湖南省衡阳市八中2012届高三高考模拟考试理科数学试卷
- 格式:doc
- 大小:1.38 MB
- 文档页数:12
湖南省衡阳八中高考数学模拟试卷(理科)一、选择题详细信息1.难度:中等在复平面内复数Z=i(1-2i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限详细信息2.难度:中等设集合P={x∈R|x>2},M={x∈R|x>a,a∈R},则“a=1”是“P⊆M”的()A.必要不充分条件B.充要条件C.既不充分也不必要条件D.充分不必要条件详细信息3.难度:中等己知一个几何体是由上、下两部分构成的组合体,其三视图如下图,若图中圆的半径为1,等腰三角形的腰长为,则该几何体的体积是()A.B.2πC.D.详细信息4.难度:中等某校对高三理科1400名学生进行了一次调研抽测,经统计发现5科总分ξ(0<ξ<750)大致服从正态分布N(450,1302),若ξ在(0,280)内取值的概率为0.107,则该校1400名考生中总分为620分以上的学生大约有()人(结果四舍五入).A.100人B.125人C.150人D.200人详细信息5.难度:中等一个算法的程序框图如图所示,若该程序输出的结果是,则判断框内应填入的条件是()A.i<4B.i>4C.i<5D.i>5详细信息6.难度:中等与椭圆共焦点且过点P(2,1)的双曲线方程是()A.B.C.D.详细信息7.难度:中等如图所示为函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤π)的部分图象,其中A,B两点之间的距离为5,那么f(-1)=()A.2B.C.D.-2详细信息8.难度:中等已知函数,若方程f(x)=x+a有且只有两个不相等的实数根,则实数a的取值范围是()A.(-∞,1]B.(0,1)C.[0,+∞)D.(-∞,1)二、解答题详细信息9.难度:中等在平面直角坐标系下,曲线(t为参数),曲线C2:(θ为参数),则曲线C1、C2的公共点的个数为.详细信息10.难度:中等已知实数x、y、z满足x+2y+3z=1,则x2+y2+z2的最小值为.详细信息11.难度:中等如图,AB是⊙O的直径,直线DE切⊙O于点D,且与AB的延长线交于点C,若CD=,CB=1,则∠ACE=.详细信息12.难度:中等在(x-3)5的展开式中,含x3的项的系数等于.详细信息13.难度:中等计算:= .详细信息14.难度:中等如图,在直角梯形ABCD中,已知BC∥AD,AB⊥AD,AB=4,BC=2,AD=4,若P 为CD的中点,则的值为.详细信息15.难度:中等已知不等式组表示的平面区域为M,直线y=x与曲线所围成的平面区域为N.(1)区域N的面积为;(2)现随机向区域M内抛一粒豆子,则豆子落在区域N内的概率为.详细信息16.难度:中等设a1,a2,…,an是各项不为零的n(n≥4)项等差数列,且公差d≠0.将此数列删去某一项后,得到的数列(按原来顺序)是等比数列.(1)若n=4,则= ;(2)所有数对(n,)所组成的集合为.详细信息17.难度:中等一个房间有4扇同样的窗子,其中只有一扇窗子是打开的.房间里一只燕子只能从开着的窗子飞出去,燕子在房子里一次又一次地向着窗户飞去,试图飞出房间.假定燕子飞向各扇窗子是等可能的.(1)假定燕子是没有记忆的,求它恰好在第2次试飞时出了房间的概率;(2)假定这只燕子是有记忆的,它飞向任一窗子的尝试不多于一次,若这只燕子恰好在第η次试飞时飞出了房间,求试飞次数η的分布列及其数学期望.详细信息18.难度:中等等差数列{an }满足3a5=5a8,Sn是数列{an}的前n项和.(1)若a1=1,当Sn取得最大值时,求n的值;(2)若a1=-46,记,求bn的最小值.详细信息19.难度:中等如图所示的多面体中,正方形BB1C1C所在平面垂直平面ABC,△ABC是斜边的等腰直角三角形,B1A1∥BA,.(1)求证:C1A1⊥平面ABB1A1;(2)求直线BC1与平面AA1C1所成的角的正弦值.详细信息20.难度:中等如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为30°,已知S的身高约为米(将眼睛距地面的距离SA按米处理).(1)求摄影者到立柱的水平距离AB和立柱的高度OB;(2)立柱的顶端有一长为2米的彩杆MN,且MN绕其中点O在S与立柱所在的平面内旋转.在彩杆转动的任意时刻,摄影者观察彩杆MN的视角∠M SN(设为θ)是否存在最大值?若存在,请求出∠MSN取最大值时cosθ的值;若不存在,请说明理由.详细信息21.难度:中等已知直线l:x=my+1过椭圆的右焦点F,抛物线的焦点为椭圆C的上顶点,且直线l交椭圆C于A,B两点,点A,F,B在直线x=4上的射影依次为点D,K,E.(1)求椭圆C的方程;(2)若直线l交y轴于点M,且,当m变化时,证明:;(3)连接AE,BD,试探索当m变化时,直线AE与BD是否相交于定点?若是,求出定点的坐标,并给出证明;否则,请说明理由.详细信息22.难度:中等已知函数的图象过坐标原点O,且在点(-1,f(-1))处的切线的斜率是-5.(Ⅰ)求实数b,c的值;(Ⅱ)求f(x)在区间[-1,2]上的最大值;(Ⅲ)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?说明理由.。
