《空间向量和立体几何》复习教案
- 格式:doc
- 大小:40.50 KB
- 文档页数:2
yk iA(x,y,z)O jxzlB'O'A'B O A βα1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k r r r ,以点O 为原点,分别以,,i j k r r r 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O叫原点,向量 ,,i j k r r r都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++u u u r r r,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz-中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =r ,123(,,)b b b b =r,则112233(,,)a b a b a b a b +=+++r r ,112233(,,)a b a b a b a b -=---r r ,123(,,)()a a a a R λλλλλ=∈r , 112233a b a b a b a b ⋅=++r r , 112233//,,()a b a b a b a b R λλλλ⇔===∈r r, 1122330a b a b a b a b ⊥⇔++=r r.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a =r , 则222123||a a a a a a =⋅=++r r r .5.夹角公式:112233222222123123cos ||||a ba b a b a a a b b b ⋅⋅==⋅++++r rr r r r .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2222212121||()()()AB AB x x y y z z ==-+-+-uuu r uuu r7.直线和平面所成角:(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角8.公式:已知平面的斜线a 与内一直线b 相交成θ角,且a 与相交成1角,a 在上的射影c 与b 相交成2角,则有θϕϕcos cos cos 21=ϕ2ϕ1c b aθPαO ABED'B'C'A'ODACBαHDCBA9 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--10.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角(1)二面角的平面角范围是[0,180]o o ;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直11 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面12.面面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 13.面面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 练习:1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,求a b -r r 与x 轴正方向的夹角的余弦值2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___ 3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45oo,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为22,4,42,求二面角的大小6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角; (2)AO 与平面ABCD 所成角的正切值;(3)平面AOB 与平面AOC 所成角7已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离参考答案: 1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,αHDCBA求a b -r r与x 轴正方向的夹角的余弦值解:取x 轴正方向的任一向量(,0,0)c x =r,设所求夹角为α,∵22331111()(,,)(,0,0)()a b c a b a b a b x a b x -⋅=---⋅=-r r r∴1111()()cos ||||a b c a b x a bmx m a b c α-⋅--===-⋅r r r r rr ,即为所求 2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___解:(2,4,0),(1,3,0),BA BC =--=-u u u r u u u rQcos ,||||BA BC BA BC BA BC ⋅∴===u u u r u u u r u u u r u u u r u u u r u u u r ∴∠ABC =45°3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)⑴求以向量,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标分析:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB BAC Θ ∴∠BAC =60°,3760sin ||||==∴οAC AB S ⑵设a r=(x,y,z),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x z y x解得x =y =z =1或x =y =z =-1,∴a r =(1,1,1)或a r=(-1,-1,-1).4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45o o,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值解:过点C 作CH α⊥于点H ,连接,,AH BH OH ,则30CAH ∠=o,45CBH ∠=o,CDH ∠为所求CD 与α所成角,记为θ, 令CH a =,则2,AC a BC ==,则在Rt ABC ∆中,有AC BC CD AB ⋅==βαlP C B图1AED'B'C'A'ODACB在Rt CDH ∆中,sin CH CD θ==∴CD 与平面α所成角的正弦值2. 