专题4-3用乘法公式分解因式专项提升训练(重难点培优)-2023-2024学年(0002)
- 格式:docx
- 大小:17.90 KB
- 文档页数:4
原创精品资源学科网独家享有版权,侵权必究!1第四章因式分解压轴题1.若a =a 的说法正确的是().A .是正整数,而且是偶数B .是正整数,而且是奇数C .不是正整数,而是无理数D .无法确定2.如果一个四位自然数abcd 的各数位上的数字互不相等且均不为0,满足2a b c d ++=,那么称这个四位数为“和方数”.例如:四位数2613,因为22613++=,所以2613是“和方数”;四位数2514,因为22514++≠,所以2514不是“和方数”.若354a 是“和方数”,则这个数是;若四位数M 是“和方数”,将“和方数”M 的千位数字与百位数字对调,十位数字与个位数字对调,得到新数N ,若M N +能被33整除,则满足条件的M 的最大值是.3.如果一个三位正整数M 可以表示为()3m m +的形式,其中m 为正整数,则称M 为“幸运数”.例如:三位数270,()27015153=⨯+ ,∴270是“幸运数”;又如:三位数102,1021102251334617=⨯=⨯=⨯=⨯ ,∴102不是“幸运数”、根据题意,最大的“幸运数”为;若M 与N 都是“幸运数”,且350M N -=,则所有满足条件的N 的和为.4.一个四位正整数m ,如果m 满足各个数位上的数字均不为0,千位数字与个位数字相等,百位数字与十位数字相等,则称m 为“对称数”,将m 的千位数字与百位数字对调,十位数字与个位数字对调得到一个新数m ',记()81m m F m '-=.例如:对称数7337m =时,3373m '=,则()7337377373374481F -==.已知s 、t 都是“对称数”,记s 的千位数字与百位数字分别为a ,b ,t 的千位数字与百位数字分别为x ,y ,其中19b a ≤<≤,1x ≤,9y ≤,a ,b ,x ,y 均为整数.若()F s 能被8整除,则a b -=;同时,若()F s 、()F t 还满足()()64138F s F t a b x y xy +=++-+,则()F t 所有可能值的和为.5.“回文诗”即正念倒念都有意思,均成文章的诗,如:“秋江楚雁宿沙洲,雁宿沙洲浅水流.流水浅洲沙宿雁,洲沙宿雁楚江秋.”其意境与韵味读起来都是一种美的享受.在数学中也有这样一类数有这样的特征,即正读倒读都一样的自然数,我们称之为“回文数”,例如11,343等.下列几个命题中:(1)2222是“回文数”;(2)所有两位数中,有9个“回文数”;所有三位数中,有81个“回文数”;(3)任意四位数的“回文数”是11的倍数;(4)如果一个“回文数”m 是另外一个正整数n 的平方,则称m 为“平方回数”.若t 是一个千位数字为1的四位数的“回文数”,若11s t =,且s 是一个“平方回数”,则1331t =.其中,真命题有.(填序号)6.定义:任意两个数a ,b ,按规则()()11c a b =++运算得到一个新数c ,称所得的新数c 为a ,b 的“和积数”.(1)若4a =,2b =-,求a ,b 的“和积数”c ;(2)若12ab =,228a b +=,求a ,b 的“和积数”c ;(3)已知1a x =+,且a ,b 的“和积数”32452c x x x =+++,求b (用含x 的式子表示)并计算a b +的最小值.7.若一个四位数M 的百位数字与千位数字的差恰好是个位数字与十位数字的差的2倍,则将这个四位数M 称作“星耀重外数”.例如:2456M =,∵()42265-=⨯-,∴2456是“星耀重外数”;又如4325M =,∵()34252-≠⨯-,∴4325不是“星耀重外数”.(1)判断2023,5522是否是“星耀重外数”,并说明理由;(2)一个“星耀重外数”M 的千位数字为a ,百位数字为b ,十位数字为c ,个位数字为d ,且满足29a b c d ≤≤<≤≤,记()492223624ac a d b G M -++-=,当()G M 是整数时,求出所有满足条件的M .8.已知一个各个数位上的数字均不为0的四位正整数()M abcd a c =>,以它的百位数字作为十位,个位数字作为个位,组成一个新的两位数s ,若s 等于M 的千位数字与十位数字的平方差,则称这个数M 为“平方差数”,将它的百位数字和千位数字组成两位数ba ,个位数字和十位数字组成两位数dc ,并记()T M ba dc =+.例如:6237是“平方差数”,因为226327-=,所以6237是“平方差数”;此时()6237267399T =+=.又如:5135不是“平方差数”,因为22531615-=≠,所以5135不是“平方差数”.(1)判断7425是否是“平方差数”?并说明理由;(2)若M abcd =是“平方差数”,且()T M 比M 的个位数字的9倍大30,求所有满足条件的“平方差数”M .9.一个两位数M ,若将十位数字2倍的平方与个位数字的平方的差记为数N ,当N >0时,我们把N 放在M 的右边将所构成的新数叫做M 的“叠加数”.例如:M =47,∵N =(2×4)2-72=15>0,∴47的“叠加数”为4715;M =26,∵N =(2×2)2-62=-20<0,∴26没有“叠加数”.(1)请判断3420和5846是否为某个两位数的“叠加数”,并说明理由;(2)两位数M =10a +b (1≤a ≤9,1≤b ≤4,且a 、b 均为整数)有“叠加数”,且12a -M -N 能被13整除,求所有满足条件的两位数M 的“叠加数”.原创精品资源学科网独家享有版权,侵权必究!310.材料:把多项式分组后,可提公因式或运用公式继续分解的方法是分组分解法.例如:()()()()()()am an bm bn am an bm bn a m n b m n a b m n +++=+++=+++=++.(1)分解因式:1ab a b +++(2)若a ,()b a b >都是正整数且满足40ab a b ---=,求a b +的值;(3)若a ,b 为实数且满足50ab a b ---=,22235S a ab b a b =+++-,求S 的最小值.11.八年级课外兴趣小组活动时,老师提出了如下问题:将2346a ab b --+因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式()()()()()()234623223232a ab b a b b b a =---=---=--;解法二:原式()()()()()()24362232223a ab b a b a a b =---=---=--.【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将22x a x a -++因式分解;【挑战】(2)请用分组分解法将222ax a ab bx b +--+因式分解;(3)若229a b +=,2a b -=,请用分组分解法先将432234222a a b a b ab b -+-+因式分解,再求值.12.如图①,在平面直角坐标系中,点A ,点B 分别在x 轴负半轴和y 轴正半轴上,点C 在第二象限,且90ACB ∠=︒,AC BC =,点B 的坐标为()0,m ,点C 的纵坐标为n ,满足222170m n m +-+=.(1)求点A 的坐标;(2)如图②,点D 是AB 的中点,点E ,F 分别是边AC ,BC 上的动点,且DE DF ⊥,在点E ,F 移动过程中,四边形的面积是否为定值?请说明理由;(3)在平面直角坐标系中,是否存在点P ,使得PAC △是以点A 为直角顶点的等腰直角三角形,请直接写出满足条件的点P 的坐标.13.在x 轴正半轴上有一定点A ,(),0A a .(1)若多项式24x x a ++恰好是某个整式的平方,那么点A 的坐标为__________;(2)如图1,点P 为第三象限角平分线上一动点,连接AP ,将射线AP 绕点A 逆时针旋转30︒交y 轴于点Q ,连接PQ ,在点P 运动的过程中,当45APQ ∠=︒时,求OQA ∠的度数;(3)如图2,已知点B 、点C 分别为y 轴正半轴,x 轴正半轴上的点,C 在A 右侧,在线段OB 上取点(0)E m ,,AC n =,且45BCE ∠=︒,过点A 做AD x ⊥轴,且AD OC =,求DF 的长.(结果用m ,n 表示)14.通过课堂的学习知道,我们把多项式222a ab b ++及222a ab b -+叫做完全平方式,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式最大值,最小值等.例如:分解因式()()()()()222()2321414121231x x x x x x x x x +-=++-=+-=+++-=+-;再例如求代数式2246x x +-的最小值,()2222462232(1)8x x x x x +-=+-=+-.可知当=1x -时,2246x x +-有最小值,最小值是8-,根据阅读材料用配方法解决下列问题:(1)代数式223a a -++的最大值为:;(2)若2211M a b =++与62N a b =-,判断M N 、的大小关系,并说明理由;(3)已知:2a b -=,2450ab c c -++=,求代数式a b c ++的值.15.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b -+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +-.原式()()()()()22223211314121231x x x x x x x x x =+-=++--=+-=+++-=+-.【材料2】因式分解:()()221x y x y ++++原创精品资源学科网独家享有版权,侵权必究!5解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x -+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y ---+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++---+=时,判断ABC 的形状并说明理由.16.我们定义:一个整数能表示成22a b +(a 、b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22521=+,所以5是“完美数”.[解决问题](1)已知29是“完美数”,请将它写成22a b +(a 、b 是整数)的形式______;(2)若265x x -+可配方成()2x m n -+(m 、n 为常数),则mn =______;[探究问题](3)已知222450x y x y +-++=,则x y +=______;(4)已知224412S x y x y k =++-+(x 、y 是整数,k 是常数),要使S 为“完美数”,试求出符合条件的一个k 值,并说明理由.[拓展结论](5)已知实数x 、y 满足25502x x y -++-=,求2x y -的最值.17.阅读材料:我们把多项式222a ab b ++及222a ab b -+叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求代数式的最大值,最小值等.例分解因式:()22223214(1)4(12)(12)(3)(1)x x x x x x x x x +-=++-=+-=+++-=+-;又例如:求代数式2246x x +-的最小值:()2222462232(1)8x x x x x +-=+-=+- ;又2(1)0x + ;∴当=1x -时,2246x x +-有最小值,最小值是8-.根据阅读材料,利用“配方法”,解决下列问题:(1)分解因式:245a a --=___________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22412400a a b b -+-+=求边长c 的最小值;(3)当x 、y 为何值时,多项式222267x xy y y -+-++有最大值?并求出这个最大值.18.【实践探究】小青同学在学习“因式分解”时,用如图1所示编号为①②③④的四种长方体各若干块,进行实践探究:(1)现取其中两个拼成如图2所示的大长方体,请根据体积的不同表示方法,写出一个代数恒等式:;(2)【问题解决】若要用这四种长方体拼成一个棱长为2x y +的正方体,其中②号长方体和③号长方体各需要多少个?试通过计算说明理由;(3)【拓展延伸】如图3,在一个棱长为y 的正方体中挖出一个棱长为x 的正方体,请根据体积的不同表示方法,直接写出33y x -因式分解的结果,并利用此结果解决问题:已知a 与2n 分别是两个大小不同正方体的棱长,且()()338244a n a n an -=--,当2a n -为整数时,求an 的值.19.材料:对一个图形通过两种不同的方法计算它的面积或体积,可以得到一个数学等式.(1)如图1,将一个边长为a 的正方形纸片剪去-一个边长为b 的小正方形,根据剩下部分的面积,可得一个关于a ,b 的等式:__________.请类比上述探究过程,解答下列问题:(2)如图2,将一个棱长为a 的正方体木块挖去一个棱长为b 的小正方体,根据剩下部分的体积,可以得到等式:33a b -=__________,将等式右边因式分解,即33a b -=__________;原创精品资源学科网独家享有版权,侵权必究!7(3)根据以上探究的结果,①如图3所示,拼叠的正方形边长是从1开始的连续奇数...,按此规律拼叠到正方形ABCD ,其边长为19,求阴影部分的面积.②计算:()()33211211+--20.(1)【阅读与思考】整式乘法与因式分解是方向相反的变形.如何把二次三项式()20ax bx c a ++≠分解因式呢?我们已经知道:()()()2211221212211212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++.反过来,就得到:()()()2121221121122a a x a c a c x c c a x c a x c +++=++.我们发现,二次三项式()20ax bx c a ++≠的二次项的系数a分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c ,如图1所示摆放,按对角线交叉相乘再相加,就得到1221a c a c +,如果1221a c a c +的值正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解为()()1122a x c a x c ++,其中1a ,1c 位于图的上一行,2a ,2c 位于下一行.像这种借助画十字交叉图分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做“十字相乘法”.例如,将式子26x x --分解因式的具体步骤为:首先把二次项的系数1分解为两个因数的积,即111=⨯,把常数项6-也分解为两个因数的积,即()623-=⨯-;然后把1,1,2,3-按图2所示的摆放,按对角线交叉相乘再相加的方法,得到()13121⨯-+⨯=-,恰好等于一次项的系数1-,于是26x x --就可以分解为()()23x x +-.请同学们认真观察和思考,尝试在图3的虚线方框内填入适当的数,并用“十字相乘法”分解因式:26x x +-=__________.(2)【理解与应用】请你仔细体会上述方法并尝试对下面两个二次三项式进行分解因式:①2257x x +-=__________;②22672x xy y -+=__________.(3)【探究与拓展】对于形如22ax bxy cy dx ey f +++++的关于x ,y 的二元二次多项式也可以用“十字相乘法”来分解,如图4.将a 分解成mn 乘积作为一列,c 分解成pq 乘积作为第二列,f 分解成jk 乘积作为第三列,如果mq npb +=,pk pj e +=,mk nj d +=,即第1,2列、第2,3列和第1,3列都满足十字相乘规则,则原式()()mx py j nx qy k =++++,请你认真阅读上述材料并尝试挑战下列问题:①分解因式2235294x xy y x y +-++-=__________;②若关于x ,y 的二元二次式22718524x xy y x my +--+-可以分解成两个一次因式的积,求m 的值.。