衡阳市八中2012届高三第四次月考试卷数学(理科)第Ⅰ卷一、选择题(本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、若1:1,:1p x q x><,则p 是q 的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2、如图是导函数()y f x '=的图像,则下列命题错误的是 ( ) A .导函数()y f x '=在1x x =处有极小值 B .导函数()y f x '=在2x x =处有极大值 C .函数3()y f x x x ==在处有极小值 D .函数4()y f x x x ==在处有极小值3、已知函数1,0()1,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .(1,2)B .(,2]-∞-C .(,1)(2,)-∞⋃+∞D .(,1][2,)-∞⋃+∞4、将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为 ( )5、已知椭圆22221(0)x y a b a b+=>> 的一个焦点是圆22680x y x +-+=的圆心,且短轴长为8 ,则椭圆的左顶点为 ( ) A .(3,0)- B .(4,0)- C .(10,0)- D .(5,0)-6、已知等差数列{}n a 的前n 项和为n S ,若2OB a =2008OA a OC +,且A 、B 、C 三点共线 (O 为该直线外一点),则2009S = ( )A . 2009B .20092C . 20092D .20092- 7、已知点R t t t P ∈),,(,点M 是圆41)1(22=-+y x 上的动点,点N 是圆41)2(22=+-y x 上的动点,则||||PM PN -的最大值是 ( ) A .15-B .5C .2D .18、将面积为2的长方形ABCD 沿对角线AC 折起,使二面角D-AC-B 的大小为α)1800(00<<α,则三棱锥D -ABC 的外接球的体积的最小值是 ( )A .328πB .332πC .34π D .与α的值有关的数二、填空题(本大题共7小题,每小题5分,共35分,把答案填在答卷的横线上) 9、设复数z 的共轭复数为z ,若1z i =-(i 为虚数单位)则2zz z+的值为__________ 10、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________11、垂直于直线0162=+-y x ,且与曲线5323-+=x x y 相切的直线的方程是________ 12、已知0,0,20,a b a b ab >>+-=则a b +的最小值为__________13、已知数列{}n a 中,11a =,且对于任意的正整数,m n 都有m n m n m n a a a a a +=++,则数 列{}n a 的通项公式为__________14、若实数,x y 满足222x y x y ≤⎧⎪≤⎨⎪+≥⎩,则目标函数22y z x =+的最大值为__________15、对于任意正整数j ,k ,定义,3(1)j k a j k =--,如3,433(41)6a =--=-.对 于任意不小于2的正整数m 、n ,,1,2,3,(,)j j j j n b j n a a a a =++++设,(,)S m n =(1,)(2,)(3,)(,)b n b n b n b m n ++++,则(1,)b n = ; (2,5)S =__________第Ⅱ卷三、解答题(本大题共7小题,共75分.解答应写出文字说明、证明过程或演算步骤) 16、(本题满分12分)在△ABC 中,角A ,B ,C 所对的边为a ,b ,c ,已知sin2C4.(Ⅰ) 求cos C 的值; (Ⅱ) 若△ABC4sin 2 A +sin 2B =1316sin 2C ,求c 的值.17、(本题满分12分)已知圆1)2(:22=-+y x M ,Q 是x 轴上的动点,QA 、QB 分别切圆M 于B A ,两点(1)求四边形QAMB 的面积的最小值(2)若点Q 的坐标为(1,0),求切线QA 、QB 及直线AB 的方程18、(本题满分12分)如图,圆柱的高为2,底面半径为3,AE 、DF 是圆柱的两条母线,B 、C 是下底面圆周上的两点,已知四边形ABCD 是正方形。
衡阳八中2018届高三年级实验班第一次模拟考试试卷理科数学(试题卷)注意事项:1.本卷为衡阳八中高三年级实验班第一次模拟考试试卷,分两卷。
其中共23题,满分150分,考试时间为120分钟。
2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。
开考15分钟后,考生禁止入场,监考老师处理余卷。
3.请考生将答案填写在答题卡上,选择题部分请用2B 铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。
考试结束后,试题卷与答题卡一并交回。
★预祝考生考试顺利★第I 卷 选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。