5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为4,,求二面角的大小分析:点P 可能在二面角l αβ--内部,也可能在外部,应区别处理解:如图1是点P 在二面角l αβ--的内部时,图2是点P 在二面角l αβ--外部时, ∵PA α⊥ ∴PA l ⊥ ∵AC l ⊥ ∴面PAC l ⊥ 同理,面PBC l ⊥而面PAC I 面PBC PC = ∴面PAC 与面PBC 应重合 即,,,A C P B 在同一平面内,则ACB ∠是二面角l αβ--的平面角在Rt APC ∆中,1sin 2PA ACP PB ∠=== ∴30ACP ∠=o在Rt BPC ∆中,sin 2PB BCP PC ∠===∴45BCP ∠=o故304575ACB ∠=+=ooo(图1)或453015ACB ∠=-=ooo(图2) 即二面角l αβ--的大小为75o 或15说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC '' ∴AO 与A C ''所成角就是OAC ∠∵,OC OB AB ⊥⊥平面BC ' ∴OC OA ⊥(三垂线定理)βαlPCB图2AO ED 1C 1B 1A 1DCBA OD 1C 1B 1A 1D CB A在Rt AOC ∆中, 2,2OC AC == ∴30OAC ∠=o (2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角 在Rt OAE ∆中,22115,1()22OE AE ==+= ∴5tan 5OE OAE AE ∠== (3)∵,OC OA OC OB ⊥⊥ ∴OC ⊥平面AOB 又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC 即平面AOB 与平面AOC 所成角为907已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离 解:(1)解法一:延长EO 交1A A 于F ,则F 为1A A 的中点,∴//EF AC , ∵1CC AC ⊥,∴1C C EF ⊥,连结1,D E BE ,则1D E BE =, 又O 是1BD 的中点,∴1OE BD ⊥,∴OE 是异面直线1CC 和1BD 的公垂线(2)由(1)知,OE 122AC ==. 解法二:建立空间直角坐标系,用坐标运算证明(略)引申:求1B C 与BD 间的距离解法一:(转化为1B C 到过BD 且与1B C 平行的平面的距离) 连结1A D ,则1A D //1B C ,∴1B C //平面1A DB ,连1AC ,可证得1AC BD ⊥,1AC AD ⊥,∴1AC ⊥平面1A DB ,∴平面1AC ⊥平面1A DB ,且两平面的交线为1A O ,过C 作1CE AO ⊥,垂足为E ,则CE 即为1B C 与平面1A DB 的距离,也即1B C 与BD 间的距离,在1A OC ∆中,111122OC A A CE AO ⋅=⋅,∴CE a =. (解法二):坐标法:以D 为原点,1,,DA DC DD 所在的直线分别为x 轴,y 轴、z 轴建立空间直角坐标系, 则(,0,0),(,,0),(0,,0)A a B a a C a ,11(,,),(,0,),(0,0,0)B a a a A a a D , 由(解法一)求点C 到平面1A DB 的距离CE ,设(,,)E x y z , ∵E 在平面1A DB 上,∴111A E A D A B λμ=+u u u u r u u u u r u u u r,即(,,)(,0,)(0,,)x a y z a a a a a λμ--=--+,∴x a a y a z a a a λμμλ=-⎧⎪=⎨⎪=--⎩, ∵1,CE A D CE BD ⊥⊥u u u r u u u u r u u u r u u u r ,∴(,2,)(,0,)0(,2,)(,,0)0x y z a a x y z a a ---=⎧⎨---=⎩,解得:23λμ==,∴111(,,)333CE a a a =--u u u r,∴3CE a =. 解法三:直接求1B C 与BD 间的距离设1B C 与BD 的公垂线为1OO ,且11,O B C O BD ∈∈,设(,,)O x y z ,设DO BD λ=u u u r u u u r,则(,,)(,,0)x y z a a λ=--,∴0x a y a z λλ=-⎧⎪=-⎨⎪=⎩,∴(,,0)O a a λλ--,同理1(,,)O a a a μμ,∴1((),,)OO a a a a μλλμ=++u u u u r ,∴111,OO BD OO B C ⊥⊥u u u u r u u u r u u u u r u u u u r , ∴1110,0OO BD OO B C ⋅=⋅=u u u u r u u u r u u u u r u u u u r,解得:21,33λμ=-=,1OO =u u u u r 111(,,)333a a a -,1||OO =u u u u r .。
空间向量与立体几何一、知识网络:二.考纲要求:(1)空间向量及其运算① 经历向量及其运算由平面向空间推广的过程;② 了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;③ 掌握空间向量的线性运算及其坐标表示;④ 掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。
