第十三章 非线性电路分析
- 格式:ppt
- 大小:1.91 MB
- 文档页数:52
1.4 非线性电路的分析方法如前所述,在小信号放大器的分析和设计中, 通常是采用等效电路法,以便采用经典电路理论来进行分析、计算。
线性电路中,通常信号幅度小,整个信号的动态范围在元器件特性的线性范围内,所以器件的参数均视为常量,可以借助于公式计算电路的性能指标。
“模拟电子技术基础”课程中“低频小信号放大器”以及本课程中 “高频小信号谐振放大器”的分析中都涉及线性电路的分析。
在通信电子线路中,除了小信号放大电路外,有源器件还常工作在大信号或非线性状态。
与线性电路相比,非线性电路的分析和计算要复杂得多。
在非线性电路中,信号的幅度较大时,信号的动态范围涉及元器件特性的整个范围,半导体器件工作在非线性状态。
它们的参数不再是常数而是变量了。
因此,难以用等效电路和简单的公式计算电路了。
此外,在线性、非线性频谱搬移电路中,都涉及非线性电路的分析方法。
非线性电路的分析是本课程中的重要内容。
分析非线性电路时,常用幂级数分析法、指数函数分析法、折线分析法、开关函数分析法和时变参数分析法等。
1.4.1 幂级数分析法常用的非线性元器件的特性曲线大都可以用幂级数来表示。
在小信号运用的条件下,可以将一些非线性元器件的特性曲线用幂级数近似表示,使问题简化。
用这种方法分析非线性电路,虽然存在一定的准确性问题,但可以较好地说明非线性器件的频率变换作用。
因此在小信号检波、小信号调幅等电路分析时常常采用。
下面以图1.4.1所示电路为例,介绍幂级数分析法。
图中二极管是非线性器件,所加信号电压u 的幅度较小,称为小信号;L R 为负载, 0U 是静态工作点电压。
设流过二极管的电流i 函数关系为:)(u f i =若该函数)(u f 的各阶导数存在,则这个函数可以在静态工作点0U 处展开成幂级数(或称为泰勒级数)。
+-+-+-+=300///200//00/0)(!3)()(!2)())(()(U u U fU u U fU u U f U f i+-+-+-+=303202010)()()(U u b U u b U u b b (1-4-1)式中 0)(00U u iU f b ===为工作点处的电流u LR 图 1.4.1 二极管及其伏安特性(a)o(b)Id d )(0/1U u ui U f b === 为过静态工作点切线的斜率,即跨导;0220//2d d !21)(U u ui U f b ===kk0k k d d !1)(U u ui K U f b ===如果取00=U ,即静态工作点选在原点,则式(1-4-1)可写为 ++++=332210u b u b u b b i (1-4-2)从数学分析来看,上述幂级数展开式是一收敛函数,幂次越高的项其系数越小。
非线性电路一、非线性电路非线性电阻:若非线性电阻元件两端的电压是其电流的单值函数,这种电阻就是电流控制型电阻,同理,若其两端电流时其电压的单值函数,这种电阻就是电压控制型电阻。
在电路计算中,基尔霍夫定律对于线性电路和非线性电路均适用,但对于含有非线性储能元件的动态电路列出的方程是一组非线性微分方程。
非线性微分方程的解可能不唯一,其解析解一般都是难以求得的,但可以用计算机用数值计算方法求得数值解。
非线性电路的另一种重要的方法为小信号分析法,另外还有分段线性化方法等。
二、均匀传输线均匀传输线:即使沿传输线的原参数(单位长度的电阻、电感、电容、电导)到处相等,则称为均匀传输线。
分布电路中,电压和电流不仅随时间变化,同时也随距离变化,这是分布电路和集总电路的一个显著区别。
均匀传输线有两个重要参数,特性阻抗(波阻抗)Zc,和传播常数r,两个参数都是复数。
一般架空线的特性阻抗为6~8倍电缆的特性阻抗。
当传输线所接的负载阻抗Z2=Zc时,电压电流波中均没有反射波。
称为终端阻抗与传输线阻抗的匹配。
在通信线路和设备连接时,均要求匹配。
避免反射。
如果传输线的原参数中(单位长度中的电阻,电导)均为零。
这种传输线就称为无损耗线。
在无线电工程中,由于频率高,导致00L R ω>> ,00C G ω>>,常将损耗略去,也可看成无损耗线。
无损耗线的特性阻抗是一个纯电阻且与频率无关。
在高频领域中,常用长度小于4λ的开路无损耗线用来代替电容 ,长度小于4λ的短路无损耗线用来代替电感。
长度小于4λ的无损耗线还可以作为传输线和负载之间的匹配元件,作用相当于阻抗变换器。
在超高频技术中的“金属绝缘子”也就是长度为4λ的短路传输线作为支架。
非线性电路分析技巧在电子领域中,非线性电路的分析是十分重要的。
与线性电路不同,非线性电路的元件特性与电压和电流之间的关系不是线性的。
因此,针对非线性电路的分析方法需要更为复杂和精确。
本文将介绍一些非线性电路分析的技巧,帮助读者更好地理解和应用于实践。
一、利用近似法分析非线性电路中,非线性元件的特性曲线通常很复杂,很难直接得到解析解。
此时,我们可以利用近似法来简化问题,使其更易于分析。
最常用的近似方法之一是泰勒级数展开。
通过将非线性特性曲线在某个工作点处展开,可以得到一个线性近似,进而使用线性分析方法进行求解。
其他常用的近似方法还包括小信号模型和大信号模型等。
二、使用等效电路模型为了更方便地分析非线性电路,我们可以将其等效为线性电路。