1.)A2.已知i 是虚数单位,(1+2i )z 1=﹣1+3i z 1、z 2在复平面上对应的点分别为A 、B ,则|AB|=()A .31B .33 CD3.值是4.已知定义在[0,+∞)上的函数f (x )满足f (x )=3f (x+2),当x ∈[0,2)时,f (x )=﹣x 2+2x .设f (x )在[2n ﹣2,2n )上的最大值为a n (n ∈N *),且{a n }的前n 项和为S n ,则S n的取值范围是()A.[1B.[1C.2) D.2]5.()A6.已知等差数列{a n}的前n项和为S n,且S10a5+a6=()A B.12C.6 D7.如图是某四棱锥的三视图,则该几何体的表面积等于()A.B.C.D.8.若函数y=f(x)(x∈R)满足f(x+1)=﹣f(x),且当x∈[﹣1,0则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是()A.2 B.3 C.4 D.59.执行右边的程序框图,若p=0.8,则输出的n=()A.3 B.4 C.5 D.610.已知函数f(x)f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2))A.(﹣1,+∞)B.(﹣1,1] C.(﹣∞,1)D.[﹣1,1)11.已知F1、F2(a>b>0)的左、右焦点,过F2且垂直于x轴的直线与椭圆交于A、B两点,若△ABF1是锐角三角形,则该椭圆离心率e的取值范围是()A.e 1 B.0<e 1 C1<e<1 D1<e12.x1,x2∈[0,1],都有|f(x1)﹣f(x2)|≤1恒成立,则a的取值范围是()A BC D第II 卷 非选择题(共90分)二.填空题(每题5分,共20分)______. 14.平面直角坐标系xOy 中,双曲线C 1:(a >0,b >0)的渐近线与抛物线C 2:x 2=2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .15.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A 、B、C 所对的边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为a 2sinC=4sinA ,(a+c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为 .16.A ﹣BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且R :BC=2:3,E为线段BD 上一点,且DE=2EB ,过点E 作球O 的截面,则所得截面圆面积的取值范围是 .三.解答题(共8题,共70分)17.(本题满分12分)△ABC的内角为A,B,C的对边分别为a,b,c(1(2ABC的面积最大时,△ABC的周长;18.(本题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.19.(本题满分12分)2的正三角形.(1)证明:(220.(本题满分12分)如图,过抛物线(1)求椭圆1C和抛物线2C的方程;(2.21.(本题满分12分).(Ⅰ)当a=0时,求f(x)的极值;使得m的取值范围.选做题:考生从22、23题中任选一题作答,共10分。
绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合21,0,1,{}{|}M N x x x =-=≤,则M N = ( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 ( )A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一 组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下 列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -= D .2212080x y -= 6.函数π()sin cos()6f x x x =-+的值域为 ( )A .[]2,2- B.[ C .[]1,1- D.[227.在ABC △中,2,3AB AC ==,AB BC =1,则BC =( )ABC.D8.已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点A B ,,2l 与函数2|log |y x =的图象从左至右相交于点C D ,.记线段AC 和BD 在x轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为 ( )A. B. C. D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线11,:12,x t C y t =+⎧⎨=-⎩(t 为参数)与曲线2sin :3cos x a C y θ,θ,=⎧⎨=⎩(θ为参数,0a >)有一个公共点在x 轴上,则a = . 10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若1,2,PA AB ==3PO =,则圆O 的半径等于 .12.已知复数2i)(3z =+(i 为虚数单位),则|z |= .13.6的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入1,3x n =-=,则输出的数S = . 15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,,A C 为图象与x 轴的两个交点,B 为图象的最低点. (1)若π6ϕ=,点P的坐标为,则ω= ;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC △内的概率 为 .16.