(2)空间向量的应用① 理解直线的方向向量与平面的法向量;② 能用向量语言表述线线、线面、面面的垂直、平行关系;③ 能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);④ 能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。
三、命题走向本章内容主要涉及空间向量的坐标及运算、空间向量的应用。
本章是立体几何的核心内容,高考对本章的考查形式为:以客观题形式考查空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。
预测10年高考对本章内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。
第一课时 空间向量及其运算一、复习目标:1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与垂直。
二、重难点:理解空间向量的概念;掌握空间向量的运算方法 三、教学方法:探析类比归纳,讲练结合 四、教学过程 (一)、谈最新考纲要求及新课标高考命题考查情况,促使积极参与。
学生阅读复资P128页,教师点评,增强目标和参与意识。
(二)、知识梳理,方法定位。
(学生完成复资P128页填空题,教师准对问题讲评)。
《空间向量与立体几何》全章复习与巩固编稿:李霞审稿:张林娟【学习目标】1.了解空间向量的概念,空间向量的基本定理及其意义,掌握空间向量的正交分解、线性运算、数量积及其坐标表示;2.运用向量的数量积判断向量的共线与垂直,理解直线的方向向量与平面的法向量;3.能用向量方法证明有关线、面位置关系的一些定理及问题;4.能用向量方法解决线线、线面、面面的夹角的计算问题及一些简单的距离问题.【知识网络】【要点梳理】要点一:空间向量的有关概念空间向量:空间中,既有大小又有方向的量;空间向量的表示:一种是用有向线段AB 表示,A 叫作起点,B 叫作终点;一种是用小写字母a (印刷体)表示,也可以用a (而手写体)表示.向量的长度(模):表示空间向量的有向线段的长度叫做向量的长度或模,记作||AB 或||a .向量的夹角:过空间任意一点O 作向量a b ,的相等向量OA 和OB ,则∠AOB 叫作向量a b ,的夹角,记作〈〉,a b ,规定0π≤〈〉≤,a b .如图:零向量:长度为0或者说起点和终点重合的向量,记为0.规定:0与任意向量平行. 单位向量:长度为1的空间向量,即||1a =. 相等向量:方向相同且模相等的向量. 相反向量:方向相反但模相等的向量.共线向量(平行向量):如果表示空间向量的有向线段所在的直线互相平行或重合.a 平行于b 记作b a//,此时.a b 〈〉,=0或a b 〈〉,=π. 共面向量:平行于同一个平面的向量,叫做共面向量. 要点诠释:(1)数学中讨论的向量是自由向量,即与向量的起点无关,只与大小和方向有关. 只要不改变大小和方向,空间向量可在空间内任意平移;(2)当我们说向量a 、b 共线(或a //b )时,表示a 、b的有向线段所在的直线可能是同一直线,也可能是平行直线.(3)对于任意一个非零向量a,我们把a a叫作向量a 的单位向量,记作0a .0a 与a同向.(4)当a b 〈〉,=0或π时,向量a 平行于b ,记作b a //;当 a b 〈〉,=2π时,向量a b ,垂直,记作a b ⊥. 要点二:空间向量的基本运算 空间向量的基本运算: 运算类型几何方法运算性质向 量 的 加 法1平行四边形法则:OC OA ABa b=+=+加法交换率:.a b b a +=+加法结合率: ()()a b c a b c ++=++()a b a b -=+-AB BC=AC + 0AB BA=+2三角形法则:OB OA AB a b=+=+向 量 的 减 法 三角形法则: BA OA OB a b=-=-AB OA OB =-向 量 的 乘 法 a λ是一个向量,满足:λ>0时,a λ与a 同向; λ<0时,a λ与a 异向;λ=0时, a λ=0()()a a λμλμ=()a a a λμλμ+=+()a b a b λλλ+=+a ∥b a b λ⇔=向 量 的 数 量 积1.a b 是一个数:||||cos()a b a b a b =,;2.0a =,0b=或a b ⊥ ⇔b a •=0.a b b a =()()()a b a b a b λλλ==()a b c a c b c +=+22||a a =||||||a b a b ≤要点三:空间向量基本定理共线定理:两个空间向量a 、b (b ≠0 ),a //b 的充要条件是存在唯一的实数λ,使b aλ=.共面向量定理:如果两个向量,a b 不共线,则向量p 与向量,a b 共面的充要条件是存在唯一的一对实数,x y ,使p xa yb =+.要点诠释:(1)可以用共线定理来判定两条直线平行(进而证线面平行)或证明三点共线. (2)可以用共面向量定理证明线面平行(进而证面面平行)或证明四点共面. 空间向量分解定理:如果三个向量,,a b c 不共面,那么对空间任一向量p ,存在一个唯一的有序实数组,,x y z ,使p xa yb zc =++.要点诠释:(1)空间任意三个不共面的向量都可以作为空间向量的一个基底;(2)由于零向量可视为与任意一个非零向量共线,与任意两个非零向量共面,所以,三个向量不共面,就隐含着它们都不是零向量0.(3)一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同概念. 要点四:空间向量的直角坐标运算 空间两点的距离公式若111(,,)A x y z ,222(,,)B x y z ,则①222111212121(,,)(,,)(,,)AB OB OA x y z x y z x x y y z z =-=-=---; ②2||(AB AB ==;③ AB 的中点坐标为121212222x +x y +y z +z ⎛⎫⎪⎝⎭,,.