因式分解的多种方法考点培优练习 考点直击 1.因式分解的常见方法:(1)提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成几个因式乘积的形式,这种分解因式的方法叫作提公因式法.(2)运用公式法: a²−b²=(a +b )(a −b );a²±2ab +b²=(a ±b )²2.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公因式,然后再考虑是否能用公式法分解.3.分解因式时常见的思维误区:(1)提公因式时,其公因式应找字母指数最低的,而不是以首项为准.(2)提取公因式时,若有一项被全部提出,括号内的项“1”易漏掉.(3)分解不彻底,如保留中括号形式、还能继续分解等.4.因式分解的特殊方法:分组分解法和十字相乘法.其中,形如 x²+px +q 的二次三项式,如果常数项q 能分解为两个因数a ,b 的积,并且a+b 恰好等于一次项的系数p ,那么它就可以分解因式,即 x²+px +q =x²+(a +b )x +ab =(x+a)(x+b),这种因式分解的方法称为十字相乘法.例题精讲例 1 【例题讲解】因式分解: x³−1.∵x³−1为三次二项式,对于方程 x³−1=0,x =1是其1个解.∴ 我们可以猜想 x³−1可以分解成 (x −1)(x²+ax +b ),展开等式右边得 x³+(a −1)2 ²+(b −a )x −b.:x³−1=x³+(a −1)x²+(b −a )x −b 恒成立,∴ 等式两边多项式的同类项的对应系数相等,即 {a −1=0,b −a =0,−b =−1,解得 {a =1,b =1. ∴x³−1=(x −1)(x²+x +1).【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数对应相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法.【学以致用】(1)若 x²−mx −12=(x +3)(x −4),则 m =;(2)若 x³+3x²−3x +k 有一个因式是. x +1,,求 k 的值;(3)请判断多项式 x⁴+x²+1能否分解成两个整系数二次多项式的乘积.若能,请直接写出结果;若不能,请说明理由.【思路点拨】(1)根据题目中的待定系数法原理即可求得结果;(2)根据待定系数法原理先设另一个多项式,然后根据恒等原理即可求得结论;(3)根据待定系数原理和多项式乘多项式的规律即可求得结论.举一反三1 (北京中考)因式分解:a²−4a+4−b².举一反三2 阅读下列材料:我们知道,多项式a²+6a+9可以写成( (a+3)²的形式,这就是将多项式a²+6a+9因式分解.当一个多项式(如a²+ 6a+8)不能写成两数和(或差)的平方的形式时,我们通常采用下面的方法:a²+6a+8=(a+3)²−1=(a+2)(a+4)请仿照上面的方法,将下列各式因式分解:(1)x²-6x-27;(2)a²+3a-28;(3)x²-(2n+1)x+n²+n.举一反三3 下面是某同学对多项式( (x²−4x+2)(x²−4x+6)+4进行因式分解的过程:解:设x²−4x=y,原式=(y+2)(y+6)+4 (第一步)=y²+8y+16 (第二步)=(y+4)² (第三步)=(x²−4x+4)² (第四步)(1)该同学第二步到第三步运用了因式分解的 (填字母).A.提取公因式B.平方差公式C.两数和的完全平方公式D.两数差的完全平方公式(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后? (填“是”或“否”).如果否,直接写出最后的结果: .(3)请你模仿以上方法尝试对多项式(x²−2x)(x²−2x+2)+1进行因式分解.例2 (吉林中考)在下列三个整式 x²+2xy,y²+2xy,x²中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.【思路点拨】本题为开放性试题,在第一步组合过程中,考虑下一步因式分解的适当方法,可以用提取公因式法或公式法.举一反三4 (湖北中考)给出三个多项式: X =2a²+3ab +b²,Y =3a²+3ab, Z =a²+ab.请你任选两个进行加(或减)法运算,再将结果分解因式.举一反三5 阅读下列材料:利用完全平方公式,可以将多项式变形为 a (x +m )²+n 的形式,我们把这样的变形方法叫作多项式 ax²+bx +c (a ≠0)的配方法.运用多项式的配方法及平方差公式能对一些多项式进行因式分解.例如:x 2+9x −10=x 2+9x +(92)2−(92)2−10=(x +92)2−1214=(x +92+112)(x +92−112)=(x +10)(x −1)根据以上材料,解答下列问题:(1)用配方法及平方差公式把多项式 x²−7x +12进行因式分解;(2)用多项式的配方法将x²+6x−9化成a(x+m)²+n的形式,并求出多项式的最小值;(3)求证:x,y 取任何实数时,多项式x²+y²−4x+2y+6的值总为正数.例3 阅读材料:若m²−2mn+2n²−8n+16=0,求m,n 的值.解:∵m²-2mn+2n²-8n+16=0,∴ (m²-2mn+n²)+(n²-8n+16)=0, ∴(m−n)2+(n−4)2=0,∴(m−n)2=0,(n−4)2=0,∴n= 4,m=4.根据你的观察,探究下面的问题:(1) 已知x²+2xy+2y²+2y+1=0,求2x+y的值;(2)已知a−b=4,ab+c²−6c+13=0求a+b+c的值.【思路点拨】(1)根据题意,可以将题目中的式子化为材料中的形式,从而可以得到x,y的值,再求得2x+y的值;(2)根据a−b=4,ab+c²−6c+13=0,可以得到a,b,c 的值,再求得a+b+c的值.举一反三6 (南通中考)已知A=a+2,B=a²−a+5,C=a²+5a−19,其中a>2.(1) 求证: B−A>0,,并指出 A 与 B 的大小关系;(2)指出A与C哪个大?说明理由.举一反三7 (杭州中考)已知a,b,c 为. △ABC的三边,且满足a²c²−b²c²=a⁴−b⁴,试判断△ABC的形状.过关检测基础夯实1.(自贡中考)把多项式a²−4a因式分解,结果正确的是 ( )A. a(a-4)B.(a+2)(a-2)C. a(a+2)(a-2)D.(a−2)²−42.(桂林中考)因式分解a²−4的结果是( )A.(a+2)(a-2)B.(a−2)²C.(a+2)²D. a(a-2)3.(中山中考)因式分解1−4x²−4y²+8xy,正确的分组是 ( )A.(1−4x²)+(8xy−4y²)B.(1−4x²−4y²)+8xyC.(1+8xy)−(4x²+4y²)D.1−(4x²+4y²−8xy)4.(潍坊中考)下列因式分解正确的是 ( )A.3ax²−6ax=3(ax²−2ax)B.x²+y²=(−x+y)(−x−y)C.a²+2ab−4b²=(a+2b)²D.−ax²+2ax−a=−a(x−1)²5.(聊城中考)因式分解:x(x—2)—x+ 2= .6.(漳州中考)若x²+4x+4=(x+2)(x+n),则n= .7.(湖州中考)因式分解:a³−9a.8.因式分解: a²−b²+a−b.9.(北京中考)因式分解:m²−n²+2m−2n.能力拓展10.(临沂中考)多项式mx²−m与多项式x²−2x+1的公因式是 ( )A. x-1B. x+1C.x²−1D.(x−1)²11.(盘锦中考)下列等式从左到右的变形,属于因式分解的是 ( )A.x²+2x−1=(x−1)²B.(a+b)(a−b)=a²−b²C.x²+4x+4=(x+2)²D.ax²−a=a(x²−1)12.(兰州中考)因式分解: m³−6m²+ 9m= .13.(宜宾中考)因式分解:b²+c²+2bc− a²= .14.(常德中考)多项式ax²−4a与多项式x²−4x+4的公因式是 .15.(杭州中考)化简: (a−b)(a+b)²−(a+b)(a−b)²+2b(a²+b²).16.(茂名中考)因式分解:9(a+b)²−(a−b)².17.(扬州中考)(1) 计算: √9−(−1)2+(−2012)0;(2)因式分解: m³n −9mn.18.(十堰中考)已知::a+b=3, ab=2,求下列各式的值:(1)a²b +ab²;(2)a²+b².19.(济南中考)请你从下列各式中,任选两式作差,并将得到的式子进行因式分解:4a²,(x+y)²,1,9b².综合创新20.设正整数a,b,c>100,满足 c²−1=a²(b²−1),且a>1,则a/b 的最小值是 ( )A. 13B. 12 C. 2 D.3 21.求证:对任何整数x 和y ,下式的值都不会等于33.x⁵+3x⁴y −5x³y²−15x²y³+4xy⁴+12y ⁵.【例题精讲】1.(1)1 (2) -5 ( (3)x⁴+x²+1=(x²+ x +1)(x²−x +1)解析: (1)∵(x +3)(x −4)=x²−x −12,∴--m=-1,∴m=1;(2) 设另一个因式为 (x²+ax +k ),(x +1)(x²+ax +k )= x³+ax²+kx +x²+ax +k =x³+(a + 1)x²+(a +k )x +k,∴x³+(a +1). x²+(a +k )x +k =x³+3x²−3x +k,∴a+1=3,a+k=-3,解得a=2,k=-5;(3)设多项式 x⁴+x²+1能分解成 ①(x²+1)(x²+ax +b )或( ②(x²+x + (1)(x²+ax +1),①(x²+1)(x²+ax + b)=x⁴+ax³+bx²+x²+ax +b =x⁴+ ax³+(b +1)x²+ax +b,∴a =0,b +1=1,b=1,由b+1=1得b=0≠1,矛盾; ②(x²+x +1)(x²+ax +1)=x⁴+(a + 1)x³+(a +2)x²+(a +1)x +1,∴a +1=0,a+2=1,解得a=-1.即. x⁴+x²+ 1=(x²+x +1)(x²−x +1).2.方法一:( (x²+2xy )+x²=2x²+2xy =2x(x+y)方法二:( (y²+2xy )+x²=(x +y )²方法三: (x²+2xy )−(y²+2xy )=x²− y²=(x +y )(x −y )方法四: (y²+2xy )−(x²+2xy )=y²− x²=(y +x )(y −x )3.(1)1 (2)3解析: (1):x 2+2xy +2y 2+2y +1=0,∴(x²+2xy +y²)+(y²+2y +1)=0, ∴(x +y )²+(y +1)²=0,∴x +y =0,y+1=0,解得x=1,y=-1,∴2x+y=2×1+(-1)=1;(2) ∵a-b=4,∴a=b+4,∴将a=b+4代入( ab +c²−6c +13=0,得 b²+4b +c²−6c +13=0, ∴(b²+4b +4)+(c²−6c +9)=0,∴(b +2)²+(c-3)²=0,∴b+2=0,c-3=0,解得b=-2,c=3,∴a=b+4=-2+4=2,∴a+b+c=2-2+3=3.【举一反三】1. 原式: =(a²−4a +4)−b²=(a −2)²−b²=(a-2+b)(a-2-b).2.(1) 原式=x²--6x+9-36=(x-3)²-6²=(x-3-6)(x-3+6)=(x+3)(x-9)(2)原式 =a 2+3a +(32)2−(32)2−28= (a +32)2−1214=(a +32−112)(a +32+ 112)=(a −4)(a +7) (3) 原式 =x²− (2n +1)x +(n +12)2−(n +12)2+n 2+ n =[x −(n +12)]2−(12)2=(x −n − 12−12)(x −n −12+12)=(x −n −1)(x-n)3.(1) C (2) 否(x-2)⁴ (3) 原式= (x²−2x )²+2(x²−2x )+1=(x²−2x + 1)²=(x −1)⁴4.解答一: Y +Z =(3a²+3ab )+(a²+ab )= 4a²+4ab =4a (a +b )解答二: X −Z =(2a²+3ab +b²)−(a²+ ab)=a²+2ab +b²=(a +b )²解答三: Y −X =(3a²+3ab )−(2a²+ 3ab +b²)=a²−b²=(a +b )(a −b )(其他合理答案均可)5.(1) 原式 =x 2−7x +494−494+12= (x −72)2−14=(x −72+12)(x −72− 12)=(x −3)(x −4) (2) 原式 =x²+6x+9-18=(x+3)²-18,最小值为-18(3) 证明:. x²+y²−4x +2y +6=(x − 2)²+(y +1)²+1≥1>0,,则x,y 取任何实数时,多项式 x²+y²−4x +2y +6的值总为正数.6.(1) 证明: B −A =(a²−a +5)−(a + 2)=a²−2a +3=(a −1)²+2>0,所以B>A; ( (2)C −A =a²+5a −19−a −2=a²+4a-21=(a+7)(a--3),因为a>2,所以a+7>0,当2<a<3时,A>C;当a=3时,A=C;当a>3时,A<C.7.等腰三 角形或直角三 角形 解析: ∴a²c²−b²c²=a⁴−b⁴,∴c²(a²−b²)= (a²+b²)(a²−b²),∴c²=a²+b²或 a²=b²,∴△ABC 是等腰三角形或直角三角形.【过关检测】1. A2. A3. D4. D 解析:3ax²-6ax=3ax(x-2),A 错误; x²+y²无法因式分解,B 错误; a²+ 2ab −4b²无法因式分解,C 错误.5.(x--2)(x-1)6. 2 解析: ∴(x +2)(x +n )=x²+(n +2)x+2n,∴n+2=4,2n=4,解得n=2.7. a(a+3)(a-3)解析:原式 =a(a²−9)=a(a+3)(a-3).8.(a-b)(a+b+1)解析:原式 =(a²−b²)+(a-b)=(a+b)(a-b)+(a-b)=(a-b)(a+b+1).9.(m-n)(m+n+2) 解析:原式 =(m²−n²)+(2m--2n)=(m+n)(m--n)+2(m--n)=(m-n)(m+n+2).10. A 解析:mx²-m=m(x--1)(x+1), x²−2x +1=(x −1)²,多项式 mx²−m 与多项式 x²−2x +1的公因式是x-1.11. C 解析: x²+2x −1≠(x −1)²,, A 错误; a²−b²=(a +b )(a −b )不是因式分解,B 错误;( ax²−a =a (x²−1)=a (x +1)(x −1),分解不完全,D 错误.12. m(m-3)² 解析:原式; =m(m²−6m + 9)=m (m −3)².13.(b+c+a)(b+c-a) 解析:原式=(b+ c)²−a²=(b+c+a)(b+c−a).14. x--2 解析: ∴ax²−4a=a(x²−4)=a(x+2)(x−2),x²−4x+4=(x−2)²,∴多项式ax²−4a与多项式x²−4x+4的公因式是x-2.15. 