质粒DNA提取方案(碱裂解法)
- 格式:docx
- 大小:27.68 KB
- 文档页数:2
SDS碱裂解法制备质粒DNA步骤(1)挑取转化后的单菌落,接种到2ml的含有适当抗生素的丰富培养基中,37℃振摇培养过夜(培养物的体积小于溶液体积的1/4,否则容器不易盖紧,剧烈振摇培养)(2)收菌,将菌液倒入离心管中,4℃,12500r/min,3min。
(离心后将上清液倒入费废液缸中,倒扣在吸水纸上,若还有液体残留,用移液枪吸出)(3)将细菌沉淀重悬于100μl的预冷的碱性裂解液I(Glu, EDTA, Tris-Hcl)中,涡旋振荡。
(4)加200μl新配置的碱性裂解液II(0.2M NaOH,1%SDS)于每管细菌重悬液中,盖紧管口,快速颠倒离心管5次以混合内容物,切勿振荡,将离心管放置在冰上3-5min. (5)加150μl预冷的碱性裂解液III(CH3COOH,CH3COONa),盖紧管口,反复颠倒数次,使得溶液在粘稠度额细菌裂解物中分散均匀。
冰上防止3-5min。
(6)离心(4℃,12000r/min,6min),并将上清转移到另一个离心管中。
(7)在通风橱内加400μl的氯仿:异戊醇(24:1)(8)抽提:将管放在漂浮板上,划8字8min,后离心(4℃,12000r/min,7min),吸取上清液300μl到另一个离心管中。
(9)加无水乙醇600μl,混匀放置在-20℃沉淀15min,后离心(4℃,12000r/min,15min)(10)小心吸去上清液,将离心管倒置在吸水纸上,加70%乙醇700μl洗涤沉淀,弹起沉淀,浸泡一会,离心(4℃,12000r/min,4min),洗涤两次。
(11)倒掉上清,甩一下,吸去上清,晾干。
(12)TRE溶解(1mlTE,1μlRNA酶)20μl/管。
(13)65℃15min,后4℃冰箱保存。
碱裂解法提取质粒DNA的研究碱裂解法是一种常用的提取质粒DNA的方法。
该方法通过将大肠杆菌等细菌细胞进行碱性处理,使其细胞壁溶解,并释放出质粒DNA。
以下是对碱裂解法提取质粒DNA的研究进行详细介绍。
首先,进行实验前的准备工作。
实验材料包括大肠杆菌含质粒的培养液,碱性裂解液,中和液,以及一些常规实验室工具。
准备条件优化的培养基,如Luria-Bertani培养基,以获得高质量的质粒DNA。
将培养的大肠杆菌细胞进行离心,取得细菌细胞的沉淀,并将其重悬于适量的碱性裂解液中。
碱性裂解液的配制对提取质粒DNA的质量具有重要影响。
通常,碱性裂解液包括Tris-HCl缓冲液(pH 8.0-8.5)、EDTA (0.1M,pH 8.0)以及SDS(0.5%-1.0%)。
在碱性裂解液中,细胞壁受到破坏,并且其中的DNA被释放出来。
为了进一步提取质粒DNA,需要添加RNase A(最终浓度为20μg/mL)来降解细胞中的RNA。
此外,可以根据需要添加蛋白酶K(最终浓度为100μg/mL)来去除大部分的蛋白质。
接下来,使用酒精沉淀法来纯化质粒DNA。
首先,加入等体积的冰冷异丙醇,使DNA和异丙醇充分混合,然后进行离心。
在高速离心后,离心管底部会形成一个白色的DNA沉淀。
利用移液枪将上层液体倒掉,然后用70%的乙醇洗涤DNA沉淀,移液枪将乙醇沉淀洗涤掉。
最后,利用离心机将样品离心至全速,将乙醇溶液除去,并风干沉淀。
最后,使用合适的缓冲液溶解DNA,以达到所需的浓度。
为了确定提取的质粒DNA的纯度和浓度,可以使用紫外光谱仪来测定其260nm和280nm的吸光度比值。
这个比值可用于评估质粒DNA中的蛋白质污染情况。
如果蛋白质污染特别严重,可以使用氯仿、酒精沉淀等方法进行进一步清除。
