.解方程)4(242t t -=+,得5

8=t .此时点M 的坐标为(3,58

). (ⅱ)如图3,当点M 位于线段FB 延长线上时,42)4(2

1

-=?-=?t t S ABM .解方程

)4(242

-=+t t

,得8=t .此时点M 的坐标为(3,8)

图2 图3

考点伸展

对于图2,还有几个典型结论:

此时,C 、M 、A 三点在同一条直线上;△CEM 的周长最小.

可以求得直线AC 的解析式为445

y x =-+,当x =3时,85y =.

因此点M (3,

5

8

)在直线AC 上. 因为点A 、E 关于抛物线的对称轴对称,所以ME +MC =MA +MC . 当A 、M 、C 三点共线时,ME +MC 最小,△CEM 的周长最小.

在△ABC 中,∠C =90°,AC =3,BC =4,CD 是斜边AB 上的高,点E 在斜边AB 上,过点E 作直线与△ABC 的直角边相交于点F ,设AE =x ,△AEF 的面积为y . (1)求线段AD 的长;

(2)若EF ⊥AB ,当点E 在线段AB 上移动时,

①求y 与x 的函数关系式(写出自变量x 的取值范围) ②当x 取何值时,y 有最大值?并求其最大值;

(3)若F 在直角边AC 上(点F 与A 、C 两点均不重合),点E 在斜边AB 上移动,试问:是否存在直线EF 将△ABC 的周长和面积同时平分?若存在直线EF ,求出x 的值;若不存在直线EF ,请说明理由.

重叠面积及动点问题

重叠面积及动点问题 1、已知△ABC中,∠B=90°,AB=8cm,BC=6cm,边长为2的正方形EFGH的EF边在 直线AB上且点F与点A重合,当正方形EFGH沿AB方向以每秒1cm的速度运动,设运动时间为t秒,正方形EFGH与△ABC重叠面积为S,求S与t的函数关系式,并写出自变量的取值范围。 (F) 2、如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P在AB上,AP=2,点E、F同时从点P出发,分别沿PA、PB以每秒1个单位长度的速度向点A、B匀速运动,点E到达点A后立刻以原速度沿AB向点B运动,点F运动到点B时停止,点E也随之停止.在点E、F运动过程中,以EF为边作正方形EFGH,使它与△ABC在线段AB的同侧.设E、F运动的时间为t/秒(t>0),正方形EFGH与△ABC重叠部分面积为S. (1)当时t=1时,正方形EFGH的边长是1.当t=3时,正方形EFGH的边长是4.(2)当0<t≤2时,求S与t的函数关系式;

3、如图,矩形ABCD中,AB=6,BC=2,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA 匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF 为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值; (2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围; (3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由. 4、如图,Rt△ABC中,∠C=90°,BC=6,AC=8.点P,Q都是斜边AB上的动点,点P从 B 向A运动(不与点B重合),点Q从A向B运动,BP=AQ.点D,E分别是点A,B 以Q,P为对称中心的对称点,HQ⊥AB于Q,交AC于点H.当点E到达顶点A时,P,Q同时停止运动.设BP的长为x,△HDE的面积为y. (1)求证:△DHQ∽△ABC; (2)求y关于x的函数解析式并求y的最大值; (3)当x为何值时,△HDE为等腰三角形? H (第4题)

相似三角形的动点问题题型(整理).doc

相似三角形的动点问题题型( 整理)

相似三角形的动点问题 一、动点型 例 1、如图,已知等边三角形 ABC 中,点 D,E,F 分别为边 AB ,AC ,BC 的中点,M 为直线 BC 上一动点,△DMN 为等边三角形(点 M 的位置改变时,△ DMN 也随之整体移动). (1)如图 1,当点 M 在点 B 左侧时,请你判断 EN 与 MF 有怎样的数量关系?点 F 是否在直线 NE 上?都请直接写出结论,不必证明或说明理由; (2)如图2,当点M 在BC 上时,其它条件不变,(1)的结论中 EN 与 MF 的数量关系是否仍 然成立?若成立,请利用图 2 证明;若不成立, 请说明理由; (3)若点 M 在点 C 右侧时,请你在图 3 中画出相应的图形,并判断( 1)的结论中 EN 与 MF 的数量关系是否仍然成立?若成立,请直接写出 结论,不必证明或说明理由.