4a²b 解析:( (a−b)(a+b)²−(a+b)(a−b)²+2b(a²+b²)=(a−b)(a+b).(a+b−a+b)+2b(a²+b²)=2b(a²−b²)+2b(a²+b²)=2b(a²−b²+a²+b²)=4a²b.16.4(2a+b)(a+2b) 解析: 9(a+b)²−(a−b)²=[3(a+b)]²−(a−b)²=[3(a+b)+(a-b)][3(a+b)-(a-b)]=(4a+2b)(2a+4b)=4(2a+b)(a+2b).17.(1) 3 (2) mn(m+3)(m-3)解析:(1)√9−(−1)2+(−2012)0=3−1+1=3;(2)m³n−9mn=mn(m²−9)=mn(m+3)(m-3).18.(1) 6 (2)5解析:( (1)a²b+ab²=ab(a+b)=2×3=;(2):(a+b)²=a²+2ab+b²,∴a²+( b²=(a+b)²−2ab=3²−2×2=5.19. 4a²--9b²=(2a+3b)(2a-3b) (x+y)²-1=(x+y+1)(x+y-1) (x+y)²−4a²=(x+y+2a)(x+y−2a)(x+y)²−9b²=(x+y+3b)(x+y−3b)4a²−(x+y)²=[2a+(x+y)][2a−(x+y)]=(2a+x+y)(2a−x−y)9b²−(x+y)²=[3b+(x+y)][3b−(x+y)]=(3b+x+y)(3b−x−y)1−(x+y)²=[1+(x+y)][1−(x+y)]=(1+x+y)(1-x--y)20. C 解析: ∴c²−1=a²(b²−1),正整数a,b,c>100,∴c²=a²(b²−1)+1=a²b²−a²+1<a²b²,∴c<ab,∴c≤ab--1, ∴a²b²−a²+1=c²≤(ab−1)²,化简得a2≥2ab,∴a≥2.b21. 证明:原式=(x⁵+3x⁴y)−(5x³y²+15x²y³)+(4xy⁴+12y⁵)=x⁴(x+3y)−5x²y²(x+3y)+4y⁴(x+3y)=(x+ 3y)(x⁴−5x²y²+4y⁴)=(x+3y).(x²−4y²)(x²−y²)=(x+3y)(x−2y)(x+2y)(x+y)(x-y).当y=0时,原式=x⁵≠33;;当y≠0时,x+3y,x-y,x+y,x-2y,x+2y为互不相同的整数,而33 不可能分解为5个不同因数的积. ∴x⁵+3x⁴y−5x³y²−15x²y³+4xy⁴+12y⁵的值不会等于33.。
中考数学总复习《整式的乘法与因式分解》专项提升练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列运算正确的是()A.(ab)5=ab5B.a8÷a2=a6C.(a2)3=a5D.a2⋅a3=a62.已知2m=a,2n=b,m,n为正整数,则2m+n为()A.a+b B.ab C.2ab D.a2+b23.若(x2−mx+1)(x−3)展开后不含x的一次项,则m的值是()A.3 B.1 C.−13D.04.多项式(x2−2x+1)与多项式(x−1)(x+1)的公因式是( )A.x−1B.x+1C.x2+1D.x25.下列代数式变形中,属于因式分解是()A.m(m−2)=m2−2m B.m2−2m+1=m(m−2)+1C.m2−1=(m+1)(m−1)D.m2−2+1m2=(m−1m)26.如图,阴影部分是在边长为a的大正方形中剪去一个边长为b的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形.给出下列2种割拼方法,其中能够验证平方差公式的是()A.①B.②C.①②D.①②都不能7.已知x−1x =2,则x2+1x2的值为()A.2 B.4 C.6 D.88.如果二次三项式x2−ax−9(a为整数)在整数范围内可以分解因式,那么a可取值的个数是()A.2个B.3个C.4个D.无数个二、填空题9.如果a2⋅a m=a6,则m=.10.在实数范围内分解因式:x2−4x−2=.11.当4x2+2kx+25是一个完全平方式,则k的值是12.已知a−b=8,ab=−15则a2+b2=.13.因式分解x2+ax+b,甲看错了a的值,分解的结果是(x+6)(x−2),乙看错了b的值,分解的结果为(x−8)(x+4),那么x2+ax+b分解因式正确的结果为.三、解答题14.计算:(1)(2)15.分解因式:(1)4x2+20x+25;(2)(a2−9b2)+(a−3b).16.已知m+n=3,mn=2.(1)当a=2时,求a m⋅a n−(a m)n的值;(2)求(m−n)2+(m−4)(n−4)的值.17.为创建文明校园环境,高校长制作了“节约用水”“讲文明,讲卫生”等宣传标语,标语由如图①所示的板材裁剪而成,其为一个长为2m,宽为2n的长方形板材,将长方形板材沿图中虚线剪成四个形状和大小完全相同的小长方形标语,在粘贴过程中,同学们发现标语可以拼成图②所示的一个大正方形.(1)用两种不同方法表示图②中小正方形(阴影部分)面积:方法一:S小正方形=;方法二:S小正方形=;(2)(m+n)2,(m−n)2,4mn这三个代数式之间的等量关系为;(3)根据(2)题中的等量关系,解决如下问题:①已知:a−b=5,ab=−6求:(a+b)2的值;②已知:a−1a=1,求:(a+1a)2的值.18.阅读理解应用待定系数法:设某一多项式的全部或部分系数为未知数、利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值.待定系数法可以应用到因式分解中,例如问题:因式分解x3−1.因为x3−1为三次多项式,若能因式分解,则可以分解成一个一次多项式和一个二次多项式的乘积.故我们可以猜想x3−1可以分解成x3−1=(x−1)(x2+ax+b),展开等式右边得:x3+(a−1)x2+(b−a)x−b,根据待定系数法原理,等式两边多项式的同类项的对应系数相等:a−1= 0,b−a=0,−b=−1可以求出a=1,b=1.所以x3−1=(x−1)(x2+x+1)(1)若x取任意值,等式x2+2x+3=x2+(3−a)x+3恒成立,则a=;(2)已知多项式x4+x2+1有因式x2+x+1,请用待定系数法求出该多项式的另一因式.(3)请判断多项式x4−x2+1是否能分解成两个整系数二次多项式的乘积,并说明理由.参考答案1.B2.B3.C4.A5.C6.C7.C8.A9.410.(x−2+√6)(x−2−√6)11.±1012.3413.(x-6)(x+2)14.(1)解:原式=(2)解:原式=15.(1)解:4x2+20x+25=(2x)2+2⋅2x⋅5+52=(2x+5)2(2)解:(a2−9b2)+(a−3b)=[a2−(3b)2]+(a−3b)=(a+3b)(a−3b)+(a−3b)=(a−3b)(a+3b+1)16.(1)解:∵m+n=3mn=2∴a m⋅a n−(a m)n=a m+n−a mn=a3−a2∵a=2∴原式=23−22=8−4=4;(2)解:∵m +n =3∴(m −n)2=(m +n)2−4mn =32−4×2=1 ∴(m −n)2+(m −4)(n −4)=1+mn −4(m +n)+16=1+2−4×3+16=7.17.(1)(m −n)2;(m +n)2−4mn(2)(m +n)2=(m −n)2+4mn(3)(3)①a −b =5 ab =−6∴(a +b)2=(a −b)2+4ab=52+4×(−6)=25+(−24)=1;②(a +1a )2=(a −1a )2+4⋅a ⋅1a=12+4=1+4=5.18.(1)1(2)解:设x 4+x 2+1=(x 2+ax +1)(x 2+x +1)=x 4+(a +1)x 3+(a +2)x 2+(a +1)x +1∴a +1=0解得a =−1;∴多项式的另一因式是x 2−x +1;(3)解:不能,理由:∵设x 4−x 2+1=(x 2+ax +1)(x 2+bx +1)=x 4+(a +b)x 3+(ab +2)x 2+(a +b)x +1∴a +b =0 ab +2=−1解得:a =√3、b =−√3或a =−√3、b =√3 ∴系数不是整数∴多项式x 4−x 2+1是不能分解成的两个整系数二次多项式的乘积。
2024-2025学年人教版数学八年级上册章节真题汇编检测卷(提优)第14章整式的乘法与因式分解考试时间:120分钟试卷满分:100分难度系数:0.54姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•金沙县期末)下列从左到右的变形,是因式分解的是()A.(3﹣x)(3+x)=9﹣x2B.a2+2a+1=a(a+2)+1C.a3+2a2+a=a(a2+2a)D.m3﹣mn2=m(m+n)(m﹣n)2.(2分)(2023春•城关区校级期中)下列各式从左到右,是因式分解的是()A.(y﹣1)(y+1)=y2﹣1B.x2y+xy2﹣1=xy(x+y)﹣1C.(x﹣2)(x﹣3)=(3﹣x)(2﹣x)D.x2﹣4x+4=(x﹣2)23.(2分)(2023春•衢江区期末)如(x+m)与(x+4)的乘积中不含x的一次项,则m的值为()A.﹣4 B.4 C.0 D.14.(2分)(2022秋•黄冈期末)若(a2+b2+1)(a2+b2﹣1)=35,则a2+b2=()A.3 B.6 C.±3 D.±65.(2分)(2023春•成县期末)下列各式中,从左到右的变形是因式分解的是()A.(x+1)(x﹣1)=x2﹣1 B.x2﹣4x+4=x(x﹣4)+4C.(x+3)(x﹣4)=x2﹣x﹣12 D.x2﹣4=(x+2)(x﹣2)6.(2分)(2022秋•城关区校级期末)若a m=4,a n=7,则a m+n的值为()A.3 B.11 C.28 D.无法计算7.(2分)(2023春•连平县期末)下面四个整式中,不能表示图中(图中图形均为长方形)阴影部分面积的是()A.﹣x2+5x B.x(x+3)+6C.3(x+2)+x2D.(x+3)(x+2)﹣2x8.(2分)(2023•东莞市校级一模)已知3m=2,3n=5,则32m+n=()A.B.10 C.9 D.209.(2分)(2022秋•鼓楼区校级期末)若二次三项式ax2+bx+c=(a1x+c1)(a2x+c2),则当a>0,b<0,c >0时,c1,c2的符号为()A.c1>0,c2>0 B.c1<0,c2<0 C.c1>0,c2<0 D.c1,c2同号10.(2分)(2023•安徽模拟)若实数a、b满足a2+b2=1,则ab+a+3b的最小值为()A.﹣3 B.﹣2 C.1 D.3评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•建昌县期末)分解因式:mn2+6mn+9m=.12.(2分)(2023春•高港区期中)若x2+mx+16是完全平方式,则m的值是.13.(2分)(2023春•福山区期中)如图1.将一张长方形纸板四角各切去一个同样的正方形,制成如图2的无盖纸盒,若纸盒的容积为4a2b,则图2中纸盒底部长方形的周长为.(2023春•兴化市期末)已知二次三项式x2+mx+9能用完全平方公式分解因式,则m的值为.14.(2分)(2023春•靖江市期末)若(x+2)(x2﹣ax+5)的乘积中不含x的一次项,则a=.(2分)15.16.(2分)(2023春•江都区期中)若3x=4,3y=5,则3x﹣y=.17.(2分)(2022秋•夏邑县期末)若x2+2(m﹣3)x+16是完全平方式,则m的值为.18.(2分)(2022秋•番禺区期末)若(x﹣1)(x+2)=x2+ax﹣2,则a=.19.(2分)(2023春•达川区校级期末)多项式x2+mx+6因式分解得(x﹣2)(x+n),则m=.20.(2分)(2021秋•卢龙县校级期末)计算:15(24+1)(28+1)(216+1)(232+1)=.评卷人得分三.解答题(共8小题,满分60分)21.(6分)(2023春•永定区期末)分解因式:(1)﹣2x3+8xy2 (2)3a2﹣12a+1222.(6分)(2022秋•魏都区校级期末)通常,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.例如:如图1是一个长为2a,宽为2b的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图2的形状拼成一个正方形.请解答下列问题:(1)图2中阴影部分的正方形的边长是.(2)请用两种不同的方法求图2中阴影部分的面积:方法1:;方法2:.(3)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是.(4)根据(3)中的等量关系解决如下问题:若x+y=6,xy=,则(x﹣y)2=.23.(8分)(2022秋•陕州区期末)如图,有一块长(3a+b)米,宽(2a+b)米的长方形广场,园林部门要对阴影区域进行绿化,空白区域进行广场硬化,阴影部分是边长为(a+b)米的正方形.(1)计算广场上需要硬化部分的面积;(2)若a=30,b=10,求硬化部分的面积.24.(8分)(2022秋•射洪市期末)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是.A.a2﹣2ab+b2=(a﹣b)2B.a2﹣b2=(a+b)(a﹣b)C.a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下面试题:已知x2﹣4y2=12,x+2y=4,求x和y的值;25.(8分)(2023春•金水区校级期中)(1)已知2x+5y﹣3=0,试求4x×32y的值.(2)已知2m=3,2n=5,求24m+2n的值.26.(8分)(2022春•阳谷县期中)阅读,学习和解题.(1)阅读和学习下面的材料:比较355,444,533的大小.分析:小刚同学发现55,44,33都是11的倍数,于是把这三个数都转化为指数为11的幂,然后通过比较底数的方法,比较了这三个数的大小.解法如下:解:∵355=(35)11=24311,444=(44)11=25611,533=(53)11=12511,∴533<355<444.学习以上解题思路和方法,然后完成下题:比较34040,43030,52020的大小.(2)阅读和学习下面的材料:已知a m=3,a n=5,求a3m+2n的值.分析:小刚同学发现,这些已知的和所求的幂的底数都相同,于是逆用同底数幂和幂的乘方公式,完成题目的解答.解法如下:解:∵a3m=(a m)3=33=27,a2n=(a n)2=52=25,∴a3m+2n=a3m•a2n=27×25=675.学习以上解题思路和方法,然后完成下题:已知a m=2,a n=3,求a2m+3n的值.(3)计算:(﹣16)505×(﹣0.5)2021.27.(8分)(2022秋•怀柔区期末)小柔在进行因式分解时发现一个现象,一个关于x的多项式x2+ax+b若能分解成两个一次整式相乘的形式(x+p)(x+q),则当x+p=0或x+q=0时原多项式的值为0,因此定义x=﹣p和x=﹣q为多项式x2+ax+b的0值,﹣p和﹣q的平均值为轴值.例:x2﹣2x+3=(x﹣3)(x+1),x﹣3=0或x+1=0时x2﹣2x+3=0,则x=3和x=﹣1为x2﹣2x+3的0值,3和﹣1的平均值1为x2﹣2x+3的轴值.(1)x2﹣4的0值为,轴值为;(2)若x2+ax+4的0值只有一个,则a=,此时0值与轴值相等;(3)x2﹣bx(b>0)的0值为x1,x2(x1<x2),轴值为m,则x1=,若x2﹣6x+m的0值与轴值相等,则b=.28.(8分)(2021秋•定西期末)我们在课堂上学习了运用提取公因式法、公式法等分解因式的方法,但单一运用这些方法分解某些多项式的因式时往往无法分解.例如:a2+6ab+9b2﹣1,通过观察可知,多项式的前三项符合完全平方公式,通过变形后可以与第四项结合再运用平方差公式分解因式,解题过程如下:a2+6ab+9b2﹣1=(a+3b)2﹣1=(a+3b+1)(a+3b﹣1),我们把这种分解因式的方法叫做分组分解法.利用这种分解因式的方法解答下列各题:(1)分解因式:x2﹣y2﹣2x+1;(2)若△ABC三边a、b、c满足a2﹣2bc+2ac﹣ab=0,试判断△ABC的形状,并说明理由.。