此外,还可以使用琼脂糖凝胶电泳来检测提取的质粒DNA的大小和完整性。
通过比较不同样品的DNA迁移位置,可以快速确定质粒DNA的大小。
总结:碱裂解法是一种非常常用且简单的提取质粒DNA的方法。
质粒DNA的提取方案一常规小量提取(碱裂解法)【实验目的】(1)掌握碱裂解法小量提取质粒DNA的原理及操作过程。
(2)掌握微量加样器的使用方法。
【实验原理】在NaOH存在的碱性环境(pH值12.0~12.6)中,线性的大分子量细菌染色体DNA变性,而共价闭环质粒DNA由于分子量小且缠绕紧密,仍为自然状态。
将pH值调至中性并有高盐浓度存在的条件下,染色体DNA之间交联形成不溶性网状结构,大部分DNA和蛋白质在去污剂SDS的作用下形成沉淀,而质粒DNA恢复可溶状态的。
通过离心,去除大部分细胞碎片、染色体DNA、RNA及蛋白质等物质,上清液中的质粒DNA可用酚/氯仿抽提。
【实验试剂】(1)溶液I:50mmol/L葡萄糖25mmol/LTris-HCl(pH值8.0)10mmol/LEDTA(pH值8.0)溶液I可成比配制,每瓶约100ml,在6.9×10°Pa(10lbf/in²)高压下蒸汽灭菌15min,贮存于4℃下。
(2)溶液Ⅱ:0.2mol/LNaOH(临用前用10mol/L贮存液稀释)1%SDS(3)溶液Ⅲ:5mol/L乙酸钾60ml冰乙酸11.5ml水28.5ml(4)酚(pH值7.8~8.0)。
(5)氯仿。
(6)TE缓冲液。
(7)6×DNA上样缓冲液。
(8)0.8%琼脂糖。
(9)无水乙醇。
【实验器材】(1)低温高速离心机。
(2)旋涡振荡器。
(3)Eppendorf管(EP管)。
(4)微量移液器。
(5)移液器头。
(6)电泳仪与电泳槽。
(7)紫外透射仪。
【实验样本】细菌(含某种质粒)。
【实验步骤】(1)将5ml菌液分次装入同一1.5mlEP管中,3000r/min离心5min,以收集菌体。
(2)将细菌沉淀重悬于100μl用冰预冷的溶液I中,剧烈振荡5min。
(3)加200μl新配制的溶液Ⅱ,盖紧管口,快速颠倒离心管5次,以混合内容物,不可强烈振荡,放置于冰上3min左右。
质粒DNA的提取(碱裂解法)实验原理:碱裂解法提取质粒利用的是共价闭合环状质粒DNA与线状的染色体DNA片段在拓扑学上的差异来分离它们。
在pH 值介于12.0-12.5这个狭窄的范围内,线状的DNA双螺旋结构解开变性,在这样的条件下,共价闭环质粒DNA的氢键虽然断裂,但两条互补链彼此依然相互盘绕而紧密地结合在一起。
当加入pH4.8的醋酸钾高盐缓冲液使pH降低后,共价闭合环状的质粒DNA的两条互补链迅速而准确地复性,而线状的染色体DNA的两条互补链彼此已完全分开,不能迅速而准确地复性,它们缠绕形成网状结构。
通过离心,染色体DNA 与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来,而质粒DNA却留在上清液中。
提取步骤:1.吸取1.5mL菌液于1.5mL离心管中,4℃下12000rpm离心2min,吸干上清液,使细菌沉淀尽可能干燥2.加入100μLSolutionⅠ,枪头充分打匀,使细胞重新悬浮。
此步骤菌体一定要悬浮均匀,不能有结块,否则会降低抽提得率3.加入200μL新配制的SolutionⅡ,轻柔颠倒混匀(千万不要振荡),冰上放置至清亮(小于5min)。
这一步操作要注意两点:第一,时间不能过长,因为在这样的碱性条件下基因组DNA片断会慢慢断裂;第二,必须温柔混合,不然基因组DNA也会断裂。