例 2、如图,在矩形 ABCD 中, AB=12cm ,BC=8cm .点 E、F、G 分别从点 A、B、C 三点同时出发,沿矩形的边按逆时针方向移动.点 E、 G 的速度均为 2cm/s,点 F 的速度为 4cm/s,当点 F 追上点 G(即点 F 与点 G 重合)时,三个

点随之停止移动.设移动开始后第 t 秒时,△EFG 的面积为 S(cm2) (1)当 t=1 秒时, S 的值是多少? (2)写出 S 和 t 之间的函数解析式,并指出自 变量 t 的取值范围 (3)若点 F 在矩形的边 BC 上移动,当 t 为何值时,以点 E、B、F 为顶点的三角形与以点 F、C、G 为顶点的三角形相似?请说明理由. 迁移应用 1、如图,已知△ ABC 是边长为 6cm 的等边三角形,动点 P、Q 同时从 A、B 两点出发,分别沿 AB、BC 匀速运动,其中点 P 运动的 速度是 1cm/s,点 Q 运动的速度是 2cm/s,当点 Q 到达点 C 时, P、 Q 两点都停止运动,设运动时间为 t (s),

平面直角坐标系中面积动点问题

平面直角坐标系提升练习 热身题:如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动. (1)a= ,b= ,点B的坐标为; (2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标; (3)在移动过程中,当点P到x轴的距离为5个单位长度时, 求点P移动的时间. 题型一:已知面积求点的坐标 1.已知:A(0,1),B(2,0),C(4,3) … (1)在坐标系中描出各点,画出△ABC.(2)求△ABC的面积; (3)设点P在坐标轴上,且△ABP与△ABC的面积相等, 求点P的坐标. 2、已知:如图,△ABC的三个顶点位置分别是A(1,0)、B(﹣2,3)、C(﹣3,0). (1)求△ABC的面积是多少 (2)若点A、C的位置不变,当点P在y轴上时,且S △ACP =2S △ABC ,求点P的坐标 / (3)若点B、C的位置不变,当点Q在x轴上时,且S △BCQ =2S △ABC ,求点Q的坐标

3、如图,在平面直角坐标系2、在平面直角坐标系中,O为坐标原点,过点A(8,6)分别作x轴、y轴的平行线,交y轴于点B,交x轴于点C,点P是从点B出发,沿B→A→C以2个单位长度/秒的速度向终点C运动的一个动点,运动时间为t(秒). (1)直接写出点B和点C的坐标B(,)、C(,); (2)当点P运动时,用含t的式子表示线段AP的长,并写出t的取值范围; (3)点D(2,0),连接PD、AD,在(2)条件下是否存在这样的t值,使S △APD =S ABOC ,若存在,请 求出t值,若不存在,请说明理由. 】 3、点P(x,y)在第一象限,且x+y=8,点A的坐标为(6,0),设△OPA的面积为S. (1)用含x的式子表示S,写出x的取值范围; (2)当点P的横坐标为5时,△OPA的面积为多少 (3)当S=12时,求点P的坐标; (4)△OPA的面积能大于24吗为什么 { 4、如图,在平面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0 (1)求a、b、c的值; (2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积; (3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等若存在,求出点P 的坐标,若不存在,请说明理由.

初中数学精华资料(一线名师整理)函数图象中的存在性问题—因动点产生的面积问题(4页)

x y A B C O 第24题图 函数图象中的存在性问题——因动点产生的面积问题 例33、.如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒. (1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度; (2)求正方形边长及顶点C 的坐标; (3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由. 例34、如图,在平面直角坐标系xoy 中,等腰梯形OABC 的下底边OA 在x 轴的正半轴上,BC∥OA,OC=AB .tan∠BA0=43 ,点B 的坐标为(7,4). (1)求点A 、C 的坐标;(2)求经过点0、B 、C 的抛物线的解析式; (3)在第一象限内(2)中的抛物线上是否存在一点P ,使得经过点P 且 与等腰梯形一腰平行的直线将该梯形分成面积相等的两部分?若存在, 请求出点P 的横坐标;若不存在,请说明理由.