专题02整式、乘法公式、因式分解【中考考向导航】目录【直击中考】 (1)【考向一整式的有关概念】 (1)【考向二整式的运算】 (4)【考向三与乘法公式有关的运算】 (8)【考向四因式分解】 (11)【直击中考】【考向一整式的有关概念】【答案】21 n n【分析】第一个图形有1根木料,第二个图形有2(21)122根木料,第三个图形有A.9B.10C.11D.12【答案】B【分析】列举每个图形中H的个数,找到规律即可得出答案.【详解】解:第1个图中H的个数为4,第2个图中H的个数为4+2,【考向二整式的运算】例题1.(2022·湖南永州·统考中考真题)若单项式3m x y 的与62x y 是同类项,则m ______.【答案】6【分析】由题意直接根据同类项的概念,进行分析求解即可.【详解】解:∵单项式3m x y 与62x y 是同类项,∴6m .故答案为:6.【点睛】本题主要考查同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”即相同字母的指数相同.例题2.(2022·青海西宁·统考中考真题) 2332x xy =_________【答案】336x y 【分析】根据积的乘方法则计算即可.【详解】解: 2332x xy =336x y ,故答案为:336x y .【点睛】本题考查了积的乘方,解题的关键是掌握运算法则.【变式训练】1.(2022·贵州黔西·统考中考真题)计算 232x x 正确的是()A .36xB .312xC .318x D .312x 【答案】C【分析】先算积的乘方,再算同底数幂的乘法,即可得.【详解】 232x x =239·218x x x 故选:C .【点睛】本题考查了单项式乘单项式,积的乘方,同底数幂的乘法,能灵活运用法则进行计算是解题的关键.2.(2022·西藏·统考中考真题)下列计算正确的是()A .2ab ﹣ab =abB .2ab +ab =2a 2b 2C .4a 3b 2﹣2a =2a 2bD .﹣2ab 2﹣a 2b =﹣3a 2b 2【答案】A【详解】A 、2ab ﹣ab =(2﹣1)ab =ab ,选项正确,符合题意;B 、2ab +ab =(2+1)ab =3ab ,选项不正确,不符合题意;C 、4a 3b 2与﹣2a 不是同类项,不能合并,选项不正确,不符合题意;D 、﹣2ab 2与﹣a 2b 不是同类项,不能合并,选项不正确,不符合题意.故选A .【点睛】本题考查整式的加减.在计算的过程中,把同类项进行合并,不能合并的直接写在结果中即可.3.(2022·青海·统考中考真题)下列运算正确的是()A .235347x x x B . 222x y x y C . 2232394x x x D .224212xy xy xy y 【答案】D【分析】根据合并同类项,完全平方公式,平方差公式,因式分解计算即可.【详解】A .选项,3x 2与4x 3不是同类项,不能合并,故该选项计算错误,不符合题意;B .选项,原式=2222x y x xy y ,故该选项计算错误,不符合题意;C .选项,原式=249x ,故该选项计算错误,不符合题意;D .选项,原式= 212xy y ,故该选项计算正确,符合题意;故选:D .【点睛】本题考查了合并同类项,完全平方公式,平方差公式,因式分解,注意完全平方公式展开有三项是解题的易错点.4.(2022·甘肃武威·统考中考真题)计算:323a a _____________.【答案】53a 【分析】根据单项式的乘法直接计算即可求解.【详解】解:原式=323a a 53a .故答案为:53a .【点睛】本题考查了单项式的乘法,正确的计算是解题的关键.5.(2022·内蒙古包头·中考真题)若一个多项式加上2328xy y ,结果得2235xy y ,则这个多项式为___________.【答案】23y xy 【分析】设这个多项式为A ,由题意得:22(328)235A xy y xy y ,求解即可.【详解】设这个多项式为A ,由题意得:22(328)235A xy y xy y ,22222(235)(328)2353283A xy y xy y xy y xy y y xy ,故答案为:23y xy .【点睛】本题考查了整式的加减,准确理解题意,列出方程是解题的关键.6.(2022·山东威海·统考中考真题)幻方的历史很悠久,传说最早出现在夏禹时代的“洛书”.把洛书用今天的数学符号翻译出来,就是一个三阶幻方(如图1),将9个数填在3×3(三行三列)的方格中,如果满足每个横行、每个竖列、每条对角线上的三个数字之和都相等,就得到一个广义的三阶幻方.图2的方格中填写了一些数字和字母,若能构成一个广义的三阶幻方,则mn =_____.【答案】1【分析】由第二行方格的数字,字母,可以得出第二行的数字之和为m ,然后以此得出可知第三行左边的数字为4,第一行中间的数字为m -n +4,第三行中间数字为n -6,第三行右边数字为,再根据对角线上的三个数字之和相等且都等于m 可得关于m ,n 方程组,解出即可.【详解】如图,根据题意,可得【考向三与乘法公式有关的运算】例题:(2022·江苏盐城·统考中考真题)先化简,再求值: 2443x x x ,其中2310x x .【答案】2267x x ,-9【分析】根据平方差公式和完全平方公式可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式221669x x x 2267x x .2310x x ∵,231x x ,原式 22372179x x 【点睛】本题考查整式的混合运算-化简求值,解答本题的关键是明确整式化简求值的方法.【变式训练】1.(2022·甘肃兰州·统考中考真题)计算: 22x y ()A .2244x xy yB .2224x xy yC .2242x xy y D .224x y 【答案】A【分析】根据完全平方公式展开即可.【详解】解:原式=2244x xy y 故选:A .【点睛】本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.2.(2022·上海·统考中考真题)下列运算正确的是……()A .a ²+a ³=a 6B .(ab )2=ab 2C .(a +b )²=a ²+b ²D .(a +b )(a -b )=a ²-b 2【答案】D【分析】根据整式加法判定A ;运用积的乘方计算关判定B ;运用完全平方公式计算并判定C ;运用平方差公式计算并判定D .【详解】解:A .a ²+a ³没有同类项不能合并,故此选项不符合题意;B .(ab )2=a 2b 2,故此选项不符合题意;C .(a +b )²=a ²+2ab +b ²,故此选项不符合题意D .(a +b )(a -b )=a ²-b 2,故此选项符合题意故选:D .【点睛】本题考查整理式加法,积的乘方,完全平方公式,平方差公式,熟练掌握积的乘方运算法则、完全平方公式、平方差公式是解题的关键.3.(2022·江苏南通·统考中考真题)已知实数m ,n 满足222 m n mn ,则2(23)(2)(2) m n m n m n 的【答案】(1)266a ab ;(2)T =6【分析】(1)根据整式的四则运算法则化简即可;(2)由方程有两个相等的实数根得到判别式△=4a ²-4(-ab +1)=0即可得到21a ab ,整体代入即可求解.(1)解:T = 222226949a ab b a b a=266a ab ;(2)解:∵方程2210x ax ab 有两个相等的实数根,∴ 22410a ab ,∴21a ab ,则T = 26616a ab .【点睛】本题考查了整式的四则运算法则、一元二次方程的实数根的判别、整体思想,属于基础题,熟练掌握运算法则及一元二次方程的根的判别式是解题的关键.【考向四因式分解】例题:(2022·贵州黔东南·统考中考真题)分解因式:2202240442022x x _______.【答案】 220221x ## 220221x 【分析】先提公因式,然后再根据完全平方公式可进行因式分解.【详解】解:原式= 2220222120221x x x ;故答案为 220221x .【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键.【变式训练】1.(2022·山东济宁·统考中考真题)下面各式从左到右的变形,属于因式分解的是()A .21(1)1x x x x B .221(1)x x C .26(3)(2)x x x x D .2(1)x x x x【答案】C【分析】根据因式分解的定义对选项逐一分析即可.【详解】把一个多项式化成几个整式积的形式,这种变形叫做因式分解.A 、右边不是整式积的形式,故不是因式分解,不符合题意;B 、形式上符合因式分解,但等号左右不是恒等变形,等号不成立,不符合题意;C 、符合因式分解的形式,符合题意;D 、从左到右是整式的乘法,从右到左是因式分解,不符合题意;故选C .【点睛】本题考查因式分解,解决本题的关键是充分理解并应用因式分解的定义.2.(2022·广西柳州·统考中考真题)把多项式a 2+2a 分解因式得()A .a (a +2)B .a (a ﹣2)C .(a +2)2D .(a +2)(a ﹣2)【答案】A【分析】运用提公因式法进行因式分解即可.【详解】22(2)a a a a 故选A【点睛】本题主要考查了因式分解知识点,掌握提公因式法是解题的关键.3.(2022·广西河池·统考中考真题)多项式244x x 因式分解的结果是()A .x (x ﹣4)+4B .(x +2)(x ﹣2)C .(x +2)2D .(x ﹣2)2【答案】D【分析】根据完全平方公式进行因式分解即可.【详解】解: 22442x x x .故选:D .【点睛】本题主要考查了公式法分解因式,理解完全平方公式是解答关键.4.(2022·江苏扬州·统考中考真题)分解因式:233x _____.【答案】 311x x ##311x x 【分析】先提取公因式,再用平方差公式即可求解.【详解】233x231x 311x x ,故答案: 311x x .【点睛】本题考查了用提公因式法和平方差公式分解因式的知识.把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.因式分解是恒等变形.因式分解必须分解到每一个因式都不能再分解为止.5.(2022·四川绵阳·统考中考真题)因式分解:32312x xy _________.【答案】322x x y x y 【分析】先提取公因式3x ,然后根据平方差公式因式分解即可求解.【详解】解:原式=2234322x x y x x y x y .故答案为: 322x x y x y .【点睛】本题考查了因式分解,正确的计算是解题的关键.6.(2022·广东广州·统考中考真题)分解因式:2321 a ab ________【答案】37 a a b 【分析】直接提取公因式3a 即可得到结果.【详解】解: 232137 a ab a a b .故答案为:37 a a b 【点睛】本题考查因式分解,解本题的关键是熟练掌握因式分解时有公因式要先提取公因式,再考虑是否可以用公式法.7.(2022·山东济南·统考中考真题)因式分解:244a a ______.【答案】 22a 【分析】原式利用完全平方公式分解即可.【详解】解:244a a 22a .故答案为: 22a .【点睛】此题考查了公式法的运用,熟练掌握因式分解的方法是解本题的关键.8.(2022·湖北恩施·统考中考真题)因式分解:3269a a a ______.【答案】2(3)a a 【分析】先提公因式a ,再利用完全平方公式进行因式分解即可.【详解】解:原式22(69)(3)a a a a a ,故答案为:2(3)a a .【点睛】本题考查提公因式法、公式法分解因式,解题的关键是掌握完全平方公式的结构特征.9.(2022·贵州黔西·统考中考真题)已知2ab ,3a b ,则22a b ab 的值为_____.【答案】6【分析】将22a b ab 因式分解,然后代入已知条件即可求值.【详解】解:22a b abab a b 236 .故答案为:6【点睛】本题考查了因式分解的应用,熟练掌握因式分解的方法是解题的关键.10.(2022·青海西宁·统考中考真题)八年级课外兴趣小组活动时,老师提出了如下问题:将2346a ab b 因式分解.【观察】经过小组合作交流,小明得到了如下的解决方法:解法一:原式234623223232a ab b a b b b a 解法二:原式24362232223a ab b a b a a b 【感悟】对项数较多的多项式无法直接进行因式分解时,我们可以将多项式分为若干组,再利用提公因式法、公式法达到因式分解的目的,这就是因式分解的分组分解法.分组分解法在代数式的化简、求值及方程、函数等学习中起着重要的作用.(温馨提示:因式分解一定要分解到不能再分解为止)【类比】(1)请用分组分解法将22x a x a 因式分解;【挑战】(2)请用分组分解法将222ax a ab bx b 因式分解;【应用】(3)“赵爽弦图”是我国古代数学的骄傲,我们利用它验证了勾股定理.如图,“赵爽弦图”是由四个全等的直角三角形围成的一个大正方形,中间是一个小正方形.若直角三角形的两条直角边长分别是a 和 b a b ,斜边长是3,小正方形的面积是1.根据以上信息,先将432234222a a b a b ab b 因式分解,再求值.【答案】(1)1x a x a (2)a b a b x (3) 222a b a b ,9【分析】(1)直接将前两项和后两项组合,利用平方差公式再提取公因式,进而分解因式即可;(2)先分组,利用完全平方公式再提取公因式,进而分解因式即可;(3)分组,先提取公因式,利用完全平方公式分解因式,再由勾股定理以及面积得到229a b , 21a b ,整体代入得出答案即可.【详解】(1)解:22x a x a22x a x ax a x a x a 1x a x a ;(2)解:222ax a ab bx b222a ab b ax bx 2a b x a b a b a b x ;(3)解:432234222a a b a b ab b 422433222a a b b a b ab222222a b ab a b 22222a b a ab b 222a b a b ,∴根据题意得229a b , 21a b ,∴原式9 .【点睛】此题主要考查了分组分解法以及、提取公因式法、公式法分解因式以及勾股定理的应用,正确分组再运用公式法分解因式是解题关键.。
