浅谈系统发育分析及进化树制作文稿演示
- 格式:ppt
- 大小:4.61 MB
- 文档页数:42
实习五:系统发育分析-PHYLIP,MEGA, MrBayes学号姓名专业年级实验时间提交报告时间实验目的:1. 学会使用PHYLIP,MEGA和MrBayes构建进化树2. 学会分析建树结果,体会各种方法差异实验内容:系统发育(phylogeny)也称系统发展,是与个体发育相对而言的,它是指某一个类群的形成和发展过程。
系统发育学的目的是研究进化关系,系统发育分析就是要推断或者评估这些进化关系。
通过系统发育分析所推断出来的进化关系一般用分枝图表(进化树)来描述,这个进化树就描述了同一谱系的进化关系,包括了分子进化(基因树)、物种进化以及分子进化和物种进化的综合。
多序列比对的目标是发现多条序列的共性。
本次实验旨在使用PHYLIP,MEGA和MrBayes构建进化树,并通过分析构树的结果,了解各方法的差异性。
作业:1. List the title of the orthologous nucleotide and protein sequences you found from Practice 1. Build phylogenetic trees with PHYLIP, MEGA and MrBayes respectively. Make a simple comparison the trees you have got, and try to explain the difference.核酸序列使用的是来自Trifolium repens(白车轴草)硬粒小麦(Triticum durum)Camellia sinensis(山茶)Cicer arietinum (鹰嘴豆)及Glycine max(大豆)dehydrin的编码脱水素(dehydrin)的DNA序列,这些物种将分别以TF,TC,Cam,Cic及Gly表示;首先对于PHYLIP中的关系,通过五种算法的构树结果可以发现其树形的差异不大。
系统发育树的构建与分析方法系统发育学是一门研究物种进化关系的学科,通过对不同物种的形态特征、生理生态特性、分子遗传信息等数据进行分析,可以得出它们在进化树中的位置。
而系统发育树则是用来表示各物种间进化历程和亲缘关系的图形表示。
它不仅可以揭示物种之间的起源和进化演化,而且可以对生物多样性的保护和利用产生重要影响。
本文将介绍系统发育树的构建和分析方法。
一、系统发育树的构建方法1. 形态学方法形态学方法是最早用于构建系统发育树的方法。
它是根据物种的形态特征进行比较研究,如昆虫的翅膀、花的形态、动物的身体部位等。
这种方法的优点是简单易行,但缺点是由于不同物种形态特征的相似性,并不能完全反映它们在进化树上的亲缘程度,有一定局限性。
2. 分子系统发育学方法随着分子生物学的发展,分子数据也开始被应用于系统发育树的构建。
这种方法通过对物种不同基因的序列进行修建的,如rRNA、DNA、蛋白质序列等来了解它们进化的历程和亲缘关系。
因为DNA和蛋白质在进化过程中往往较为保守,且具有一定统一性,因此这种方法比形态学方法更为精确,同时也能够构建更多样化的进化模型。
3. 固定标记法固定标记法是结合形态学和分子方法的一种新技术。
它利用生物体细胞核DNA中的高度变异的区域,如微卫星(Simple Sequence Repeats, SSR)等,通过引物特异性地扩增这些标记区域,将扩增产物的大小与数量(即大小因素和数量因素)组成一个确定的数字序列,用于构建系统发育树。
这种方法因能够同时反映形态和分子信息,且具有标记简单、修建渐进、多样性较高等优点,逐渐成为研究系统发育的新方法。
二、系统发育树的分析方法一旦构建了系统发育树,便需要进行分析以研究物种间的亲缘关系、进化历程等信息。
1. 树形态分析树形态分析包括节点分支的长度、角度、直线距离等进化遗传参数的分析。