例35、如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与 端点B 、C 不重合),过点D 作直线y =-1 2x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式; (2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形O 1A 1B 1C 1,试探究O 1A 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由. 例36、如图,已知直角梯形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =AB =2,OC =3,过点B 作BD ⊥BC ,交OA 于点D .将∠DBC 绕点B 按顺时针方向旋转,角的两边分别交y 轴的正半轴、x 轴的正半轴于E 和F . (1)求经过A 、B 、C 三点的抛物线的解析式; (2)当BE 经过(1)中抛物线的顶点时,求CF 的长; (3)连结EF ,设△BEF 与△BFC 的面积之差为S ,问:当CF 为何值时S 最小,并求出这个最小值. 24.(2013普陀二模) 如图,抛物线c bx x y -+=2 经过直线 与坐标轴的两个交点A 、B ,此抛物线与x 轴的另 一个交点为C ,抛物线的顶点为D . ☆ 求此抛物线的解析式(4分); ☆ 点P 为抛物线上的一个动点,求使 第24题

动点问题题型方法归纳

动点问题 知识点: 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线3 6 4 y x =-+ 与坐标轴分别交于A B 、两点,动点P Q 、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点 Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S= 时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M的坐标.

提示:第(2)问按点P到拐点B所有时间分段分类; 第(3)问是分类讨论:已知三定点O、P、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP为边、OQ为边,②OP为边、OQ为对角线,③OP为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60o. (1)求⊙O的直径; (2)若D是AB延长线上一点,连结CD,当BD长为多少时,CD与⊙O相切; (3)若动点E以2cm/s的速度从A点出发沿着AB方向运动,同时动点F以1cm/s的速 度从B点出发沿BC方向运动,设运动时间为 )2 )( (<

初二动点问题(面积)

如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P 从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒. (1)求NC,MC的长(用t的代数式表示); (2)当t为何值时,四边形PCDQ构成平行四边形; (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,求出此时t的值;若不存在,请说明理由; (4)探究:t为何值时,△PMC为等腰三角形. 分析: (1)依据题意易知四边形ABNQ是矩形∴NC=BC-BN=BC-AQ=BC-AD+DQ,BC、AD已知,DQ就是t,即解;∵AB∥QN,∴△CMN∽△CAB,∴CM:CA=CN:CB,(2)CB、CN已知,根据勾股定理可求CA=5,即可表示CM; 四边形PCDQ构成平行四边形就是PC=DQ,列方程4-t=t即解; (3)可先根据QN平分△ABC的周长,得出MN+NC=AM+BN+AB,据此来求出t的值.然后根据得出的t的值,求出△MNC的面积,即可判断出△MNC的面积是否为△ABC 面积的一半,由此可得出是否存在符合条件的t值. (4)由于等腰三角形的两腰不确定,因此分三种情况进行讨论: ①当MP=MC时,那么PC=2NC,据此可求出t的值. ②当CM=CP时,可根据CM和CP的表达式以及题设的等量关系来求出t的值. ③当MP=PC时,在直角三角形MNP中,先用t表示出三边的长,然后根据勾股定理即可得出t的值. 综上所述可得出符合条件的t的值. 解答: 解:(1)∵AQ=3-t ∴CN=4-(3-t)=1+t 在Rt△ABC中,AC2=AB2+BC2=32+42 ∴AC=5 在Rt△MNC中,cos∠NCM= = ,CM= . (2)由于四边形PCDQ构成平行四边形

1.6因动点产生的面积问题(1)