因式分解60道压轴题型专训(6大题型)【题型目录】题型一 已知因式分解的结果求参数 题型二 运用公式法分解因式题型三 因式分解在有理数简算中的应用 题型四 十字相乘法 题型五 分组分解法 题型六 因式分解的应用【压轴题型一 已知因式分解的结果求参数】1.已知多项式481x b +可以分解为()()()22492332a b a b b a ++−,则x 的值是( )A .416aB .416a −C .24aD .24a −【答案】B【分析】本题可根据题中条件,多项式分解为单项式,用分解出来的单项式进行相乘后,即可求出x 的值.【详解】解:根据题意可得:()()()224492332=81ab a b b a x b++−+,∵()()()22492332a b a b b a ++− ()()()22=492323a b a b a b −++− ()()2222=4949a b ab −+−()44=1681a b −−44=1681a b −+,∴4=16x a −, 故选:B .【点睛】本题考查因式分解的基本知识,学生需掌握因式分解的基本知识,做此题就不难.2.如果把二次三项式22x x c ++分解因式得()()2213x x c x x ++=−+,那么常数c 的值是( )A .3B .-3C .2D .-2【答案】B【分析】将因式分解的结果用多项式乘法的展开,其结果与二次三项式比较即可求解. 【详解】解:∵()()2213x x c x x ++=−+∴22223x x c x x ++=+−故3c =− 故选B【点睛】本题考查了因式分解,多项式的乘法运算,掌握多项式乘法与因式分解的关系是解题的关键. 3.若22266−+++x y xy kx 能分解成两个一次因式的积,则整数k= . 【答案】7±【分析】根据题意设多项式可以分解为:(x+ay+c )(2x+by+d ),则2c+d=k ,根据cd=6,求出所有符合条件的c 、d 的值,然后再代入ad+bc=0求出a 、b 的值,与2a+b=1联立求出a 、b 的值,a 、b 是整数则符合,否则不符合,最后把符合条件的值代入k 进行计算即可.【详解】解:设22266−+++x y xy kx 能分解成:(x +ay +c)(2x +by +d), 即2x2+aby2+(2a +b )xy +(2c +d)x +(ad +bc)y +cd , ∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad +bc=6a +b=0,与2a +b=1联立求解得1432a b ⎧=−⎪⎪⎨⎪=⎪⎩, 或c=6,d=1时,ad +bc=a +6b=0,与2a +b=1联立求解得611111a b ⎧=⎪⎪⎨⎪=−⎪⎩, ②c=2,d=3时,ad +bc=3a +2b=0,与2a +b=1联立求解得23a b =⎧⎨=−⎩,或c=3,d=2时,ad +bc=2a +3b=0,与2a +b=1联立求解得3412a b ⎧=⎪⎪⎨⎪=−⎪⎩, ③c=-2,d=-3时,ad +bc=-3a -2b=0,与2a +b=1联立求解得23a b =⎧⎨=−⎩,或c=-3,d=-2,ad +bc=-2a -3b=0,与2a +b=1联立求解得3412a b ⎧=⎪⎪⎨⎪=−⎪⎩, ④c=-1,d=-6时,ad +bc=-6a -b=0,与2a +b=1联立求解得1432a b ⎧=−⎪⎪⎨⎪=⎪⎩, 或c=-6,d=-1时,ad +bc=-a -6b=0,与2a +b=1联立求解得611111a b ⎧=⎪⎪⎨⎪=−⎪⎩, ∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c +d=2×2+3=7,k=2c +d=2×(-2)+(-3)=-7, ∴整数k 的值是7,-7. 故答案为:7±.【点睛】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a 、b 进行验证,注意不要漏解.4.已知多项式4x mx n ++能分解为()()2223x px q x x +++−,则p = ,q = .【答案】 2−; 7.【分析】把()()2223xpx q x x +++−展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.【详解】解:∵()()2223xpx q x x +++−432322222333x px qx x px qx x px q =+++++−−−()()()432223233x p x q p x q p x q=++++−+−−4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+−=⎩,解得:27p q =−⎧⎨=⎩.故答案为:2−,7.【点睛】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可. 5.【例题讲解】因式分解:31x −.31x −为三次二项式,若能因式分解,则可以分解成一个一次二项式和一个二次多项式的乘积.故我们可以猜想31x −可以分解成()()21x x ax b −++,展开等式右边得:()32(1)x a x b a x b +−+−−,()()33211x x a x b a x b ∴−=+−+−−恒成立.∴等式两边多项式的同类项的对应系数相等,即1001a b a b −=⎧⎪−=⎨⎪−=−⎩,解得11a b =⎧⎨=⎩,()()32111x x x x ∴−=−++.【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法. 【学以致用】(1)若()()21234x mx x x −−=+−,则m =________;(2)若3233x x x k +−+有一个因式是1x +,求k 的值及另一个因式. 【答案】(1)1(2)5k =−,225x x +−【分析】(1)将()()34x x +−展开,再根据题干的方法即可求解;(2)设多项式3233x x x k +−+另一个因式为()2xax b ++,利用题干给出的待定系数法求解即可.【详解】(1)∵()()21234x mx x x −−=+−,∴221212x mx x x −−=−−,∴1m =,故答案为:1;(2)设多项式3233x x x k +−+另一个因式为()2x ax b ++,则()()()()322323311x x x k x x ax b x a x a b x b+−+=+++=+++++13a ∴+=,3a b +=−,b k =,2a ∴=,=5b −,5k ∴=−,即另一个式子为:225x x +−.【点睛】本题主要考查了多项式的乘法,因式分解等知识,掌握题干给出的待定系数法,是解答本题的关键.6.仔细阅读下面例题,解答问题例题:已知二次三项式24x x m −+有一个因式是()3x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()243x x m x x n −+=++则()22433x x m x n x n −+=+++343n m n +=−⎧∴⎨=⎩解得7n =−,21m =−∴另一个因式为()7x −,m 的值为21−.问题:(1)已知二次三项式26x x a ++有一个因式是()5+x ,求另一个因式以及a 的值: (2)已知二次三项式22x x p −−有一个因式是()23x +,求另一个因式以及p 的值. 【答案】(1)另一个因式为1x +,a 的值为5 (2)另一个因式为()2x −,p 的值为6【分析】(1)设另一个因式为()x n +,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论; (2)设另一个因式为()x q +,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论.【详解】(1)解:设另一个因式为()x n +,得()()265x x a x x n ++=++,则()22655x x a x n x n++=+++,565n n a +=⎧∴⎨=⎩,解得:15n a =⎧⎨=⎩,∴另一个因式为1x +,a 的值为5;(2)解:设另一个因式为()x q +,得()()2223x x p x q x −−=++,则()2222233x x p x q x q−−=+++,2313q q p +=−⎧∴⎨=−⎩,解得:26q p =−⎧⎨=⎩, ∴另一个因式为()2x −,p 的值为6.【点睛】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是解题的关键. 7.1637年笛卡尔(R .Descartes ,1596-1650)在其《几何学》中,首次应用待定系数法最早给出因式分解定理.关于笛卡尔的“待定系数法”原理,举例说明如下: 分解因式:3235x x x ++−.解:观察可知,当1x =时,原式0=. ∴原式可分解为()1x −与另一个整式的积.设另一个整式为2x bx c ++.则()()322351x x x x x bx c ++−=−++, ∵()()()()23211x x bx c x b x c b x c −++=+−+−−,∴()()3232351x x x x b x c b x c ++−=+−+−−∵等式两边x 同次幂的系数相等,则有:1135b c b c −=⎧⎪−=⎨⎪−=−⎩,解得25b c =⎧⎨=⎩.∴()()32235125x x x x x x ++−=−++.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)根据以上材料的方法,分解因式3223x x +−的过程中,观察可知,当x =______时,原式0=,所以原式可分解为______与另一个整式的积.若设另一个整式为2x bx c ++.则b =______,c =______. (2)已知多项式31x ax ++(a 为常数)有一个因式是1x +,求另一个因式以及a 的值. 下面是小明同学根据以上材料方法,解此题的部分过程,请帮小明完成他的解答过程.解:设另一个因式为2x bx c ++,则()()3211x ax x x bx c ++=+++.……(3)已知二次三项式223x x k +−(k 为常数)有一个因式是4x +,则另一个因式为______,k 的值为______. 【答案】(1)1;(1)x −;3;3(2)解题过程见详解,321(1)(1)x x x x +=+−+(3)(25)x −;20【分析】(1)根据材料提示,当1x =时,3223x x +−的值为0,由此即可求解;(2)多项式31x ax ++(a 为常数)有一个因式是1x +,设另一个因式为2x bx c ++,根据材料提示,即可求解;(3)多项式223x x k +−(k 为常数)有一个因式是4x +,则另一个因式为mx n +,根据材料提示,即可求解.【详解】(1)解:当1x =时,3223x x +−的值为0,∴原式可分解为(1)x −与另一个整式的积,设另一个整式为2x bx c ++,∴32223(1)()x x x x bx c +−=−++,∵232(1)()()()x x bx c x b c x c b x c −++=+−+−−, ∴323223(1)()x x x b x c b x c +−=+−+−−,∴1203b c b c −=⎧⎪−=⎨⎪−=−⎩,解得,33b c =⎧⎨=⎩,∴32223(1)(33)x x x x x +−=−++,故答案为:1;(1)x −;3;3.(2)解:多项式31x ax ++(a 为常数)有一个因式是1x +,设另一个因式为2x bx c ++,则()()3211x ax x x bx c ++=+++,∵()()2321(1)()x x bx c x b x c b x c +++=+++++,∴3321(1)()x ax x b x c b x c ++=+++++, ∴101b c b a c +=⎧⎪+=⎨⎪=⎩,解方程得,011a b c =⎧⎪=−⎨⎪=⎩,∴多项式31x ax ++(a 为常数)为31x +,∴31x +因式分解为321(1)(1)x x x x +=+−+.(3)解:多项式223x x k +−(k 为常数)有一个因式是4x +,设另一个因式为mx n +,∴223(4)()x x k x mx n +−=++, ∵2(4)()(4)4x mx n mx n m x n ++=+++, ∴2223(4)4x x k mx n m x n +−=+++,∴2434m n m n k =⎧⎪+=⎨⎪=−⎩,解方程组得,2520m n k =⎧⎪=−⎨⎪=⎩,∴多项式223x x k +−(k 为常数)为22320x x +−,∴22320x x +−因数分解为22320(4)(25)x x x x +−=+−,故答案为:(25)x −,20.【点睛】本题主要考查因数分解,掌握整式的混合运算是解题的关键. 8.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值. 解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ). 则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n , 解得n =3,m =6,∴另一个因式为x +3,m 的值为6 依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ; (2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ; (3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值. 【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5. 【分析】(1)仿照题干中给出的方法计算即可; (2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】解:(1)∵2(3)()33x x a x x ax a −+=−+−=2(3)3x a x a +−−=2712x x −+.∴a ﹣3=﹣7,﹣3a =12, 解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +−=+−−=226x x −−.=226x bx +−.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++−=−++. 对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++−=−++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++−=−+−+−=+−+−−.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k . 解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点睛】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.9.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值. 解:设另一个因式为x n +,得25(2)()x x m x x n ++=++, 则225(2)2x x m x n x n ++=+++, 25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6. 依照以上方法解答下列问题:(1)若二次三项式254x x −+可分解为(1)()x x a −+,则=a ________; (2)若二次三项式226x bx +−可分解为(23)(2)x x +−,则b =________; (3)已知二次三项式229x x k +−有一个因式是21x −,求另一个因式以及k 的值. 【答案】(1)4−;(2)1−;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a −+展开,根据所给出的二次三项式即可求出a 的值; (2)(2x+3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x+n ),得2x2+9x ﹣k =(2x ﹣1)(x+n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】解:(1)∵(1)()x x a −+=x2+(a ﹣1)x ﹣a =254x x −+,∴a ﹣1=﹣5, 解得:a =﹣4; 故答案是:﹣4(2)∵(2x+3)(x ﹣2)=2x2﹣x ﹣6=2x2+bx ﹣6, ∴b =﹣1. 