这样,我们就可以使用线性电路的分析方法进行求解。
等效电路模型可以通过查找手册、仿真软件或实验数据来获取。
常见的等效电路模型包括二极管的小信号模型、伏安特性曲线拟合模型等。
通过将非线性元件替换为等效线性元件,可以将问题简化并应用线性电路分析法。
三、使用迭代法对于复杂的非线性电路,我们可以使用迭代法逐步逼近真实解。
迭代法通常结合着近似法和等效电路模型。
步骤如下:首先,根据近似法建立初始的线性近似电路;然后,通过求解线性近似电路得到数值解;接着,将数值解代入非线性元件中得到新的特性曲线;最后,根据新的特性曲线更新线性近似电路,并重复上述步骤直到收敛为止。
四、考虑非线性电路的稳定性非线性电路的稳定性问题是在分析时需要特别关注的。
由于非线性电路的元件特性会随着电压和电流变化,系统可能会失去稳定性。
为了确保电路正常工作,我们需要对非线性电路进行稳定性分析。
常见的稳定性判断方法包括利用极点分布法、利用Bode图分析法和利用Lyapunov稳定性判据等。
五、利用仿真软件进行分析随着计算机技术的不断发展,仿真软件已经成为非线性电路分析的重要工具。
利用仿真软件,我们可以建立电路的数学模型,并模拟其电压、电流和功率等参数的变化。
非线性电路特性分析与设计非线性电路在现代电子技术中起着重要的作用,它能够实现对信号的非线性处理与调制,为电子设备带来了更广阔的应用空间。
本文旨在分析非线性电路的特性,并探讨其设计方法和应用。
一、非线性电路特性分析非线性电路的特性主要包括响应曲线的非线性、非线性失真和交叉调谐等。
对于响应曲线来说,非线性电路的输出并不呈线性关系,而是随输入信号的变化而变化。
非线性失真是指非线性电路将输入信号中包含的各种谐波成分放大或抑制,引起输出信号的失真。
交叉调谐则是指输入信号中的不同频率成分会相互关联,导致输出信号在频率上出现互调和交调现象。
为了准确分析非线性电路的特性,我们可以采用数学模型进行建模和仿真。
常用的数学模型包括非线性传输线模型、小信号模型和差分方程模型等。
通过这些模型,我们可以获得非线性电路的传输特性、频率响应等参数,进而进行性能评估和优化设计。
二、非线性电路设计方法非线性电路的设计方法主要包括级联法、反馈法和失真补偿法等。
级联法是指将多个非线性电路进行级联,以实现更复杂的信号处理功能。
反馈法则是通过引入反馈回路,对非线性电路进行稳定和补偿,以提高其性能。
失真补偿法是在非线性电路中引入补偿网络,通过对非线性特性进行修正来减小失真。
在非线性电路的设计过程中,需要注意以下几点。
首先,要根据实际需求选择合适的非线性器件,如二极管、晶体管等。
其次,要根据输入信号和输出信号的特性确定非线性电路所需的增益和增益带宽等性能指标。
最后,在设计中要考虑非线性失真的抑制和噪声的降低,以提高电路的可靠性和稳定性。
三、非线性电路的应用非线性电路在通信、音频处理、功率放大等领域都有广泛的应用。
在通信领域,非线性电路可以实现频率调制和解调、信号混频等功能,为无线通信系统提供支持。
在音频处理领域,非线性电路可以对音频信号进行处理,如音效处理、失真音效等。
在功率放大领域,非线性电路可以实现高效能耗的功率放大,用于无线电频段的射频功率放大器设计等。
262 第十三章 非线性电路本章提要 介绍非线性电阻元件及特性,简单非线性电阻电路的图解分析法,小信号分析法,分段线性分析法及其它非线性元件。
13.1 非线性电阻及其特性在第一章中已给出了线性电阻的定义,线性电阻的端电压u 与通过它的电流i 成正比,即i R i f u )(== 线性电阻的电压、电流关系受欧姆定律的约束,其特性曲线是在u –i 平面上过坐标原点的一条直线。
非线性电阻的电压、电流关系不满足欧姆定律,其特性方程遵循某种特定的非线性函数关系,即0),,(=t i u f (13-1)非线性电阻的电路符号如图13.1所示。
非线性电阻种类较多,就其电压、电流关系而言,有随时间变化的非线性时变电阻,也有不随时间变化的非线性定常电阻。
本章只介绍非线性定常电阻元件,通常也称为非线性电阻。
常见的非线性电阻一般又分为电流控制电阻、电压控制电阻和单调电阻等。
电流控制电阻是一个二端元件,其端电压u 是电流i 的单值函数,即)(i f u = (13-2)电压u 是电流i 的单值函数是指在每给定一个电流值时,可确定唯一的电压值,如图13.2图13. 1非线性电阻图形符号图13. 3隧道二极管特性曲线图13. 2辉光二极管特性曲线263所示辉光二极管特性曲线,它是一个典型的电流控制的非线性电阻元件的特性。
电压控制电阻元件是一个二端元件,其通过的电流i 是电压u 的单值函数,即 )(u g i = (13-3) 电流是电压的单值函数,但电压可以是多值的,如图13.3所示隧道二极管的特性曲线,是一个典型的电压控制非线性电阻元件。
单调电阻是一个二端元件,其端电压u 是电流i 的单值函数,电流也是电压的单 值函数,即)(i f u = 和 )( u g i = (13-4) 同时成立,并且f 和g 互为反函数,则u 、i 间函数关系又可以写为 )( )(11u f i i g u --==和 (13-5)这种非线性电阻既是电流控制的又是电压控制的,其特性曲线是单调增长或单调下降,如图13.4(a)所示的元件图形符号是电子技术中常用的二极管,它是一个典型的单调型电阻。