1.6 因动点产生的面积问题 1、如图1,直线I 经过点A(1, 0),且与双曲线y=m (x >0)交于点B(2, 1).过点p(p,p _l)(p x > 1)作X 轴的平行线分别交曲线 y=m (x > 0)和y=_m (xv 0)于M 、N 两点. x x 求m 的值及直线I 的解析式; 若点P 在直线y = 2上,求证:△ PMBsA PNA ; 是否存在实数P ,使得S A AMN = 4S A AMP ?若存在,请求出所有满足条件的 请说明理由.(1) (2) (3) 若不存 P 的值; P 值 图 拓展:在本题情景下,△ AMN 能否成为直角三角形?若存在求出满足条件的 y x

2、如图1,四边形OABC是矩形,点A、C的坐标分别为(3,0), (0,1).点D是线段BC上的 1 动点(与端点B、C不重合),过点D作直线y=-—x + b交折线OAB于点E. 2 (1 )记^ ODE的面积为S,求S与b的函数关系式; (2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1, 试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出重叠部分的面积;若改变,请说明理由. 拓展:把本题中的矩形OABC绕着它的对称中心旋转,如果重叠部分的形状是菱形,那么这个菱形的最小面积为最大面积为 x 图1 x

3、如图1,在^ ABC 中,/ C = 90°, AC = 3, BC = 4, CD 是斜边 AB 上的高,点 E 在斜 边AB 上,过点E 作直线与^ ABC 的直角边相交于点 F ,设AE = *,△ AEF 的面积为y . (1) (2) ① 求 ② 当 (3) 存在直线EF 将^ ABC 的周长和面积同时平分?若存在直线 求线段AD 的长; 若EF 丄AB ,当点E 在斜边AB 上移动时, y 与x 的函数关系式(写出自变 量 x 的取值范围); x 取何值时,y 有最大值?并求出最大值. 若点F 在直角边AC 上(点F 与A 、C 不重合),点E 在斜边AB 上移动,试问,是否 EF ,求出x 的值;若不存在直

动点问题中的面积问题

动点问题中的面积问题 1.小明到商店买学习用品,已知买20支铅笔、3块橡皮、2本笔记本需要32元;买39支铅笔、5块橡皮、 3本笔记本需要58元;则小明买5支铅笔、5块橡皮、5本笔记本需要 元。 2.某步行街摆放有若干盆甲、乙、丙三种造型的盆景。甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙咱盆景由10朵红花、18朵黄花和25朵紫花搭配而成。这些盆景一共用了2900朵红花,3750朵紫花,由黄花一共用了 朵。 3.如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于 点E ,交BC 于点P ,连接OP ,OQ ;求证:(1)△BCQ ≌△CDP; (2)OP=OQ. 4.已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,AD=2,BC=6,AB=3.E 为BC 边上一点,以BE 为边作正方形BEFG ,使正方形BEFG 和梯形ABCD 在BC 的同侧.(1)当正方形的顶点F 恰好落在对角线AC 上时,求BE 的长; (2)将(1)问中的正方形BEFG 沿BC 向右平移,记平移中的正方形BEFC 为正方形B ′EFG ,当点E 与点C 重合时停止平移.设平移的距离为t ,正方形B ′EFG 的边EF 与AC 交于点M ,连接B ′D ,B ′M ,DM ,设正方形B ′EFG 与△ADC 重叠部分的面积为S ,请直接写出S 与t 之间的函数关系式以及自变量t 的取值范围. A B C D E O P Q

5.已知:如图(1),在平面直角坐标xOy中,边长为2的等边△OAB的顶点B在第一象限,顶点A在x轴 的正半轴上.另一等腰△OCA的顶点C在第四象限,OC=AC,∠C=120°.现有两动点P、Q分别从A、O两点同时出发,点Q以每秒1个单位的速度沿OC向点C运动,点P以每秒3个单位的速度沿A→O→B运动,当其中一个点到达终点时,另一个点也随即停止. (1)求在运动过程中形成的△OPQ的面积S与运动的时间t之间的函数关系,并写出自变量t的取值范围; 6.如图,矩形ABCD中,AB=6,BC= 23,点O是AB的中点,点P在AB的延长线上,且BP=3。一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧。设运动的时间为t秒(t≥0)。(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值; (2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