4.加入150μL solutionⅢ,颠倒混匀(温和振荡10秒),使溶液Ⅲ在粘稠的细菌裂解物中分散均匀冰浴10min,使杂质充分沉淀5.4℃下12000rpm离心15min,小心将上清转至新的1.5mL离心管中6.加入6μL 10μgl/μL的RaseA,混匀,37℃温浴30min。
7.等体积TriS饱和酚:氯仿:异戊醇(25:24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中8.等体积氯仿:异戊醇(24:l)抽提1次,小心将上清吸至新的 1.5mL离心管中9.加入2.5倍体积的冰冻无水乙醇,冰浴0.5-1h,沉淀双链 DNA。
碱裂解法提取质粒DNA的实验原理和操作步骤碱裂解法是一种常用的方法,用于提取质粒DNA(plasmid DNA)纯化。
以下是具体的实验原理和操作步骤。
实验原理:碱裂解法利用碱性溶液将细菌细胞的细胞壁和细胞膜溶解,使细菌细胞内的质粒DNA被释放出来。
接着,使用中性化剂中和碱性溶液,使DNA带正电荷,而细胞中的蛋白质则带负电荷,从而能够通过离心将DNA与蛋白质分离。
最后,通过浓缩、洗涤和纯化,得到高质量的质粒DNA。
操作步骤:1.培养细菌:选取含有质粒DNA的细菌菌株,如大肠杆菌。
在含有适当抗生素的培养基中培养细菌菌株。
2.收获细菌:当菌液呈现较稠的浑浊状态时,收取细菌培养物。
使用离心机将菌液离心,分离菌体沉淀和上清液。
将上清液倒掉,保留菌体沉淀。
3.碱裂解:将菌体沉淀溶解于碱性溶液中,如盐酸和十二烷基硫酸钠(SDS)溶液。
轻轻混合并将溶液放入水浴中加热,使细菌细胞壁和细胞膜被溶解。
4.中和:使用中性化剂,如醋酸,使溶液中的酸性物质中和。
这样可以确保DNA带正电荷,而蛋白质和其他污染物则带负电荷。
5.离心:将溶液离心,在离心过程中,DNA会与细胞内其他分子分离,形成一个DNA沉淀。
上清液中含有蛋白质和其他污染物。
6.洗涤:使用洗涤缓冲液,如乙酸盐缓冲液,洗涤DNA沉淀,去除残留的污染物。
7.纯化:用去离子水溶解DNA沉淀,使其溶解在水中。
将溶解的DNA沉淀通过滤纸等过滤装置过滤掉残余杂质。
8.浓缩:通过酒精沉淀法或其他方法,将DNA溶液浓缩到所需的浓度。
9.检测:使用紫外分光光度计等方法,测定提取的质粒DNA的纯度和浓度。
注意事项:1.在实验过程中保持操作环境和仪器无菌。
2.碱裂解法中使用的溶液需准备新鲜,并避免受到污染。
3.操作过程中需要低温处理和离心操作,以保护DNA的完整性。
4.质粒DNA的提取可以根据实验目的进行进一步的扩增、测序或转染等应用。
总结:通过碱裂解法,可以从细菌中提取纯化的质粒DNA。
质粒DNA的提取一、实验方法碱裂解法抽提质粒DNA二、实验原理基于质粒DNA与染色体DNA变性与复性的差异。
三、实验步骤1)质粒提取1. 10,000g,1min离心收集1.5-5ml菌液沉淀于1.5ml离心管中。
2. 加入100μl溶液1,振荡至彻底悬浮。
3. 加入200μl溶液2,立即轻柔颠倒离心管6次,使菌体充分裂解,随后将离心管冰上放置3分钟4. 加入150μl溶液3,立即温和颠倒离心管数次,冰上放置3分钟,10,000g离心10min。
5. 将步骤4的上清转移至新的离心管(尽量去除杂质),加入等体积的苯酚/氯仿/异戊醇混合均匀10,000g离心5min。