通过对树形态的分析,可以更全面地了解不同物种亲缘关系的演化特点。
2. 分子位点分析分子位点分析是指对系统发育树上指定基因位点的序列进行分析,如进化速率、突变次数、转换和替换等信息。
系统进化树的构建1. 引言在计算机科学领域,系统进化树是一种用于描述和分析软件系统演化历史的工具。
它可以帮助我们理解软件系统是如何随着时间发展和演变的,以及不同版本之间的关系。
通过构建系统进化树,我们可以更好地了解软件系统的演化规律,为软件维护、升级和迭代提供有效的指导。
本文将详细介绍系统进化树的构建方法,并提供相关示例和实践经验。
2. 构建方法2.1 数据收集构建系统进化树的第一步是收集相关数据。
这些数据可以来自于版本控制系统、缺陷跟踪系统、代码仓库等多个来源。
主要包括以下几个方面:•版本信息:记录每个版本的发布日期、版本号等基本信息。
•变更集:记录每个版本中进行了哪些变更,包括新增功能、修改bug等。
•缺陷报告:记录每个版本中出现的缺陷报告,包括缺陷编号、严重程度等。
•代码仓库:记录每个版本中所使用的代码库快照。
2.2 数据预处理在进行数据分析之前,需要对收集到的数据进行预处理。
主要包括以下几个方面:•数据清洗:去除重复、无效或不完整的数据。
•数据整合:将不同来源的数据进行整合,建立关联关系。
•数据格式化:将数据转换为统一的格式,方便后续分析和处理。
2.3 构建演化关系构建系统进化树的核心是建立不同版本之间的演化关系。
可以使用以下两种方法来实现:2.3.1 基于变更集通过分析每个版本中的变更集,可以识别出新增、修改和删除的功能模块或代码文件。
根据这些变更信息,可以构建出一个版本间的差异图,从而揭示出系统演化的路径。
2.3.2 基于缺陷报告通过分析每个版本中出现的缺陷报告,可以识别出哪些缺陷被修复,并确定修复缺陷所涉及到的代码文件或功能模块。
根据这些信息,可以构建出一个修复路径图,从而揭示系统演化过程中缺陷修复的路径。
2.4 可视化展示构建完成系统进化树后,需要将其以可视化形式展示出来。
常用的可视化工具有网络图、树状图等。
通过可视化展示,可以更直观地了解系统的演化历史和各个版本之间的关系。
3. 示例与实践经验3.1 示例以一个开源软件项目为例,假设我们收集到了该项目的版本控制记录、缺陷报告和代码仓库快照。
基因组 snp 系统发育进化树
基因组SNP系统发育进化树是通过分析基因组中的单核苷酸多
态性(SNP)来揭示不同物种或个体之间的系统发育关系和进化历史
的工具。
这种方法利用基因组中的单核苷酸变异信息,比较不同个
体或物种之间的差异,从而构建进化树来显示它们之间的亲缘关系。
首先,基因组SNP系统发育进化树的构建需要收集大量的基因
组数据,包括不同物种或个体的基因组序列。
然后,通过测序技术
和生物信息学分析,可以识别出这些基因组中的SNP,即在不同个
体之间存在的单核苷酸差异。
这些SNP的信息被用来计算不同个体
或物种之间的遗传距离,从而构建系统发育进化树。
系统发育进化树可以显示不同物种或个体之间的亲缘关系和进
化历史。
树状图的分支代表了不同的物种或个体,而分支的长度和
分叉的位置反映了它们之间的遗传距离。
基因组SNP系统发育进化
树的构建可以帮助我们了解不同物种之间的演化关系、迁徙历史以
及遗传多样性等重要信息。
此外,基因组SNP系统发育进化树在生物学研究和物种鉴定中
具有重要的应用。
它可以帮助科学家们识别物种之间的亲缘关系,
研究物种的起源和演化过程,以及进行种群遗传学和进化生态学方面的研究。
同时,基因组SNP系统发育进化树也为医学研究提供了重要的参考,例如在人类疾病遗传研究中,可以利用基因组SNP系统发育进化树来探索不同人群之间的遗传差异和相关性。
总之,基因组SNP系统发育进化树是一种重要的工具,它通过分析基因组中的单核苷酸多态性,帮助我们揭示不同物种或个体之间的系统发育关系和进化历史,对生物学研究和物种鉴定具有重要意义。