(完整版)汇编《因动点产生的面积问题》含答案

例1如图1,边长为8的正方形ABCD的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上A、C两点间的一个动点(含端点),过点P作PF⊥BC于点F.点D、E的坐标分别为(0, 6)、(-4, 0),联结PD、PE、DE. (1)直接写出抛物线的解析式; (2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值.进而猜想:对于任意一点P,PD与PF的差为定值.请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出△PDE周长最小时“好点”的坐标. 图1 备用图

如图1,边长为8的正方形ABCD 的两边在坐标轴上,以点C 为顶点的抛物线经过点A ,点P 是抛物线上A 、C 两点间的一个动点(含端点),过点P 作PF ⊥BC 于点F .点D 、E 的坐标分别为(0, 6)、(-4, 0),联结PD 、PE 、DE . (1)直接写出抛物线的解析式; (2)小明探究点P 的位置发现:当点P 与点A 或点C 重合时,PD 与PF 的差为定值.进而猜想:对于任意一点P ,PD 与PF 的差为定值.请你判断该猜想是否正确,并说明理由; (3)小明进一步探究得出结论:若将“使△PDE 的面积为整数” 的点P 记作“好点”,则存在多个“好点”,且使△PDE 的周长最小的点P 也是一个“好点”. 请直接写出所有“好点”的个数,并求出△PDE 周长最小时“好点”的坐标. 图1 备用图 动感体验 请打开几何画板文件名“15河南23”,拖动点P 在A 、C 两点间的抛物线上运动,观察S 随P 变化的图像,可以体验到,“使△PDE 的面积为整数” 的点P 共有11个. 思路点拨 1.第(2)题通过计算进行说理.设点P 的坐标,用两点间的距离公式表示PD 、PF 的长. 2.第(3)题用第(2)题的结论,把△PDE 的周长最小值转化为求PE +PF 的最小值. 满分解答 (1)抛物线的解析式为21 88 y x =-+. (2)小明的判断正确,对于任意一点P ,PD -PF =2.说理如下: 设点P 的坐标为21(,8)8x x -+,那么PF =y F -y P =218 x . 而FD 2=22222222111+(86)+(2)(2)888x x x x x -+-=-=+,所以FD =2128 x +. 因此PD -PF =2为定值. (3)“好点”共有11个. 在△PDE 中,DE 为定值,因此周长的最小值取决于FD +PE 的最小值. 而PD +PE =(PF +2)+PE =(PF +PE )+2,因此当P 、E 、F 三点共线时,△PDE 的周长最小(如图2).

(完整版)相似三角形的动点问题题型(整理)

相似三角形的动点问题 一、动点型 例1、如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由; (2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由; (3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由. 例2、如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C三点同时出发,沿矩形的边按逆时针方向移动.点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第t秒时,△EFG的面积为S(cm2) (1)当t=1秒时,S的值是多少? (2)写出S和t之间的函数解析式,并指出自变量t的取值范围 (3)若点F在矩形的边BC上移动,当t为何值时,以点E、B、F 为顶点的三角形与以点F、C、G为顶点的三角形相似?请说明理由.

迁移应用 1、如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动,设运动时间为t(s), (1)当t=2时,判断△BPQ的形状,并说明理由; (2)设△BPQ的面积为S(cm2),求S与t的函数关系式; (3)作QR//BA交AC于点R,连结PR,当t为何值时,△APR∽△PRQ? 2、如图,在直角梯形ABCD中,AB∥DC,∠D=90o,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC 上由B向C匀速运动,设运动时间为t秒(0

3.动点问题题型方法归纳

3.动点问题题型方法归纳标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DDQTY-KII

动点问题 知识点: 动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。 下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。 一、三角形边上动点 1、(2009年齐齐哈尔市)直线 3 6 4 y x =-+ 与坐标轴分别交于A B 、两点,动点 P Q 、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动. (1)直接写出A B 、两点的坐标; (2)设点Q的运动时间为t秒,OPQ △的面积为S,求出S与t之间的函数关系式; (3)当 48 5 S= 时,求出点P的坐标,并直接写出以点O P Q 、、为顶点的平行 四边形的第四个顶点M的坐标.