6. 将步骤5的上清转移至新的离心管,加入2倍体积的无水乙醇,室温放置5-10min,沉降DNA7. 10,000g离心10分钟,弃乙醇,保留沉淀,加入1ml 70%的乙醇洗涤沉淀,10,000g离心5分钟8. 倒掉乙醇溶液,用吸水纸吸净管壁上的水珠,室温蒸发痕量乙醇9. 加入适量含RNase的TE或灭菌双蒸水溶解质粒DNA2)质粒鉴定→琼脂糖凝胶电泳灌胶:胶中加入荧光染料(SYBR Green I)加样:质粒+上样缓冲液→混匀电泳结果观察:UV灯下四、实验结果五、实验分析裂解细胞中除含有质粒DNA外,还含有基因组DNA、各种RNA、蛋白质和脂类等物质,因此用碱裂解法除去杂质1、防止DNA裂解:Solution 11)、所含糖增加溶液黏度,维持渗透压,防止DNA受机械剪切作用降解2)、所含EDTA抑制酶活性2、溶解与变性:Solution21)强碱使质粒DNA和染色体DNA变性2)离子型表面活性剂SDS可溶解膜蛋白3、沉降与复性:Solution31)质粒DNA复性2)在钾盐中,染色体DNA形成缠连的不溶性网状结构,和不稳定的大分子RNA以及变性的蛋白质和细菌碎片等一起沉淀预期结果为剩余质粒DNA4、琼脂糖凝胶电泳1)荧光染色染料分子可嵌入双链DNA分子配对碱基之间2)琼脂糖可起到电泳和分子筛的作用,因所带电荷、分子量大小和构型不同,泳动速度不同六、误差分析实验失败,本组实验出现4条带,3明1暗,明亮处应为DNA分子数最多的,为质粒DNA,质粒DNA前有较暗的两条带,推测其中一条为未复性质粒DNA,可能Solution2处变性过长,不易复性,或Solution3处时间过短,复性不充分。
碱裂解法提取质粒DNA溶液 I : 50 mM Glu / 25 mM Tris-CI / 10 mM EDTA (pH 8.0);重悬菌体,供应缓冲环境。
(pH 很重要)。
葡萄糖:最大的好处只是悬浮后的大肠杆菌不会快速沉积到管子的底部,增加粘稠度,削减 摇摆时对DNA 的机械剪切力。
如缺了葡萄糖对质粒的抽提本身而言,几乎没有任何影响。
所以 说溶液I 中葡萄糖是可缺的。
EDTA :它是Ca2+和Mg2+等二价金属离子的螯合剂,在分子生物学试剂中的主要作用是抑制 DNase 的活性和抑制微生物生长。
在溶液1中加入高达10 mM 的EDTA,就是要把E.coli 细胞中 的全部二价金属离子都螯合掉。
若不加EDTA,只要是在短时间里完成质粒抽提,也不怕DNA 会快速被降解,由于最终溶解质粒的TE 缓冲液中有EDTA 。
假如哪天你手上正好缺了溶液I,只要用等体积的水,或LB 培育基来悬浮菌体就可以了。
留 意菌体肯定要悬浮匀称,不能有结块。
NaOH :用新奇的NaOH,是为了保证NaOH 没有汲取空气中的CO2而减弱了碱性。
裂解细 胞的主要是碱,而不是SDS,所以才叫碱法抽提。
NaOH 是最佳的溶解细胞的试剂,不管是大肠 杆菌还是哺乳动物细胞,遇到了碱都会几乎在瞬间就溶解,这是由于细胞膜发生了从bilayer (双 层膜)结构向micelle (微囊)结构的相变化所导致。
用了不新奇的NaOH,即便有SDS 也无法有 效溶解大肠杆菌,自然就难高效率抽提得到质粒。
只用SDS 也能抽提得到少量质粒,由于SDS 也是弱碱。
加SDS 是为下一步操作做铺垫。
留意:一,时间不能过长,在这样的碱性条件下基因组DNA 片断会渐渐断裂;二,必需温 顺混合,不然基因组DNA 也会断裂。
溶液III : 3M KAc∕2M HAc o 加入后就会有大量的沉淀消失,与SDS 的加入有关系。
假如在溶液II 中不加SDS 时也会有很少量的沉淀,明显是盐析和酸变性沉淀出来的蛋白质。
实验一碱裂解法抽提质粒DNA[实验原理]质粒是存在于染色体外的小型双链环状DNA,大小在1-200kb之间,能在宿主菌中自主复制。
宿主细胞中质粒的拷贝数各有不同,一种是低拷贝数的,每个细胞仅含有一个或几个质粒分子,称为“严紧型”复制的质粒,另一类高拷贝的质粒,拷贝数可达到20个以上,这种类型称为“松弛型”复制的质粒。