故答案是:﹣1.(3)设另一个因式为(x+n ),得2x2+9x ﹣k =(2x ﹣1)(x+n ), 则2x2+9x ﹣k =2x2+(2n ﹣1)x ﹣n , ∴2n ﹣1=9,﹣k =﹣n , 解得n =5,k =5,∴另一个因式为x+5,k 的值为5.【点睛】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.10.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m −+有一个因式是()3x +,求另一个因数及m 的值.解:设另一个因式为()x n +,由题意,得()()243x x m x x n −+=++,化简、整理,得()22433x x m x n x n −+=+++,于是有343n m n +=−⎧⎨=⎩解得217m n =−⎧⎨=−⎩, ∴另一个因式为()7x −,m 的值为21−.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +−有一个因式是()4x +,求另一个因式及k 的值.【答案】另一个因式为()25x −,k 的值为20.【分析】根据所求的式子223x x k +−的二次项系数是2,因式是(x+4)的一次项系数是1,可知另一个因式的一次项系数一定是2,设另一个因式为()2x a +,仿照例题计算即可. 【详解】解:设另一个因式为()2x a +, ∴()()22342x x k x x a +−=++, ∴()2223284x x k x a x a+−=+++, ∴834a a k +=⎧⎨=−⎩ ,解得:5a =−,20k =,故另一个因式为()25x −,k 的值为20.【点睛】考查了因式分解的应用,正确读懂例题,理解题意是解题的关键.【压轴题型二 运用公式法分解因式】1.若20192020,20192021,20192022a x b x c x =+=+=+,则代数式222a b c ab ac bc ++−−−的值是( ) A .0B .1C .2D .3【答案】D【分析】此题考查了因式分解的应用,由a ,b ,c 的代数式,求出a b −,a c −,b c −的值,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:20192020a x =+,20192021b x =+,20192022c x =+,1a b ∴−=−,2a c −=−,1b c −=−,则222a b c ab ac bc ++−−− 2221(222222)2a b c ab ac bc =++−−−2222221[(2)(2)(2)]2a ab b a ac c b bc c =−++−++−+2221[()()()]2a b a c b c =−+−+−,当1a b −=−,2a c −=−,1b c −=−时,原式1(141)32=⨯++=.故选:D . 2.已知x y z 、、满足12x z −=,236xz y +=−,则2x y z ++的值为( )A .4B .1C .0D .-8【答案】C 【分析】根据题目条件可用x 来表示z ,并代入代数式中,运用公式法因式分解可得()226x y −=−,再根据平方数的非负性可分别求出x ,z 的值,最后运算即可. 【详解】解:12x z −=,∴12z x =−,又236xz y +=−,∴()21236x x y −+=−,∴2212+36=-y x x −,()226x y −=−, ()22600x y −≥−≤,,600x y ∴−==,,606x y z ∴===−,,,代入2x y z ++得,2x y z ++=0.故选:C .【点睛】本题考查了运用公式法进行因式分解,平方数的非负性,熟练掌握运用公式法因式分解是解决本题的关键.3.已知a ,b 为自然数,且a b >,若4364()()a a b a ab b b+++−+=,则=a ,b = . 【答案】 8 2【分析】化简原式可得:2264()a b b +=,设a kb =,则2264()kb b b +=,再根据22226416244()k b ∴+==⨯=⨯可求a ,b . 【详解】4364()()a a b a ab b b +++−+=, 4364a a b a ab b b ∴+++−+=, 24464ab ab a b ∴++=,2264()a b b ∴+=.设a kb =,则2264()kb b b +=, a ,b 为自然数,0a ∴≠,0b ≠,22226416244()k b ∴+==⨯=⨯16k ∴=,22b +=或4k = ,24+=b ,160,k b ∴==(不合题意,舍去)或4k =,2b =,428a ∴=⨯=.故答案为:8,2.【点睛】本题主要考查了分式的加减,因式分解的应用,熟记完全平方公式是解决本题的关键.4.如果22344421x y xy y x −−++−因式分解的结果为 .【答案】()()32121x y x y +−−+【分析】把21y −当成一个整体,再因式分解即可.【详解】原式22342441x xy x y y =−+−+− ()()22322121x x y y =−−−−()()32121x y x y =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()32121x y x y =+−−+ 故答案为:()()32121x y x y +−−+.【点睛】题目主要考查利用整体法及公式法进行因式分解,理解题中的整体思想是解题关键.5.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b −+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +−.原式()()()()()22223211314121231x x x x x x x x x =+−=++−−=+−=+++−=+−.【材料2】因式分解:()()221x y x y ++++解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x −+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y −−−+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++−−−+=时,判断ABC 的形状并说明理由.【答案】(1)()()24x x −−;(2)()22x y −−;(3)ABC 是等腰三角形,理由见解析.【分析】(1)凑完全平方公式,再用平方差公式进行因式分解;(2)利用完全平方进行因式分解;(3)先因式分解,判断字母a 、b 、c 三边的关系,再判定三角形的形状.【详解】(1)解:268x x −+26998x x =−+−+()231x =−−()()3131x x =-+-- ()()24x x =−−;(2)解:设A x y =−,()()244x y x y −−−+244A A =−+()22A =−∴()()244x y x y −−−+()22x y =−−;(3)解:ABC 是等腰三角形.理由如下:222464170a b c a b c ++−−−+=,∴2224469440a a b b c c −++−++−+=,∴()()()2222320a b c −+−+−=,∴20a −=,30b −=,20c −=,得,2a =,3b =,2c =.∴a b =,∴ABC 是等腰三角形.【点睛】此题考查了因式分解的应用,乘法公式,配方法的应用以及非负数的性质,熟练掌握完全平方公式是解本题的关键.6.19世纪的法国数学家苏菲·热门给出了一种分解因式44x +的方法:他抓住了该式只有两项,而且属于平方和()2222x +的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得()()()()()222442222222444424222222x x x x x x x x x x x x +=++−=+−=+−=++−+,人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”.根据以上方法,把下列各式因式分解:(1)444x y +;(2)2244a am n mn −−+.【答案】(1)()()22222222x y xy x y xy +++−; (2)()()4a n a m n −−+.【分析】(1)根据苏菲·热门的做法,将原式配上224x y 后,根据完全平方公式和平方差公式即可进行因式分解;(2)先分组,再利用提公因式法因式分解.【详解】(1)原式442222444x y x y x y =++−()2222224x y x y =+−()()22222222x y xy x y xy =+++−; (2)原式22224444a am m m n mn =−+−−+()()22224444a am m m n mn =−+−+−()()2222a m m n =−−−()()2222a m m n a m m n =−+−−−+ ()()4a n a m n =−−+.【点睛】本题考查因式分解,掌握平方差公式、完全平方公式的结构特征是正确应用的前提,理解苏菲·热门的做法是正确进行因式分解的关键.7.定义一种新运算“a b ⊗”:当a b ≥时,2a b a b ⊗=+;当a b <时,2a b a b ⊗=−.例如:3(4)3(8)(5)⊗−=+−=−,(6)1262430−⊗=−−=−(1)填空:(3)(2)−⊗−=______.(2)若(34)(5)(34)2(5)x x x x −−+⊗+=+,则x 的取值范围为______.(3)利用以上新运算化简:2(23)m m ⊗−(4)已知(57)(2)1x x ⊗−−>,求x 的取值范围.【答案】(1)1 (2)92x ≥(3)246m m +−(4)x 的取值范围为:8x >或819x <<.【分析】(1)由32−<−,利用2a b a b ⊗=−进行计算即可;(2)结合新定义与(34)(5)(34)2(5)x x x x −−+⊗+=+,可得345x x −≥+,再解不等式即可;(3)由()2223120m m m −+=−+>,可得223m m >−,再利用新定义运算即可;(4)分两种情况讨论:当572x x −≥−时,即1x ≥;可得()(57)(2)57221x x x x −−=−+⨯−>⊗,当572x x −<−时,即1x <;可得()(57)(2)57221x x x x −−=−−⨯−>⊗,再解不等式即可.【详解】(1)解:由题意可得:()(3)(2)322341−⊗−=−−⨯−=−+=; (2)解:∵(34)(5)(34)2(5)x x x x −−+⊗+=+,∴345x x −≥+,∴29x ≥, 解得:92x ≥;(3)解:∵()2223120m m m −+=−+>,∴223m m >−,∴()222(23)22346m m m m m m ⊗−=+−=+−;(4)解:当572x x −≥−时,∴77x ≥,即1x ≥;∴()(57)(2)57221x x x x −−=−+⨯−>⊗,∴8x >,综上,此时8x >;当572x x −<−时,∴77x <,即1x <;∴()(57)(2)57221x x x x −−=−−⨯−>⊗,∴98x >, 解得:89x >, 综上:此时819x <<; 综上:x 的取值范围为:8x >或819x <<.【点睛】本题考查的是新定义运算,整式的加减运算,利用完全平方公式分解因式,一元一次不等式的应用,理解新定义的运算法则是解本题的关键.8.【阅读理解,自主探究】把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负数这一性质增加问题的条件,这种解题方法叫做配方法,配方法在代数式求值,解方程,最值问题等都有着广泛的应用.例1 用配方法因式分解:a 2+6a +8.原式= a 2+6a +9-1=(a +3)2-1=(a +3-1)(a +3+1)=(a +2)(a +4).例2若M =a 2-2ab +2b 2-2b +2,利用配方法求M 的最小值;a 2-2ab +2b 2-2b +2=a 2-2ab +b 2+b 2-2b +1+1=(a -b )2+(b -1)2+1;∵(a -b )2≥0,(b -1)2≥0, ∴当a =b =1时,M 有最小值1.请根据上述自主学习材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+10a +________;(2)用配方法因式分解:a 2-12a +35.(3)若M =a 2-3a +1,则M 的最小值为________;(4)已知a 2+2b 2+c 2-2ab +4b -6c +13=0,则a +b +c 的值为________;【答案】(1)25;(2)(5)(7)a a −−; (3)54−; (4)1−.【分析】(1)利用完全平方公式的结构特征判断即可;(2)原式常数项35分为361−,利用完全平方公式化简,再利用平方差公式分求解即可;(3)M 配方后,利用非负数的性质确定出最小值即可;(4)将已知等式利用完全平方公式配方后,再根据非负数的性质求出a ,b ,c 的值,代入原式计算即可.【详解】(1)解:221025(5)a a a ++=+;故答案为:25;(2)解:21235a a −+212361a a =−+−2(6)1a =−−(61)(61)a a =−+−−(5)(7)a a =−−;(3)解:295(3)44M a a =−+−235()24a =−−, 当302a −=,即32a =时,M 取最小值,最小值为54−; 故答案为:54−; (4)解:2222246130a b c ab b c ++−+−+=,2222(2)(44)(69)0a ab b b b c c ∴−+++++−+=,即222()(2)(3)0a b b c −+++−=,2()0a b −…,2(2)0b +…,2(3)0c −…,0a b ∴−=,20b +=,30c −=,解得:2a b ==−,3c =,则2231a b c ++=−−+=−.故答案为:1−.【点睛】本题考查了整式的混合运算,非负数的性质:偶次方,完全平方式,以及因式分解−分组分解法,解题的关键是熟练掌握各自的运算法则及公式.9.阅读材料:若2222440m mn n n −+−+=,求m ,n 的值.解:∵2222440m mn n n −+−+=,∴()()2222440m mn n n n −++−+=,∴22()(2)0m n n −+−=,∴2()0m n −=,2(2)0n −=,∴2n =,2m =.根据你的观察,探究下面的问题:(1)已知22228160x y xy y +−++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +−−+=,求ABC 的周长.