空间向量运算的的坐标运算设111(,,)a x y z =,222(,,)b x y z =,则 ① 121212(,,)a b x x y y z z +=+++; ② 121212(,,)a b x x y y z z -=---; ③ 111(,,)()a x y z R λλλλλ=∈; ④ 121212a b x x y y z z ⋅=++;⑤ 222111a a a x y z ==++,222222b b b x y z ==++; ⑥ ()121212222222111222cos 00x x y y z z a b a b a b a bx y zx y z++==≠≠++++,,.空间向量平行和垂直的条件若111(,,)a x y z =,222(,,)b x y z =,则①12//a b a b x x λλ⇔=⇔=,12y y λ=,12()z z R λλ=∈⇔111222x y z x y z ==222(0)x y z ≠; ②12121200a b a b x x y y z z ⊥⇔⋅=⇔++=. 要点诠释:(1)空间任一点P 的坐标的确定:过P 作面xOy 的垂线,垂足为'P ,在面xOy 中,过'P 分别作x 轴、y 轴的垂线,垂足分别为A C 、,则|'|||||x P C y AP z PP ===,,''.如图: (2)夹角公式可以根据数量积的定义推出:a ba b |a ||b|cos a b cos a b |a ||b|⋅⋅=<⋅>⇒<⋅>=⋅,其中θ的范围是[0,]π.(3)0与任意空间向量平行或垂直. 要点五:用向量方法讨论垂直与平行图示向量证明方法线线平行 (a //b )a //b(a b ,分别为直线a b ,的方向向量)线线垂直 (a b ⊥)⊥a b(a b ,分别为直线a b ,的方向向量)线面平行 (l //α)⊥a n ,即0=⋅a n(a 是直线l 的方向向量,n 是平面α的法向量).线面垂直 (l α⊥)a //n(a 是直线l 的方向向量,n 是平面α的法向量) 面面平行 (α//β)//u v(u v ,分别是平面α,β的法向量)面面垂直 (αβ⊥)⊥u v ,即0=u v(u ,v 分别是平面α,β的法向量)要点诠释:(1)直线的方向向量:若A 、B 是直线l 上的任意两点,则AB 为直线l 的一个方向向量;与AB 平行的任意非零向量也是直线l 的方向向量.(2)平面的法向量:已知平面α,直线l α⊥,取l 的方向向量a ,有α⊥a ,则称为a 为平面α的法向量. 一个平面的法向量不是唯一的.要点六:用向量方法求角图示向量证明方法异面直线所成的角||cos ||||AC BD AC BD θ⋅=⋅(A ,C 是直线a 上不同的两点,B ,D 是直线b 上不同的两点)直线和平面的夹角||sin |cos |||||θϕ⋅==⋅a u a u(其中直线l 的方向向量为a ,平面α的法向量为u ,直线与平面所成的角为θ,a 与u 的角为ϕ)二面角cos θ(平面α与β的法向量分别为1n 和2n ,平面α与β的夹角为θ)要点诠释:①当法向量1n 与2n 的方向分别指向二面角的内侧与外侧时,二面角θ的大小等于1n ,2n 的夹角12,〈〉n n 的大小。
空间向量与立体几何第一章:空间向量基础1.1 向量的定义与表示介绍向量的概念,理解向量是有大小和方向的量。
学习如何用坐标表示空间中的向量,包括二维和三维空间中的向量。
1.2 向量的加法和数乘学习向量的加法运算,掌握三角形法则和平行四边形法则。
学习向量的数乘运算,理解数乘对向量大小和方向的影响。
1.3 向量的长度和方向学习向量的长度(模)的定义和计算方法。
学习向量的方向,理解余弦定理在向量夹角计算中的应用。
1.4 向量垂直与向量积学习向量垂直的概念,掌握向量垂直的判定方法。
学习向量积的定义和计算方法,理解向量积的几何意义。
第二章:立体几何基础2.1 平面和直线学习平面的定义和表示方法,掌握平面的基本性质。
学习直线的定义和表示方法,掌握直线的性质和判定方法。
2.2 点、线、面的位置关系学习点、线、面之间的位置关系,包括点在线上、点在面上、线在面上的判定。
学习线与线、线与面、面与面之间的位置关系。
2.3 空间角的计算学习空间角的定义和计算方法,包括二面角和平面角的计算。
学习空间角的性质和应用,理解空间角在立体几何中的重要性。
2.4 立体几何中的定理和公式学习立体几何中的重要定理和公式,如欧拉公式、施瓦茨公式等。
学会运用定理和公式解决立体几何问题。
后续章节待补充。
空间向量与立体几何第六章:空间向量的应用6.1 向量在几何中的应用学习利用向量解决几何问题,如计算线段长度、向量夹角、向量垂直等。
掌握向量在三角形和平面几何中的应用。
6.2 向量在物理中的应用引入物理中的向量概念,如速度、加速度、力等。
学习利用向量解决物理问题,如计算物体的运动轨迹、速度变化等。
6.3 向量在坐标变换中的应用学习坐标变换的基本概念,如平移、旋转等。
掌握利用向量进行坐标变换的方法和应用。
第七章:立体几何中的特殊形状7.1 柱体和锥体学习柱体和锥体的定义和性质,包括圆柱、圆锥、棱柱、棱锥等。
掌握计算柱体和锥体的体积、表面积等方法。
7.2 球体学习球体的定义和性质,掌握球体的方程和参数。
必刷大题14空间向量与立体几何1.(2022·新高考全国Ⅰ改编)如图,直三棱柱ABC -A 1B 1C 1的体积为4,△A 1BC 的面积为22.(1)求A 到平面A 1BC 的距离;(2)设D 为A 1C 的中点,AA 1=AB ,平面A 1BC ⊥平面ABB 1A 1,求平面ABD 与平面BCD 夹角的正弦值.解(1)设点A 到平面A 1BC 的距离为h ,因为直三棱柱ABC -A 1B 1C 1的体积为4,所以1A A BC V -=13S △ABC ·AA 11111433ABC A B C V -==,又△A 1BC 的面积为22,1113A A BC A BC V S h -=△=13×22h =43,所以h =2,即点A 到平面A 1BC 的距离为2.(2)取A 1B 的中点E ,连接AE ,则AE ⊥A 1B .因为平面A 1BC ⊥平面ABB 1A 1,平面A 1BC ∩平面ABB 1A 1=A 1B ,AE ⊂平面ABB 1A 1,所以AE ⊥平面A 1BC ,又BC ⊂平面A 1BC ,所以AE ⊥BC .又AA 1⊥平面ABC ,BC ⊂平面ABC ,所以AA 1⊥BC .