质粒能编码一些遗传性状,如抗药性(氨苄青霉素、四环素等抗性),利用这些抗性可以对宿主菌或重组菌进行筛选。
质粒作为基因工程载体必须具备以下条件(1)复制子(ori):一段具有特殊结构的DNA序列;(2)有一个或多个便于检测的遗传表型,如抗药性、显色表型反应等;(3)有一个或几个限制性内切酶位点,便于外源基因片段的插入;(4)适当的拷贝数。
制备质粒载体是分子生物学的常规技术。
碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。
纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。
例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。
对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。
[实验目的]1、掌握碱裂解法抽提质粒DNA的原理和方法。
2、掌握紫外吸收光谱法测定核酸含量的原理和方法。
[实验步骤]1、试剂配制(1)LB培养液10 g Tryptone,5 g Yeast Extract,10 g NaCl,双蒸水定容至1000mL,高压灭菌后4℃保存。
质粒提取原理
采用碱裂解法抽提质粒DNA是基于染色体DNA 与质粒DNA的变性与复性的差异不同而达到分离目的的。
在PH大于12的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开,DNA变性。
质粒DNA 的大部分氢键也断裂,但超螺旋共价闭合环状结构的两条互补链不会完全分离,当以pH5.2的乙酸钠高盐缓冲液调节其pH至中性时,变性的质粒DNA又恢复到原来的构型,留在溶液中。
而染色体DNA不能复性而形成缠连的网状结构。
通过离心,染色体DNA、不稳定的大分子RNA及蛋白质-SDS复合物等一起沉淀下来而被除去。
Solution I:葡萄糖可增加溶液的年度,维持渗透压,防止染色体DNA受机械剪切作用而被降解,污染质粒DNA;溶菌酶(可省略)水解菌体细胞壁的化学成分肽聚糖中的β-1,4糖苷键,具有溶菌的作用。
当pH<8.0时,溶菌酶受到抑制;EDTA有两个作用:(1)螯合Mg2+等金属离子,抑制DNase对DNA的降解。
(2) EDTA的存在有利于溶菌酶的作用,因为溶菌酶的反应要求有较低的离子强度环境;Tris-HCl作为缓冲溶液维持适当的浓度和pH值。
Solution II:NaOH,DNA在5.0<pH<9.0时时稳定的,但当pH>12或pH<3时,就会引起双链之间氢键的解离而使DNA变性。
加Solution II后系统的pH高达12.6,线性染色体DNA和环型质粒DNA氢键均发生断裂,双链解开而变性,但质粒DNA由于其闭合环型结构,氢键只发生部分断裂,且其两条链不会发生完全分离,待pH调至中性闭合环型质粒DNA很快复性恢复原来的构型,而染色体DNA不能复性。
SDS 是阴离子表面活性剂,它有溶解膜蛋白破坏细胞膜,解聚细胞中核蛋白,能与蛋白质结合成为R-O-SO3-···R+-蛋白质复合物,使蛋白质变性而沉淀下来。
但SDS能抑制RNase的作用,所以在以后提取中必须将其除干净。
Solution III:KAc-HAc缓冲体系pH约为4.8,一方面要将整个溶液体系调至中性,使变性质粒DNA能够复性并稳定存在;另一方面加入高浓度盐会导致SDS—蛋白质复合物,变性大分子染色体DNA、RNA 等凝聚沉淀,因为SDS (十二烷基硫酸钠)遇K+后变成PDS (十二烷基硫酸钾),PDS是不溶于水的。