【答案】(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +−++=得 222)((2816)0x xy y y y −+++=+,22()(4)0x y y −++=,∴0x y −=,40y +=,∴4x y ==−,故答案为:-4,-4;(2)由22248180a b a b +−−+=得:222428160a a b b −++−+=,222(1)(4)0a b −+−=,∴a -1=0,b -4=0,∴a=1,b=4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c=4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等. 10.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法. 如:①用配方法分解因式:a 2+6a +8,解:原式=a 2+6a +8+1-1=a 2+6a +9-1=(a +3)2-12=[(3)1][(3)1](4)(2)a a a a +++−=++②M =a 2-2a -1,利用配方法求M 的最小值.解:22221212(1)2a a a a a −−=−+−=−−∵(a -b )2≥0,∴当a =1时,M 有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:223x x +−. (2)若228M x x =−,求M 的最小值.(3)已知x 2+2y 2+z 2-2xy -2y -4z +5=0,求x +y +z 的值.【答案】(1)(3)(1)x x +−;(2)8−;(3)4.【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用配方法进行因式分解,再利用偶次方的非负性求出x 、y 、z 的值,然后代入求解即可.【详解】(1)原式22344x x =+−+−2214x x =++−22(1)2x =+−[][](1)2(1)2x x =+++−(3)(1)x x =+−; (2)22282(4)x x x x −=−22(444)x x =−+−22(2)4x ⎡⎤=−−⎣⎦22(2)8x =−−2(2)0x −≥∴当2x =时,M 有最小值8−;(3)22222245x y z xy y z ++−−−+ 2222(2(21)()44)x xy y y y z z =−++−++−+222()(1)(2)x y y z =−+−+−222()(1)(20)x y y z −+−+−=01020x y y z −=⎧⎪∴−=⎨⎪−=⎩,解得112x y z =⎧⎪=⎨⎪=⎩则1124x y z ++=++=.【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂题意,掌握配方法是解题关键.【压轴题型三 因式分解在有理数简算中的应用】1.计算22222111111111123456⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−⨯−⨯−⨯−⨯− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值为( ). A .512 B .12 C .712D .1130 【答案】C【分析】原式各括号利用平方差公式变形,约分即可得到结果. 【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−⨯+⨯−⨯+⨯−⨯+⨯−⨯+⨯−⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯, 712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.2.已知()()22113(21)a b ab ++=−,则1b a a ⎛⎫− ⎪⎝⎭的值是( ) A .0B .1C .-2D .-1【答案】D 【分析】先对()()22113(21)a b ab ++=−进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫− ⎪⎝⎭进行因式分解即可.【详解】∵()()22113(21)a b ab ++=−,∴2222163a b a b ab +++=−,22222440a b ab a b ab +−+−+=,()()2220a b ab −+−=,∴a b =,2ab =, ∴1121b b a ab a a ⎛⎫−=−=−=− ⎪⎝⎭故选:D .【点睛】本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.3.若2023a =,2022b =,则计算221122a b −的结果为 . 【答案】2022.5【分析】先提公因式,再用平方差公式进行计算即可. 【详解】221122a b − 22112023202222=⨯−⨯()222023212022=−⨯1=(20232022)(20232022)2⨯+− 140452=⨯2022.5=.故答案为:2022.5.【点睛】本题主要考查了利用平方差公式因式分解进行简便运算,熟练掌握平方差公式是解题的关键. 4.某同学自己设计了一个运算程序,任意输入一个三位数,如567,重复该数,得到567567,将该数除以7,然后除以质数a ,再除以质数b ,结果又得到了567,则a b += .【答案】24【分析】根据题意可知567567÷7÷567=ab ,然后即可得到ab 的值,再将ab 的积分解为两个质数的积,即可得到a 、b 的值,然后作和即可.【详解】解:由题意可得,567567÷7÷567=ab ,解得ab=143,∵143=11×13,∴a=11,b=13或a=13,b=11,∴a+b=24,故答案为:24.【点睛】本题考查有理数的混合运算、质数与合数,解答本题的关键是明确题意,求出a 、b 的值. 5.整体思想是数学解题中常见的一种思想方法.下面是对多项式222(21)2)(a a a a ++++进行因式分解的解题思路:将“22a a +”看成一个整体,令22a a x +=,则原式22(2)121(1)x x x x x =++=++=+.再将“x ”还原为“22a a +”即可.解题过程如下:解:设22a a x +=,则原式()21x x =++(第一步)221x x =++(第二步)2(1)x =+(第三步)()2221a a +=+(第四步). 问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式()()2244816a a a a −−++进行因式分解;(2)请你模仿以上方法尝试计算:(1232023)(232024)(1232024)(232023)−−−−⨯+++−−−−−⨯+++.【答案】(1)①该同学没有完成因式分解;最后的结果为4(1)a +;②4(2)a −(2)2024【分析】本题考查公式法分解因式,理解整体思想是解决问题的前提,掌握完全平方公式的结构特征和必要的恒等变形是正确解答的关键.(1)①根据因式分解的意义进行判断,再利用完全平方公式分解因式即可;②利用换元法进行因式分解即可;(2)设1232023a =−−−−,232024x =+++,则原式(2024)(2024)ax a x =−−−,整体代入计算即可.【详解】(1)①该同学没有完成因式分解;设22a a x +=,则原式()21x x =++(第一步)221x x =++(第二步)2(1)x =+(第三步)()2221a a +=+(第四步)22(1)a =+⎡⎤⎣⎦4(1)a =+.∴最后的结果为4(1)a +.②设24a a x −=, 原式(8)16x x =++2816x x =++.2()4x =+()2244a a =−+4()2a =−;(2)设1232023a =−−−−,232024x =+++, 则123202320242024,2320232024a x −−−−−=−+++=−, 120242025a x +=+=,原式(2024)(2024)ax a x =−−−22024()2024ax ax a x =−++−2202420252024=⨯−22024(20241)2024=⨯+−22202420242024=+−2024=.6.(1)若100799611A =⨯⨯,119951008B =⨯⨯,求A B −;(2)证明5799449999⨯+⨯−能被100整除.【答案】(1)132;(2)证明见解析【分析】(1)先提取公因数11,再把1007996⨯化成()()1001.5 5.51001.5 5.5+⨯−,把9951008⨯化成()()1001.5 6.51001.5 6.5+⨯−,进而利用平方差公式进行求解即可;(2)把原式提取公因式99,进而得579944999999100⨯+⨯−=⨯,由此即可证明结论.【详解】解:(1)∵100799611A =⨯⨯,119951008B =⨯⨯,∴A B −100799611119951008=⨯⨯−⨯⨯()()()()111001.5 5.51001.5 5.51001.5 6.51001.5 6.5=⨯+⨯−−+⨯−⎡⎤⎣⎦()()2222111001.5 5.51001.5 6.5⎡⎤=⨯−−+⎣⎦()()11 6.5 5.5 6.5 5.5=⨯+⨯−11121=⨯⨯132=; (2)5799449999⨯+⨯−()9957441=⨯+−99100=⨯,∵99100⨯能被100整除,∴5799449999⨯+⨯−能被100整除.【点睛】本题主要考查了因式分解在有理数简便计算中的应用,熟知因式分解的方法是解题的关键.7.阅读下列材料,解决问题:我们把一个能被17整除的自然数称为“节俭数”.“节俭数”的特征是:若把一个自然数的个位数字截去,再把剩下的数减去截去的那个个位数字的5倍,如果差是17的整数倍(包括0),则原数能被17整除,如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾,倍尾,差尾,验差”的过程,直到能方便判断为止.例如:判断1675282是不是“节俭数”,判断过程:16752825167518−⨯=,167518516711−⨯=,1671151666−⨯=,16665136−⨯=,到这里如果你仍然观察不出来,就继续136517−⨯=−,17−是17的整数倍,所以1675282能被17整除,所以1675282是“节俭数”.(1)请用上述方法判断7259和2098752是否是“节俭数”,并说明理由.(2)一个五位节俭数213ab ,其中千位上的数字为b ,万位上的数字为a ,且1b a =−,请利用上面方法求出这个数.【答案】(1)7259是“节俭数”; 2098752是“节俭数”(2)54213【分析】(1)模仿例题解决问题即可;(2)模仿例题采用 “截尾,倍尾,差尾,验差”的过程,解决问题即可;【详解】(1)72595680−⨯=,680568−⨯=,68174÷=,所以7259能被17整除,是“节俭数”;20987525209865−⨯=,209865520961−⨯=,2096152091−⨯=,20915204−⨯=,2041712÷=, 所以2098752能被17整除,是“节俭数”;(2)解:∴213506ab ab ⨯=−,300ab −能被17整除∴1b a =−,∴()1001013011040a a a +−−=−能被17整除∴19a ≤≤∴当1a =时,1104070−=,不能被17整除,当2a =时,22040180−=,不能被17整除,当3a =时,33040290−=,不能被17整除,当4a =时,44040400−=,不能被17整除,当5a =时,55040510−=,能被17整除,当6a =时,66040620−=,不能被17整除,当7a =时,77040730−=,不能被17整除,当8a =时,88040840−=,不能被17整除,当9a =时,99040950−=,不能被17整除,∴5a =,4b =∴这个数为54213.【点睛】本题考查了因式分解的应用,数的整除,理解题意,仿照例题的方法是解题的关键.8.观察下列等式,并回答有关问题:22123415(141)⨯⨯⨯+==⨯+222345111(251)⨯⨯⨯+==⨯+223456119(361.......)⨯⨯⨯+==⨯+(1)填空:56781⨯⨯⨯+=(________)2(2)若n 为正整数,猜想(1)(2)(3)1n n n n ++++因式分解的结果并说明理由;(3)利用(2)的结果比较991001011021⨯⨯⨯+与210100的大小.【答案】(1)41(2)22(1)(2)(3)1(31)n n n n n n ++++=++,理由见解析(3)991001011021⨯⨯⨯+210100<【分析】(1)根据式子的规律即可得出答案;(2)根据规律猜想出结果,用因式分解的方法证明即可;(3)应用(2)的结果化简即可得出答案.【详解】(1)根据规律得:256781(581)⨯⨯⨯+=⨯+,故答案为:581⨯+;(2)222(1)(2)(3)1[(3)1](31)n n n n n n n n ++++=++=++, 理由:(1)(2)(3)1n n n n ++++[(3)][(1)(2)]1n n n n =++++22(3)(32)1n n n n =++++222(3)2(3)1n n n n =++++22(31)n n =++;(3)991001011021⨯⨯⨯+22(993991)=+⨯+2(98012971)=++221009910100<=.【点睛】本题考查了规律型−数字的变化类,体现了整体思想,把23n n +看作整体是解题的关键.9.(1)因式分解:①2249a b −②221218x x −+(2)利用因式分解进行简便计算:221.2351 1.2349⨯−⨯【答案】(1)①()()2323a b a b +−;②()223x −;(2)246【分析】(1)①利用平方差公式进行因式分解;②先提取公因式2,再用完全平方公式进行因式分解;(2)先提取公因式1.23,再用平方差公式进行因式分解即可求值.【详解】解:(1)①()()22223934a a b b b a −=+−; ②()()2222121826923x x x x x −+=−+=−;(2)221.2351 1.2349⨯−⨯()2251.14923=⨯−()()1.2351495149=⨯+⨯− 1.231002=⨯⨯246=.【点睛】本题考查了因式分解及因式分解的应用,熟练掌握因式分解的方法是解决本题的关键.10.(1)按下表已填的完成表中的空白处代数式的值: 2()a b −222a ab b −+ 2a =,1b = 11a =−,3b = 462a =−,=5b −(2)比较两代数式计算结果,请写出你发现的2()a b −与222a ab b −+有什么关系?(3)利用你发现的结论,求:222021404220202020−⨯+的值.【答案】(1)见解析;(2)()2222a b a ab b −=−+;(3)1 【分析】(1)把每组,a b 的值分别代入2()a b −与222a ab b −+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b −=−+可得2021,2020,a b == 再代入进行简便运算即可.【详解】解:(1)填表如下: 2()a b −222a ab b −+ 2a =,1b =1 1 1a =−,3b = 16 162a =−,=5b − 9 9(2)观察上表的计算结果归纳可得:()2222a b a ab b −=−+(3)222021404220202020−⨯+ =2220212202120202020−⨯⨯+=()220212020−=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.【压轴题型四 十字相乘法】1.