因为AA 1∩AE =A ,AA 1,AE ⊂平面ABB 1A 1,所以BC ⊥平面ABB 1A 1,又AB ⊂平面ABB 1A 1,所以BC ⊥AB .以B 为坐标原点,分别以BC →,BA →,BB 1—→的方向为x ,y ,z 轴的正方向,建立如图所示的空间直角坐标系,由(1)知,AE =2,所以AA 1=AB =2,A 1B =22.因为△A 1BC 的面积为22,所以22=12·A 1B ·BC ,所以BC =2,所以A (0,2,0),B (0,0,0),C (2,0,0),A 1(0,2,2),D (1,1,1),E (0,1,1),则BD →=(1,1,1),BA →=(0,2,0).设平面ABD 的法向量为n =(x ,y ,z ),n ·BD →=0,n ·BA →=0,x +y +z =0,2y =0,令x =1,得n =(1,0,-1).又平面BDC 的一个法向量为AE →=(0,-1,1),所以cos 〈AE →,n 〉=AE →·n |AE →|·|n |=-12×2=-12.设平面ABD 与平面BCD 的夹角为θ,则sin θ=1-cos 2〈AE →,n 〉=32,所以平面ABD 与平面BCD 夹角的正弦值为32.2.如图,四棱锥P -ABCD 的底面为正方形,PA ⊥平面ABCD ,M 是PC 的中点,PA =AB .(1)求证:AM ⊥平面PBD ;(2)设直线AM 与平面PBD 交于O ,求证:AO =2OM .证明(1)由题意知,AB ,AD ,AP 两两垂直,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,设PA =AB =2,则P (0,0,2),B (2,0,0),D (0,2,0),C (2,2,0),M (1,1,1),PB →=(2,0,-2),PD →=(0,2,-2),AM →=(1,1,1),设平面PBD 的法向量为n =(x ,y ,z ),n ·PB →=2x -2z =0,n ·PD →=2y -2z =0,取x =1,得n =(1,1,1),∵AM →=n ,∴AM ⊥平面PBD .(2)如图,连接AC 交BD 于点E ,则E 是AC 的中点,连接PE ,∵AM ∩平面PBD =O ,∴O ∈AM 且O ∈平面PBD ,∵AM ⊂平面PAC ,∴O ∈平面PAC ,又平面PBD ∩平面PAC =PE ,∴O ∈PE ,∴AM ,PE 的交点就是O ,连接ME ,∵M 是PC 的中点,∴PA ∥ME ,PA =2ME ,∴△PAO ∽△EMO ,∴PA ME =AO OM =21,∴AO =2OM .3.如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,AB ∥CD ,PA =AB =2CD =2,∠ADC =90°,E ,F 分别为PB ,AB 的中点.(1)求证:CE ∥平面PAD ;(2)求点B 到平面PCF 的距离.(1)证明连接EF (图略),∵E ,F 分别为PB ,AB 的中点,∴EF ∥PA ,∵EF ⊄平面PAD ,PA ⊂平面PAD ,∴EF ∥平面PAD ,∵AB ∥CD ,AB =2CD ,∴AF ∥CD ,且AF =CD .∴四边形ADCF 为平行四边形,即CF ∥AD ,∵CF ⊄平面PAD ,AD ⊂平面PAD ,∴CF ∥平面PAD ,∵EF ∩CF =F ,EF ,CF ⊂平面EFC ,∴平面PAD ∥平面EFC ,CE ⊂平面EFC ,则CE ∥平面PAD .(2)解∵∠ADC =90°,AB ∥CD ,∴AB ⊥AD ,CF ⊥AB ,又PA ⊥平面ABCD ,∴PA ⊥CF ,又PA ∩AB =A ,∴CF ⊥平面PAB ,∴CF ⊥PF .设CF =x ,则S △AFC =12×1×x =x 2,S △PFC =12×5×x =52x ,设点A 到平面PCF 的距离为h ,由V P -AFC =V A -PFC ,得13×x 2×2=13×5x 2×h ,则h =255.∵点F 为AB 的中点,∴点B 到平面PCF 的距离等于点A 到平面PCF 的距离,为255.4.(2022·全国乙卷)如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求CF 与平面ABD 所成的角的正弦值.(1)证明因为AD =CD ,E 为AC 的中点,所以AC ⊥DE .在△ADB 和△CDB 中,因为AD =CD ,∠ADB =∠CDB ,DB =DB ,所以△ADB ≌△CDB ,所以AB =BC .因为E 为AC 的中点,所以AC ⊥BE .又BE ∩DE =E ,BE ,DE ⊂平面BED ,所以AC ⊥平面BED ,又AC ⊂平面ACD ,所以平面BED ⊥平面ACD .(2)解由(1)可知AB =BC ,又∠ACB =60°,AB =2,所以△ABC 是边长为2的正三角形,则AC =2,BE =3,AE =1.因为AD =CD ,AD ⊥CD ,所以△ADC 为等腰直角三角形,所以DE =1.所以DE 2+BE 2=BD 2,则DE ⊥BE .由(1)可知,AC ⊥平面BED .连接EF ,因为EF ⊂平面BED ,所以AC ⊥EF ,当△AFC 的面积最小时,点F 到直线AC 的距离最小,即EF 的长度最小.在Rt △BED 中,当EF 的长度最小时,EF ⊥BD ,EF =DE ·BE BD =32.方法一由(1)可知,DE ⊥AC ,BE ⊥AC ,所以EA ,EB ,ED 两两垂直,以E 为坐标原点,EA ,EB ,ED 所在的直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则A (1,0,0),B (0,3,0),D (0,0,1),C (-1,0,0),AB →=(-1,3,0),DB →=(0,3,-1).易得DF =12,FB =32,所以3DF →=FB →.设F (0,y ,z ),则DF →=(0,y ,z -1),FB →=(0,3-y ,-z ),所以3(0,y ,z -1)=(0,3-y ,-z ),得y =34,z =34,即,34,所以CF →,34,设平面ABD 的法向量为n =(x 1,y 1,z 1),·AB →=-x 1+3y 1=0,·DB →=3y 1-z 1=0,不妨取y 1=1,则x 1=3,z 1=3,n =(3,1,3).