提示:第(2)问按点P 到拐点B 所有时间分段分类; 第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。然后画出各类的图形,根据图形性质求顶点坐标。 2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm ,∠ABC=60o. (1)求⊙O 的直径; (2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切; (3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<

中考数学动点问题(含答案)

中考数学之 动点问题 一、选择题: 1. 如图,在矩形ABCD 中,动点P 从点B 出发,沿BC 、CD 、DA 运动至点A 停止,设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图2所示,则△ABC 的面积是( ) 9 4x y O P D A 、10 B 、16 C 、18 D 、20 二、填空题: 1. 如上右图,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正三角形ABC 和正三角形CDE 、AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连结PQ.以下五个结论:①AD=BE ;②PQ ∥AE ;③AP=BQ ;④DE=DP ;⑤∠AOB=60°. 恒成立的结论有_______________________(把你认为正确的序号都填上)。 三、解答题: 1.(2008年大连)如图12,直角梯形ABCD 中,AB ∥CD ,∠A = 90°,CD = 3,AD = 4,tan B = 2,过点C 作CH ⊥AB ,垂足为H .点P 为线段AD 上一动点,直线PM ∥AB ,交BC 、C H 于点M 、Q .以PM 为斜边向右作等腰Rt △PMN ,直线MN 交直线AB 于点E ,直线PN 交直线A B 于点F .设PD 的长为x , EF 的长为y . ⑴求PM 的长(用x 表示); ⑵求y 与x 的函数关系式及自变量x 的取值范围(图13为备用图); ⑶当点E 在线段AH 上时,求x 的取值范围(图14为备用图). Q P O B E D C A

图 13 图 14 图 12 A H B C D A H B C D H M Q P D C B A 2.(2008年福建宁德)如图1,在Rt △ABC 中,∠C =90°,BC =8厘米,点D 在AC 上,CD =3厘米.点P 、Q 分别由A 、C 两点同时出发,点P 沿AC 方向向点C 匀速移动,速度为每秒k 厘米,行完AC 全 程用时8秒;点Q 沿CB 方向向点B 匀速移动,速度为每秒1厘米.设运动的时间为x 秒()80 <x<,△DCQ 的面积为y 1平方厘米,△PCQ 的面积为y 2平方厘米. ⑴求y 1与x 的函数关系,并在图2中画出y 1的图象; ⑵如图2,y 2的图象是抛物线的一部分,其顶点坐标是(4,12),求点P 的速度及AC 的长; ⑶在图2中,点G 是x 轴正半轴上一点(0<OG <6=,过G 作EF 垂直于x 轴,分别交y 1、y 2于点E 、F . ①说出线段EF 的长在图1中所表示的实际意义; ②当0<x <6时,求线段EF 长的最大值.

2014挑战中考数学压轴题_1.6因动点产生的面积问题

1.6 因动点产生的面积问题 例1 2013年苏州市中考第29题 如图1,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 图1 动感体验 请打开几何画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个. 请打开超级画板文件名“13苏州29”,拖动点C 在y 轴负半轴上运动,可以体验到,△EHA 与△COB 保持相似.点击按钮“C 、D 、E 三点共线”,此时△EHD ∽△COD .拖动点P 从A 经过C 到达B ,数一数面积的正整数值共有11个. 思路点拨 1.用c 表示b 以后,把抛物线的一般式改写为两点式,会发现OB =2OC . 2.当C 、D 、E 三点共线时,△EHA ∽△COB ,△EHD ∽△COD . 3.求△PBC 面积的取值范围,要分两种情况计算,P 在BC 上方或下方. 4.求得了S 的取值范围,然后罗列P 从A 经过C 运动到B 的过程中,面积的正整数值,再数一数个数.注意排除点A 、C 、B 三个时刻的值. 满分解答