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x −,乙与丙相乘的积为26x x +−,则甲与丙相减的结果是( ) A .5− B .5 C .1 D .1−【答案】D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∵甲与乙相乘的积为29(3)(3)x x x −=+−,乙与丙相乘的积为()262(3)x x x x +−=−+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数, ∴甲为3x −,乙为3x +,丙为2x -, 则甲与丙相减的差为:()(3)21x x −−−=−;故选:D2.如果多项式432237x x ax x b −+++能被22x x +−整除,那么:a b 的值是( ) A . 2− B . 3−C .3D .6【答案】A 【分析】由于()()2221+−=+−x x x x ,而多项式432237x x ax x b −+++能被22x x +−整除,则432237x x ax x b −+++能被()()21x x +−整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x −+++=+−,则2x =−和1x =时,4322370x x ax x b −+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值. 【详解】解:∵()()2221+−=+−x x x x ,∴432237x x ax x b −+++能被()()21x x +−整除,设商是A . 则()()43223721x x ax x b A x x −+++=+−,则2x =−和1x =时,右边都等于0,所以左边也等于0.当2x =−时,43223732244144420x x ax x b a b a b −+++=++−+=++= ①当1x =时,43223723760x x ax x b a b a b −+++=−+++=++= ②−①②,得3360a +=,∴12a =−, ∴66b a =−−=. ∴:12:62a b =−=−, 故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =−和1x =时,原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.3.已知()()20192016100x x −−+=,则40352x −的值为 . 【答案】7±【分析】本题考查了因式分解的应用,解决本题的关键是熟练掌握用十字相乘法进行因式分解,将()()20192016100x x −−+=变形后再因式分解为()()20165201620x x −−−+=,求出x 的值,再代入求值即可. 【详解】解:()()20192016100x x −−+=,()()2019201610x x −−=−, ()()2019201610x x −−=, ()()20163201610x x −−−=,()()2201632016100x x −−−−=,()()20165201620x x −−−+=, ()()202120140x x −−=,解得:2021x =或2014x =,当2021x =时,原式4035220217=−⨯=−, 当2014x =时,原式4035220147=−⨯=, 故答案为:7±4.有甲、乙、丙三种纸片若干张(数据如图,a b >).(1)若用这三种纸片紧密拼接成一个边长为()2a b +大正方形,则需要取乙纸片 张,丙纸片 张. (2)若取甲纸片1张,乙纸片3张,丙纸片2张紧密拼成一个长方形,则这个长方形的长为 ,宽为 .【答案】 4 1()2a b +/()2b a + ()a b +/()b a + 【分析】(1)根据正方形的面积得出()222244a b a ab b +=++,即可求解;(2)根据题意长方形的面积为()()22322a ab b a b a b ++=++,结合题意,即可求解.【详解】解:(1)∵()222244a b a ab b +=++∴需要取乙纸片4张,丙纸片1张 故答案为:4,1. (2)依题意,()()22322a ab b a b a b ++=++,∴这个长方形的长为()2a b +,宽为()a b +,故答案为:()2a b +,()a b +.【点睛】本题考查了完全平方公式与图形面积,因式分解的应用,数形结合是解题的关键. 5.根据以下素材,完成下列任务:素材1在因式分解习题课上,赵老师“随便”写了几个整系数二次三项式,让同学们因式分解,结果小王发现同学们都能在有理数范围内分解,小王也想试一试,就随便写了两个二次三项式∶243x x ++,2414x x −−让同学们因式分解,结果发现有一个不能因式分解,这到底为什么呢?。
第十四章整式的乘法与因式分解练习一、选择题1.下列计算正确的是()A.2x2⋅3x3=6x6B.x3÷x3=0C.(2xy)3=6x3y3D.(x3)n÷x2n=x n2.下列各式变形中,是因式分解的是()A.a2−2ab+b2−1=(a−b)2−1B.x4−1=(x2+1)(x+1)(x−1)C.(x+2)(x−2)=x2−4D.2x2+2x=2x2(1+1x)3.化简(-x)3·(-x)2的结果正确的是()A.−x6B.x6C.x5D.−x5 4.已知x m=4,x n=6,则x2m−n的值为()A.9 B.34C.83D.435.如果x2−kxy+9y2是一个完全平方式,那么k的值是()A.3 B.±6 C.6 D.±36.若x+m与x+2的乘积化简后的结果中不含x的一次项,则m的值为()A.2 B.-2 C.4 D.-47.用图所示的正方形和长方形卡片若干张,拼成一个长为2a+b,宽为a+b的矩形,需要A类卡片,B类卡片,C类卡片的张数分别是()A.1、2、3 B.1、3、5 C.2、3、1 D.2、3、48.如图所示,将如图一所示的大小相同的四个小正方形按图二所示的方式放置在一个边长为a的大正方形中,中间恰好空出两条互相垂直的宽都为b的长方形,根据图二中阴影部分的面积计算方法可以验证的公式为()A.(a+b)(a﹣b)=a2﹣b2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.(a﹣b)2=(a+b)2﹣4ab二、填空题9.分解因式:a2−1 = .10.将代数式(a+2)(a−2)−3a分解因式的结果是.11.如果x2−(m+1)x+1是完全平方式,则m的值为12.已知a=8131,b=2741,c=961,则a,b,c的大小关系是.(用“>”连接)13.某农户租两块土地种植沃柑,第一块是边长为am的正方形,第二块是长为(a+10)m,宽为(a+5)m的长方形,则第二块比第一块的面积多了m2.三、计算题14.化简求值:(2x+1)2(3x−2)−(2x+1)(3x−2)2−x(2x+1)(2−3x),其中x=3215.计算(1)(4a−b2)⋅(−2b)(2)(15x2y−10xy2)÷5xy(3)(−2m−1)2(4)(x+2y−3)(x−2y+3)16.分解因式:(1)x2y−4y;(2)(a−3b)(a−b)+b2.四、解答题17.两位同学将一个二次三项式进行因式分解时,一名同学因为看错了一次项系数而分解成:2(x−1)(x−9),另一位同学因为看错了常数项而分解成了2(x−2)(x−4) .请求出原多项式,并将它因式分解. 18.如图,在边长为(2m+3)的正方形纸片中剪出一个边长为(m+3)的正方形之后,剩余部分可剪拼成一个长方形,若拼成的长方形一边长为m,求另一边长.18.某种植基地有一块长方形和一块正方形实验田,长方形实验田每排种植(3a−b)株豌豆幼苗,种植了(3a+b)排,正方形实验田每排种植(a+b)株豌豆幼苗,种植了(a+b)排(a>b>0).(1)长方形实验田比正方形实验田多种植豌豆幼苗多少株?(2)当a=4,b=3时,该种植基地这两块实验田一共种植了多少株豌豆幼苗?19.先阅读下列材料,再解答下列问题:材料:因式分解:(x+y)2+2(x+y)+1.解:将“x+y”看成一个整体,设x+y=m,则原式=m2+2m+1=(m+1)2.再将x+y=m代入,得原式=(x+y+1)2.上述解题方法用到的是“整体思想”.“整体思想”是数学解题中常用的一种思想方法.请写出下列因式分解的结果:(1)因式分解:1−2(x−y)+(x−y)2=;(2)因式分解:25(a−1)2−10(a−1)+1=;(3)因式分解:(y2−4y)(y2−4y+8)+16.。
【拔尖特训】2023-2024学年七年级数学下册尖子生培优必刷题【浙教版】
专题4.3用乘法公式分解因式专项提升训练(重难点培优)
班级:___________________ 姓名:_________________ 得分:_______________ 注意事项:
本试卷满分120分,试题共23题,其中选择10道、填空6道、解答7道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2022秋•天山区校级期中)下列因式分解正确的是( )
A .a (x ﹣y )=ax ﹣ay
B .x 2+1=(x +1)2
C .x 2﹣x +2=x (x ﹣1)+2
D .x 2﹣2x +1=(x ﹣1)2
2.(2021秋•叙州区期末)下列因式分解正确的是( )
A .2a 2﹣4ab +b 2=(2a ﹣b )2
B .m 2﹣n 2=(m +n )(m ﹣n )
C .4p 2+2p =p (4p +2)
D .x 2+4y 2=(x +2y )2 3.(2021秋•镇平县期末)把代数式3x 3﹣6x 2y +3xy 2因式分解,结果正确的是( )
A .x (3x +y )(x ﹣3y )
B .3x (x 2﹣2xy +y 2)
C .x (3x ﹣y )
D .3x (x ﹣y )2 4.(2022秋•南岗区校级期中)下列多项式中,能用平方差公式因式分解的是( )
A .a 2+(﹣b )2
B .﹣x 2﹣y 2
C .﹣m 2+9
D .3x 2y ﹣27xy 2
5.(2022秋•中山区期末)若多项式x 2+bx +c 因式分解的结果为(x ﹣2)(x +3),则b +c 的值为( )
A .﹣5
B .﹣1
C .5
D .6 6.(2022秋•合川区校级期末)已知2x ﹣y =3,则代数式x 2﹣xy +14y 2+74的值为( )
A .434
B .134
C .3
D .4
7.(2022春•运城月考)将下列多项式因式分解,结果中不含有x +3因式的是( )
A .x 2﹣9
B .x 2+3x
C .x 2﹣6x +9
D .x 2+6x +9
8.(2022秋•垦利区期中)小强是一位密码编译爱好者,在他的密码手册中,有这样一条信息:a ﹣b ,x ﹣y ,x +y ,a +b ,x 2﹣y 2,a 2﹣b 2分别对应下列六个字:利、爱、我、垦、游、美,现将(x 2﹣y 2)a 2﹣(x 2﹣y 2)b 2因式分解,结果呈现的密码信息可能是( )
A .爱我垦利
B .游我垦利
C .游美垦利
D .游美
9.(2022秋•九龙坡区校级月考)若xy =﹣3,x ﹣2y =5,则2x 2y ﹣4xy 2的值为( )
A .−15
B .−1
C .2
D .−30
10.(2022秋•和平区校级期末)已知a =2020m +2021n +2020,b =2020m +2021n +2021,c =2020m +2021n +2022,那么a 2+b 2+c 2﹣ab ﹣bc ﹣ca 的值为( )
A .1
B .3
C .6
D .1010
二、填空题(本大题共6小题,每小题4分,共24分)请把答案直接填写在横线上
11.(2022秋•绿园区校级期末)因式分解:n 3﹣25n = .
12.(2022秋•苍溪县期末)已知mn =4,n ﹣m =3,则mn 2﹣m 2n = .
13.(2022秋•张店区校级期末)若三角形的三边长a ,b ,c 满足(a ﹣c )2+(a ﹣c )b =0,则这个三角形形状一定是 三角形.
14.正整数p ,q (p <q )分别是正整数n 的最小质因数和最大质因数,并且p 2+q 2=n +9,则n = .
15.(2019•姑苏区校级开学)若x +y =3,则12(x 2+y 2)+xy = . 16.(2022春•运城月考)已知a ﹣b =﹣2,ab =7,则代数式a 3b ﹣2a 2b 2+ab 3的值为 .
三、解答题(本大题共7小题,共66分.解答时应写出文字说明、证明过程或演算步骤)
17.(2022秋•苍溪县期末)因式分解:
(1)a 2﹣9b 2;
(2)2a 2﹣4ab +2b 2.
18.(2022秋•密山市校级期末)分解因式:
(1)12abc ﹣2bc 2;
(2)a 3+2a 2﹣3a ;
(3)m 2﹣6m +9.
19.(2022秋•河西区期末)因式分解:
(1)x 2﹣3x +2;
(2)﹣3ma 2+12ma ﹣12m ;
(3)(x +1)(x ﹣3)+4.
20.(2022春•运城月考)两位同学将一个二次三项式ax 2+bx +c (其中a 、b 、c 均为常数,且abc ≠0)分解因式,一位同学因看错了一次项系数而分解成(x ﹣1)(x ﹣4),另一位同学因看错了常数项而分解成(x ﹣5)(x +1).
(1)求原多项式ax 2+bx +c 的二次项系数a 、一次项系数b 和常数项c 的值.
(2)将原多项式分解因式.
21.(2022春•运城月考)下面是某同学对多项式(9x2﹣6x+3)(9x2﹣6x﹣1)+4因式分解的过程.解:设9x2﹣6x=y,
则原式=(y+3)(y﹣﹣1)+4…第一步
=y2+2y+1…第二步
=(y+1)2…第三步
=(9x2﹣6x+1)2…第四步
解答下列问题:
(1)该同学从第二步到第三步运用了因式分解的方法是;
A.提取公因式
B.平方差公式
C.两数和的完全平方公式
D.两数差的完全平方公式
(2)老师说该同学因式分解的结果不彻底,请你直接写出该因式分解的最后结果;
(3)请你尝试用以上方法对多项式n(n2+3n+2)(n+3)+1进行因式分解.
22.(2022秋•无为市月考)我们把多项式a2+2ab+b2及a2﹣2ab+b2这样的式子叫做完全平方式.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求式子的最大值、最小值等.
例1:分解因式x2+2x﹣3.
原式=(x2+2x+1﹣1)﹣3=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1).
例2:求式子2x2+4x﹣6的最小值.
2x2+4x﹣6=2(x2+2x+1﹣1)﹣6=2(x+1)2﹣8,则当x=﹣1时,2x2+4x﹣6有最小值﹣8.
根据阅读材料解决下列问题:
填空:x2++36=(x+6)2;3m2+6m=3(m+1)2﹣;
(2)利用配方法分解因式:x2﹣6x﹣27;(注意:直接写出答案不给分)
(3)当x为何值时,多项式﹣x2﹣4x+1有最大值,并求出这个最大值.
23.(2022秋•离石区月考)综合与探究
观察以下各式:
(x ﹣y )(x +y )=x 2﹣y 2.
(x ﹣y )(x 2+xy +y 2)=x 3﹣y 3.
(x ﹣y )(x 3+x 2y +xy 2+y 3)=x 4﹣y 4.
(x ﹣y )(x 4+x 3y +x 2y 2+xy 3+y 4)=x 5﹣y 5.
请回答以下问题:
(1)填空:(x ﹣y )(x 6+x 5y +x 4y 2+x 3y 3+x 2y 4+xy 5+y 6)= .
(2)若n ≥2,求证:6n ﹣2n 一定能被4整除.
(3)求
10209−1019﹣1018﹣1017﹣1016﹣…﹣102﹣10﹣1的值.。