记CF 与平面ABD 所成的角为α,则sin α=|cos 〈CF →,n 〉|=|CF →·n ||CF →||n |=437.所以CF 与平面ABD 所成角的正弦值为437.方法二因为E 为AC 的中点,所以点C 到平面ABD 的距离等于点E 到平面ABD 的距离的2倍.因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC .因为V D -AEB =V E -ADB ,所以13·12AE ·BE ·DE =13·S △ABD ·d 2,其中d 为点C 到平面ABD 的距离.在△ABD 中,BA =BD =2,AD =2,所以S △ABD =72,所以d =2217.由(1)知AC ⊥平面BED ,EF ⊂平面BED ,所以AC ⊥EF ,所以FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.方法三如图,过点E 作EM ⊥AB 交AB 于点M ,连接DM ,过点E 作EG ⊥DM 交DM 于点G .因为DE ⊥AC ,DE ⊥BE ,AC ∩BE =E ,AC ,BE ⊂平面ABC ,所以DE ⊥平面ABC ,又AB ⊂平面ABC ,所以DE ⊥AB ,又EM ∩DE =E ,EM ,DE ⊂平面DEM ,所以AB ⊥平面DEM ,又EG ⊂平面DEM ,所以AB ⊥EG ,又AB ∩DM =M ,AB ,DM ⊂平面ABD ,所以EG ⊥平面ABD ,则EG 的长度等于点E 到平面ABD 的距离.因为E 为AC 的中点,所以EG 的长度等于点C 到平面ABD 的距离的12.因为EM =AE ·sin 60°=32,所以EG =DE ·EM DM =DE ·EM DE 2+EM 2=217,所以点C 到平面ABD 的距离d =2217.FC =FE 2+EC 2=72.记CF 与平面ABD 所成的角为α,则sin α=d CF =437.所以CF 与平面ABD 所成角的正弦值为437.5.(2023·青岛模拟)如图①,在梯形ABCD 中,AB ∥DC ,AD =BC =CD =2,AB =4,E 为AB 的中点,以DE 为折痕把△ADE 折起,连接AB ,AC ,得到如图②的几何体,在图②的几何体中解答下列问题.(1)证明:AC ⊥DE ;(2)请从以下两个条件中选择一个作为已知条件,求平面DAE 与平面AEC 夹角的余弦值.①四棱锥A -BCDE 的体积为2;②直线AC 与EB 所成角的余弦值为64.(1)证明在图①中,连接CE (图略),因为DC ∥AB ,CD =12AB ,E 为AB 的中点,所以DC ∥AE ,且DC =AE ,所以四边形ADCE 为平行四边形,所以AD =CE =CD =AE =2,同理可证DE =2,在图②中,取DE 的中点O ,连接OA ,OC (图略),则OA =OC =3,因为AD =AE =CE =CD ,所以DE ⊥OA ,DE ⊥OC ,因为OA ∩OC =O ,OA ,OC ⊂平面AOC ,所以DE ⊥平面AOC ,因为AC ⊂平面AOC ,所以DE ⊥AC .(2)解若选择①:由(1)知DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,所以过点A 作AH ⊥OC 交OC 于点H (图略),则AH ⊥平面BCDE ,因为S 四边形BCDE =23,所以四棱锥A -BCDE 的体积V A -BCDE =2=13×23·AH ,所以AH =OA =3,所以AO 与AH 重合,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.若选择②:因为DC ∥EB ,所以∠ACD 即为异面直线AC 与EB 所成的角,在△ADC 中,cos ∠ACD =AC 2+4-44AC=64,所以AC =6,所以OA 2+OC 2=AC 2,即OA ⊥OC ,因为DE ⊥平面AOC ,DE ⊂平面BCDE ,所以平面AOC ⊥平面BCDE ,且交线为OC ,又OA ⊂平面AOC ,所以AO ⊥平面BCDE ,建立如图所示的空间直角坐标系,则O (0,0,0),C (-3,0,0),E (0,1,0),A (0,0,3),易知平面DAE 的一个法向量为CO →=(3,0,0),设平面AEC 的法向量为n =(x ,y ,z ),因为CE →=(3,1,0),CA →=(3,0,3),·CE →=3x +y =0,·CA →=3x +3z =0,取n =(1,-3,-1),设平面DAE 与平面AEC 的夹角为θ,则cos θ=|CO →·n ||CO →||n |=33×5=55,所以平面DAE 与平面AEC 夹角的余弦值为55.6.(2022·连云港模拟)如图,在三棱锥A -BCD 中,△ABC 是正三角形,平面ABC ⊥平面BCD ,BD ⊥CD ,点E ,F 分别是BC ,DC 的中点.(1)证明:平面ACD ⊥平面AEF ;(2)若∠BCD =60°,点G 是线段BD 上的动点,问:点G 运动到何处时,平面AEG 与平面ACD 的夹角最小.(1)证明因为△ABC 是正三角形,点E 是BC 的中点,所以AE ⊥BC ,又因为平面ABC ⊥平面BCD ,平面ABC ∩平面BCD =BC ,AE ⊂平面ABC ,所以AE ⊥平面BCD ,又因为CD ⊂平面BCD ,所以CD ⊥AE ,因为点E ,F 分别是BC ,CD 的中点,所以EF ∥BD ,又因为BD ⊥CD ,所以CD ⊥EF ,又因为AE ∩EF =E ,AE ⊂平面AEF ,EF ⊂平面AEF ,所以CD ⊥平面AEF ,又因为CD ⊂平面ACD ,所以平面ACD ⊥平面AEF .(2)解在平面BCD 中,过点E 作EH ⊥BD ,垂足为H ,此时EH ∥CD ,即H 为BD 的中点,设BC =4,则EA =23,DF =FC =1,EF = 3.以E 为原点,以EH ,EF ,EA 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,则E (0,0,0),A (0,0,23),C (-1,3,0),D (1,3,0),设G (1,y ,0)(-3≤y ≤3),则EA →=(0,0,23),AD →=(1,3,-23),CD →=(2,0,0),EG →=(1,y ,0),设平面AEG 的法向量为n 1=(x 1,y 1,z 1),n 1·EA →=23z 1=0,n 1·EG →=x 1+yy 1=0,令y 1=-1,得n 1=(y ,-1,0),设平面ACD 的法向量为n 2=(x 2,y 2,z 2),2·CD →=2x 2=0,2·AD →=x 2+3y 2-23z 2=0,令z 2=1,得n 2=(0,2,1),设平面AEG 与平面ACD 的夹角为θ,则cos θ=|cos 〈n 1,n 2〉|=|-2|5·y 2+1=25·y 2+1,当y =0时,cos θ最大,此时平面AEG 与平面ACD 的夹角θ最小,故当点G 为BD 的中点时,平面AEG 与平面ACD 的夹角最小.。