6、因动点问题产生的面积问题

1.6 因动点产生的面积问题 例1 2013年苏州市中考第29题 如图1,已知抛物线2 12 y x bx c = ++(b 、c 是常数,且c <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴的负半轴交于点C ,点A 的坐标为(-1,0). (1)b =______,点B 的横坐标为_______(上述结果均用含c 的代数式表示); (2)连结BC ,过点A 作直线AE //BC ,与抛物线交于点E .点D 是x 轴上一点,坐标为(2,0),当C 、D 、E 三点在同一直线上时,求抛物线的解析式; (3)在(2)的条件下,点P 是x 轴下方的抛物线上的一动点,连结PB 、PC .设△PBC 的面积为S . ①求S 的取值范围; ②若△PBC 的面积S 为正整数,则这样的△PBC 共有_____个. 图1 满分解答 (1)b =1 2 c + ,点B 的横坐标为-2c . (2)由2111 ()(1)(2)222 y x c x c x x c =+++=++,设E 1(,(1)(2))2x x x c ++. 过点E 作EH ⊥x 轴于H . 由于OB =2OC ,当AE //BC 时,AH =2EH . 所以1(1)(2)x x x c +=++.因此12x c =-.所以(12,1)E c c --. 当C 、D 、E 三点在同一直线上时, EH CO DH DO =.所以1212 c c c --= --. 整理,得2c 2+3c -2=0.解得c =-2或1 2 c =(舍去). 所以抛物线的解析式为213 222 y x x =--.

反比例函数与面积、动点问题

反比例函数与面积、动点问题1、如图所示,Rt△ABC在第一象限,∠BAC=90°,AB=AC=2, 点A在直线y=x上,其中点A的横坐标为1,且AB∥x轴, AC∥y轴,若双曲线y=k/x(k≠0)与△ABC有交点,则k 的取值范围是_________ 2、如图,已知△ABO的顶点A和AB边的中点C都在双 曲线y= 4/x(x>0)的一个分支上,点B在x轴上,CD ⊥OB于D,则△AOC的面积为() A、2 B、3 C、4 D、32 3、已知点A、B是反比例函数y=?2x(x>0)的图象上任 两点,过A、B两点分别作y轴的垂线,垂足分别为C、 D,连接AB,AO,BO, 则S四边形ABCD:S△AOB等于() 4、在平面直角坐标系中,有反比例函数y=?1x与y=-?1x的图象和正方形ABCD,原点O与对角线AC、BD的交点重叠,且如图所示的阴影部分面积为8,则AB=__________ 5、反比例函数y=-?5x的图象如图所示,P是图象上的任意点,过点P分别做两坐标轴的垂线,与坐标轴构成矩形OAPB,点D是对角线OP上的动点,连接DA、DB,则图中阴影部分的面积是 ____________

6、如图,点A,C在反比例函数y=?3x(x<0)的图象上,B,D在x轴上,△OAB,△BCD均为正三角形,则点C的坐标是____________ 7、如图所示,P1(x1,y1)、P2(x2,y2),…P n (x n,y n)在函数y=?9x(x>0)的图象上,△OP1A1, △P2A1A2,△P3A2A3…△P n A n-1A n…都是等腰直角三 角形,斜边OA1,A1A2…A n-1A n,都在x轴上,则 y1+y2+…y n=________ 8、如图,在直角坐标平面内,函数y=mx(x>0,m是常数)的图象经过A(1,4),B(a,b),其中a>1.过点 A作x轴垂线,垂足为C,过点B作y轴垂线, 垂足为D,连接AD,DC,CB. (1)若△ABD的面积为4,求点B的坐标; (2)求证:DC∥AB; (3)当AD=BC时,求直线AB的函数解析式. 9、如图,直线y=k1x+b与反比例函数y=k2x的图象交于A(1,6),B(a,3)两点. (1)求k1、k2的值. (2)直接写出k1x+b-k2x>0时x的取值范 围;