SDS喜欢和蛋白质结合成为SDS—蛋白复合物,而遇K+后形成PDS—蛋白复合物便凝聚沉淀下来,同时长长的染色体DNA部分和部分RNA也被PDS共沉淀下来。
酚-氯仿:都是非极性分子,而水是极性分子,当蛋白水溶液与酚-氯仿混合时,蛋白质分子间的水分子被酚-氯仿挤出去,使蛋白失去水合状态而变性。
变性蛋白质的密度比水的密度大,经过离心,与水相分离,沉淀在水相下面,而酚-氯仿比重更大,保留在最下层。
作为表面变性剂的酚-氯仿,在除去蛋白质的作用中,也有一些缺点:(1)酚与水有一定程度的互溶,酚相中水的溶解可达大约10%~15%,溶解在这部分水相中有DNA会损失;酚很容易氧化,变成粉红色,氧化的酚容易降解DNA,解决酚氧化和带水的办法是将酚重蒸,除去氧化的部分,再用Tris-HCl缓冲液饱和,使酚不至于夺去DNA中的水,带走部分DNA。
饱和酚中加上8-羟基硅啉及巯基乙醇,防止酚氧化,还是弱的螫合剂,可抑制DNase。
由于有颜色,溶解在酚中后,使酚带上颜色,便于酚相与水相的分离,酚饱和后,表面盖上一层Tris水溶液,隔绝空气,阻止酚氧化。
(2)氯仿的变性作用不如酚效果好,但氯仿与水相溶,不会带走DNA,所以在抽提中混合使用。
异戊醇可以降低分子表面张力,减少抽提过程中泡沫的产生;同时,异戊醇有助于分相,使离心后的上层是水相,中层变性成蛋白相,下层为有机溶剂相。
第1页,共2页
细菌的培养
●将5 ml含相应抗生素的液体培养基加入到容量
50 ml,且通气良好的Coning管中,然后接入
含质粒的细菌200 μl,于37℃振荡培养过夜;●取培养的菌液1.2 ml加入EP管中,4℃12000
rpm离心1 min;
●弃去上清液体培养基残液,使细菌沉淀尽可能
干燥,收集细菌。
碱裂解法提取质粒DNA
●在细菌沉淀中加入150 μl预冷的Solution I,剧
烈振荡重悬菌液至无颗粒沉淀,细菌完全悬浮;
●加入300 μl新鲜配制的Solution II,盖紧管盖,
温和快速的颠倒离心管数次,至溶液完全混匀;
●置于冰浴2 min使细胞完全裂解,染色体DNA
充分变性;
●加入225 μl预冷的Solution III,盖紧管盖,反
复颠倒EP管并轻轻振荡使溶液混匀,冰浴10 min,使质粒DNA复性;
●于4℃12000 rpm离心10 min,沉淀细胞碎片
和破碎的染色体DNA,将含质粒DNA的上清移入另一EP管;●加入与上清等体积的酚-氯仿,手指轻弹混匀,
4℃12000 rpm离心5 min,以沉淀变性蛋白;
●小心吸取上层水相至另一EP管,加入上清液2
倍体积的预冷无水乙醇,充分混匀,于-20℃静置20 min沉淀质粒DNA;
●于4℃12000 rpm离心10 min,弃去上清液;
●加入1 ml70%的预冷乙醇,充分洗涤质粒DNA
沉淀,以达到洗盐目的;
●于4℃12000 rpm离心10 min,弃去上清液;
●将EP管倒置于滤纸上使乙醇充分流尽,并于
室温静置15 min让乙醇完全挥发;
●加入20 μl无菌超纯水,充分溶解质粒DNA,
-20℃储存备用。
试剂配制
●Solution I
✓葡萄糖50 mmol/L
✓Tris-HCl (pH8.0) 25 mmol/L
✓EDTANa2 10mmol/L
●Solution II
✓NaOH 0.2 mmol/L
✓SDS 1%
✓可先制成NaOH 0.4 mmol/L、SDS 2%,临用时1:1混合现配●Solution III
✓KAc(5 mmol/L) 60 ml
✓冰乙酸11.5 ml
✓ddH2O 28.5 ml
✓溶液配置成100 ml,pH调至4.8,配好后S-III 溶液含3 mol/L钾盐、5mol/L乙酸。
第2页,共2页。