高二数学选修2-1 第三章 第1节 空间向量及其运算人教实验B 版(理)【本讲教育信息】一、教学内容:选修2—1 空间向量及其运算二、教学目标:1.理解空间向量的概念,掌握其表示方法;会用图形说明空间向量加法、减法、数乘向量及它们的运算律。
2.理解共线向量定理和共面向量定理及其意义。
3.掌握空间向量的数量积的计算,掌握空间向量的线性运算,掌握空间向量平行、垂直的充要条件及向量的坐标与点的坐标的关系;掌握夹角和距离公式。
三、知识要点分析: 1.空间向量的概念:在空间,我们把具有大小和方向的量叫做向量注:向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量2.空间向量的运算定义:与平面向量运算一样,空间向量的加法、减法与数乘向量运算如下(如图)b a AB OA OB+=+=b a-=-=)(R a OP ∈=λλ运算律:(1)加法交换律:a b b a+=+(2)加法结合律:)()(c b a c b a++=++(3)数乘分配律:b a b aλλλ+=+)(3.共线向量定理:对于空间任意两个向量a 、b (b ≠0 ),a //b的充要条件是存在实数λ,使a=λb .4.共面向量定理:如果两个向量b a ,不共线,那么向量p 与向量b a ,共面的充要条件是存在有序实数组),(y x ,使得b y a x p +=。
5.空间向量基本定理:如果三个向量c ,b ,a 不共面,那么对空间任一向量p ,存在唯一的有序实数组(x ,y ,z ),使c z b y a x p ++= 6.夹角定义:b a ,是空间两个非零向量,过空间任意一点O ,作b OB a OA ==,,则AOB ∠叫做向量a 与向量b 的夹角,记作><b a , 规定:π>≤≤<b a ,0特别地,如果0,>=<b a ,那么a 与b 同向;如果π>=<b a ,,那么a 与b 反向;如果90b ,a >=<,那么a 与b 垂直,记作b a ⊥。
空间向量与立体几何 ( 复习一 )【课题】:空间向量与立体几何复习一【教课目的】:(1)知识目标:运用空间向量证明立体几何中的平行、垂直问题,及计算空间角的计算。
同时也试用传统的方法来解题。
(2)过程与方法目标:总结归纳,讲练联合,以练为主。
(3)感情与能力目标:经过总结归纳,综合运用,让学生享受成功的愉悦,提升学习数学兴趣,提升计算能力和空间想象能力。
【教课要点】:。
运用空间向量证明立体几何中的平行、垂直问题。
【教课难点】:计算空间角【课前准备】:投影【教课过程设计】:教课环节教课活动设计企图设空间两条直线l 1 , l 2的方向向量分别为e1 , e2,两个平面 1 , 2一、复习引入二、应用实例平行的法向量分别为n1 , n2,则由以下结论平行垂直l 1与 l 2 e1 // e2 e1 e2l1与 1 e1 n1 e1 // n11 与2 n1 // n2 n1 n2例 1.如图,已知矩形 ABCD 和矩形 ADEF 交于 AD ,点 M,N 分别在对角线 BD,AE 上,且BM1BD, AN1AE.3 3求证: MN// 平面 CDE证明: MN MB BA AN F E2 1N= CD DEA D3 3M又CD与 DE不共线 B C左表给出了用向量研究空间线线、线面、面面地点关系的方法,判断的依照是有关的判断与性质,要理解掌握依据共面向量定理,可知MN ,CD ,DE 共面。
垂直平行因为 MN 不在平面CDE 中,所以MN// 平面 CDE.证法二:思路:在上取一点P, F E1AD 再用传统的方法 AN使 PD DP3 MB C证明平面MNP ∥平面 CDE 即可。
例 2、棱长为 a 的正方体 ABCD —A 1B 1C1D1中,在棱 DD 1上是先成立图空间坐否存在点 P 使 B 1D ⊥面 PAC?标系再用向量解题解:以 D 为原点zC 1D 1成立以下图的坐标系, A 1 B 1P设存在点 P( 0, 0,z),DCyAP =(-a,0,z),x A BAC =(-a,a,0),DB1=(a,a,a),∵B 1D⊥面 PAC,∴DB1AP 0, DB1 AC 0∴- a2+az=0 ∴z=a,即点 P 与 D1重合∴点 P 与 D 1重合时, DB 1⊥面 PAC方法二:指引学生用三垂线定理来解题。
空间向量与立体几何复习与小结教案一、教学目标:1、掌握空间向量的概念、运算及其应用;2、掌握利用空间向量解决立体几何问题的方法。
二、重难点:掌握空间向量的概念、运算及其应用及掌握利用空间向量解决立体几何问题的方法。
三、教学方法:探析归纳,讲练结合四、教学过程〔一〕题型探析1、利用空间向量证明平行、垂直问题例1、如图,在四棱锥P—ABCD中,底面ABCD是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB于点F。
〔1〕证明:PA//平面EDB;〔2〕证明:PB⊥平面EFD;〔3〕求二面角C—PB—D的大小。
如下图建立空间直角坐标系,D为坐标原点。
设DC=a。
(1)证明:连接AC,AC交BD于G,连接EG。
依题意得。
∵底面ABCD是正方形。
∴G是此正方形的中心,故点G的坐标为,∴那么而,∴PA//平面EDB。
(2)依题意得B〔a,a,0〕,又,故∴PB⊥DE由EF⊥PB,且,所以PB⊥平面EFD。