初二下动点与面积问题

一、已知,矩形OABC 在平面直角坐标系内的位置如图所示,点O 为坐标原点,点A 的坐 标为(10,0),点B 的坐标为(10,8). ⑴直接写出点C 的坐标为:C ( , ); ⑵已知直线AC 与双曲线)0(≠=m x m y 在第一象限内有一点交点Q 为(5,n ) ; ①求m 及n 的值; ②若动点P 从A 点出发,沿折线AO →OC 的路径以每秒2个单位长度的速度运动,到达C 处停止.求△OPQ 的面积S 与点P 的运动时间t (秒)的函数关系式,并求当t 取何值时S=10.

已知:如图,正比例函数y ax =的图象与反比例函数k y x = 的图象交于点()32A ,. (1)试确定上述正比例函数和反比例函数的表达式; (2)根据图象回答,在第一象限内,当x 取何值时,反比例函数的值大于正比例函数的值? (3)()M m n ,是反比例函数图象上的一动点,其中03m <<,过点M 作直线MN x ∥轴,交y 轴于点B ;过点A 作直线AC y ∥轴交x 轴于点C ,交直线MB 于点D .当四边形 OADM 的面积为6时,请判断线段BM 与DM 的大小关系,并说明理由.

二、 如图 1,在矩形ABCD 中,cm AB 6=,cm BC 8=, 动点N M 、同时从点A 出发, M 点按折线A →C →B →A 的路径以3 cm/s 的速度运动, N 点按折线A →C →D →A 的路径以2s cm /的速度运动.运动时间为t (s ),当点M 回到A 点时,两点都停止 运动. (1)求对角线AC 的长度; (2)经过几秒,以点A 、C 、M 、N 为顶点的四边形是平行四边形? (3)设△CMN 的面积为s )(2 cm , 求:当5>t 时,s 与t 的函数关系式.

动点问题与折叠问题

A P 十一、十二课时:动点问题与折叠问题 (1):动点问题 1、已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题: (1)当t为何值时,△PBQ是直角三角形? (2)设四边形APQC的面积为y(cm2),求y与t的 关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三 分之二?如果存在,求出相应的t值;不存在,说明理由; 2、如图,直线OC、BC的函数关系式分别是y1=x和y2=-2x+6,动点P(x,0)在OB上运动(0y2? (2)设△COB中位于直线m左侧部分的面积为s,求出s与x之间函数关系式.(3)当x为何值时,直线m平分△COB的面积? 3、边长为4,将此正方形置于平面直角坐标系中,使AB边落在x轴的正半轴上,且A点的坐标是(1,0)。 ①直线 3 8 3 4 - =x y经过点C,且与x轴交与点E,求四边形AECD的面积; ②若直线l经过点E且将正方形ABCD分成面积相等的两部分求直线l的解析式, ③若直线 1 l经过点F? ? ? ? ? -0. 2 3 且与直线y=3x平行,将②中直线l沿着y轴向上平移1个

单位交x 轴于点M ,交直线1l 于点N ,求NMF 的面积. 4.如图,A 、B 、C 、D 为矩形的四个顶点,AB=16cm ,AD=6cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3cm/s 的速度向点B 移动,一直到达点B 位止,点Q 以2cm/s 速度向D 移动 (1)P 、Q 两点,从出发开始到几秒时,四边形PBCQ 面积是33cm 2? (2)P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10cm ? 5.已知,如图,在矩形ABCD 中,AB=1/3AD=3cm ,点Q 从A 点出发,以1cm/s 的速度沿AD 向终点D 运动,点P 从点C 出发,以1cm/s 的速度沿CB 向终点运动,当这两点中有一点到达自己的终点时,另一点也停止运动,两点同时出发,运动了t 秒。 (1)当0<t <9,判断四边形BQDP 的形状,并说明理由 (2)求四边形BQDP 的面积S 与运动时间t 的函数关系式 B P D Q C A A B C D Q P

相关主题
文本预览
相关文档 最新文档