〔3〕解析:设点F的坐标为,那么从而所以由条件EF⊥PB知,,即,解得∴点F的坐标为,且∴即PB⊥FD,故∠EFD是二面角C—PB—D的平面角。
∵,且∴∴∠EFD=60°所以,二面角C—PB—D的大小为60°。
点评:〔1〕证明两条直线平行,只需证明这两条直线的方向向量是共线向量.〔2〕证明线面平行的方法:①证明直线的方向向量与平面的法向量垂直;②证明能够在平面内找到一个向量与直线的方向向量共线;③利用共面向量定理,即证明直线的方向向量与平面内的两个不共线向量是共面向量.〔3〕证明面面平行的方法:①转化为线线平行、线面平行处理;②证明这两个平面的法向量是共线向量.〔4〕证明线线垂直的方法是证明这两条直线的方向向量互相垂直.〔5〕证明线面垂直的方法:①证明直线的方向向量与平面的法向量是共线向量;②证明直线与平面内的两个不共线的向量互相垂直.〔6〕证明面面垂直的方法:①转化为线线垂直、线面垂直处理;②证明两个平面的法向量互相垂直.2、用空间向量求空间角例2、正方形ABCD—中,E、F分别是,的中点,求:〔1〕异面直线AE与CF所成角的余弦值;〔2〕二面角C—AE—F的余弦值的大小。
“空间向量与立体几何(单元复习课)”教学设计林洁萍(广西来宾高级中学)教材:人教版《普通高中课程标准实验教科书·数学(A版)》选修2—1 。
教学内容解析空间向量是解决立体几何问题简易而又强有力的工具,是高考的常考点之一.本章在学习平面向量的基础上,把平面向量及其运算推广到空间,运用空间向量解决有关直线及平面位置关系的问题,体会向量方法在研究几何图形中的作用.本节课是在完成这一章的新课学习后的一节单元复习课,是对本章所学知识进行的整理与概括,系统性较强,利于帮助学生初步形成数学结构知识,培养学生的系统性思维.基于以上分析,确定本课的重点是引导学生梳理、整合本章知识,并会用所学知识解决立体几何问题.学生学情分析通过前面的学习,学生对空间向量与立体几何知识已有了一定的认识,主要体现在以下三个层面。
(1)知识层面。
学生已经完成了本章的新课学习部分.同时,在必修2的学习中也掌握了传统的几何推理证明方法,这些都为本节课的学习奠定了基础.(2)能力层面。
学生对章节的知识结构图已有所掌握,并具备了一定的归纳、类比、自主探究及合作交流的能力.(3)情感层面。
经过一个章节的学习之后,学生迫切需要对本章知识进行高度概括,因此参与本节学习的积极性会比较高.教学目标设置(1)了解空间向量的基本概念和基本定理,掌握空间向量的运算;(2)能用空间向量的运算解决立体几何问题,从而体会转化及数形结合的思想.教学策略分析学生课前已经独立完成章节知识结构图及两道习题,本节课的主要任务是在学生自主复习的基础上进行交流与提升.本节体现了以生为本,以学定教,优质高效的教学理念,主要采用目标导航,问题导思,活动导学,评价促学的教学方法与策略,并借助多媒体设备优化教学过程. 在学法上,指导学生进行自主探究、同桌对照学习与小组交流讨论,培养学生聆听、观察、交流、思考、笔记及反思的学习习惯.教学过程1.课前准备学生独立作出本章知识结构图,并完成两道习题.【设计意图】本节是单元复习课,学生有能力完成课前准备工作.2.课堂活动(1)知识梳理。
空间向量与立体几何
一、教学目标
1.利用线线、线面、面面关系考查空间向量的运算;
2.用向量方法求解线面的夹角、距离、证明平行或垂直关系;
3.用向量方法解决立体几何中的一些探索性问题.
二、教学重点
培养向量方法解决立体几何的思维方法
三、知识要点
1.运用空间向量求空间角
(1)求两异面直线所成角利用公式cos,
a b
a b
a b
⋅
<>=
⋅
,但务必注意两异
面直线所成角θ的范围是
0,
2
π
⎛⎤
⎥
⎝⎦,故实质上应有:
cos cos,a b
θ=<>
.
(2)求线面角
借助平面的法向量,先求出直线方向向量与平面法向量的夹角ϕ,即可求出
直线与平面所成的角θ,其关系是sin cos a u a u
θϕ•
==
(3)求二面角
方法1:是利用平面角的定义,在两个面内先求出与棱垂直的两条直线对应的方向向量,然后求出这两个方向向量的夹角,由此可求出二面角的大小;
方法2:转化为求二面角的两个面的法向量的夹角,它与二面角的大小相等或互补.
2.运用空间向量求空间距离,求解步骤是:
(1)求出该平面的一个法向量;
(2)求出从该点出发的平面的任一条斜线段对应的向量;
(3)求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要
求的点面距离.
||
||
AB n d
n
⋅=
3.用向量证明空间中的平行关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.
(2)设直线l的方向向量为v,与平面α共面的两个不共线向量v1和v2,则l∥α或l⊂α⇔存在两个实数x,y,使v=x v1+y v2.
(3)设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.
(4)设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.
4.用向量证明空间中的垂直关系
(1)设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.
(2)设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.
(3)设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.
四、知识总结
1.把空间问题转化为平面问题,从解决平面问题而使空间问题得以解决。
求角的三个基本步骤:“作”、“证”、“算”。
2.求空间中线面的夹角或距离需注意以下几点:①注意根据定义找出或作出所求的成角或距离,一般情况下,力求明确所求角或距离的位置;②作线面角的方法除平移外,补形也是常用的方法之一;求线面角的关键是寻找两“足”(斜足与垂足),而垂足的寻找通常用到面面垂直的性质定理。
3.注意数学中的转化思想的运用:常用等角定理或平行移动直线及平面的方法转化所求角的位置;用平行线间、平行线面间或平行平面间距离相等为依据转化所求距离的位置;割补法或等积(等面积或等体积)变换解决有关距离及体积问题。