设2(,2)n N n n =∈*≥N ,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n -≤≤时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置;(2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购 物的100位顾客的相关数据,如下表所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4,3,5,AB BC AD ===90,DAB ABC E ∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记()A n =12n a a a +++,()B n =231n a a a ++++,()C n =342n a a a ++++,=1,2,n .(Ⅰ)若121,5a a ==,且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个 数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件 的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6 件,或B 部件3 件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最 短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交 于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为 定值.22.(本小题满分13分)已知函数()e axf x x =-,其中0a ≠.(Ⅰ)若对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题CBDPE图5A1.【答案】B 【解析】{0,1}N =,{1,0,1}M =-,{0,1}M N ∴=.【提示】先求出{0,1}N =,再利用交集定义得出MN .【考点】集合的基本运算(交集) 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以“若π4α=,则t a n 1α=”的逆否命题是“若tan 1,α≠则π4α≠”.【提示】根据命题“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,即可求它的逆否命题. 【考点】四种命题及其之间的关系 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C ,都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【提示】根据已知的平面图形的正视图和侧视图,即可求出它的俯视图. 【考点】平面图形的直观图与三视图 4.【答案】D【解析】由回归方程为0.85571ˆ8.x y-=知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程的过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(,)x y ,利用回归方程可以预测估计总体,所以D 不正确.【提示】根据两变量之间的回归方程,即可判断两者之间的关系. 【考点】线性回归分析 5.【答案】A【解析】设双曲线22221x a C yb -=:的半焦距为c ,则210c =,5c =, 又C 的渐近线为by x a=±,点P (2,1)在C 的渐近线上,12ba∴=⨯,即2a b =,又222c a b =+,a ∴=b =C ∴的方程为221205x y -=.【提示】根据给出的双曲线的焦距及其渐近线上一点,即可求出双曲线的标准方程.【考点】双曲线的标准方程 6.【答案】B【解析】π1π()sin cos sin sin 626f x x x x x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪⎝⎭⎝⎭, πsin [1,1]6x ⎛⎫-∈- ⎪⎝⎭,()f x ∴值域为[.【提示】根据给出的三角函数表达式,结合两角差的正弦即可求出其值域. 【考点】两角差的正弦,三角函数的值域 7.【答案】A【解析】由图知,||||cos(π)2||(cos )1AB BC AB BC B BC B =-=⨯⨯-=,1cos 2B BC∴=-,又由余弦定理知222cos 2AB BC AC B AB BC +-=,解得BC =.【提示】根据给出的三角形两边及数量积,结合数量积运算及余弦定理即可求解另一边. 【考点】平面向量的数量积运算,余弦定理8.【答案】B【解析】在同一坐标系中作出y m =,8(0)21y m m =>+,2|log |y x =图象如图, 由2|log |x m =,得12m x -=,22mx =,由28|log |21x m =+,得82132m x -+=,82142m x +=,依照题意得82122mm a --+=-,82122m mb +=-,8218218218212222222m m mm mm m m b a++++--+-===-,8141114312122222m m m m +=++-≥-=++,minb a ⎛⎫∴= ⎪⎝⎭【提示】根据给出的三个函数表达式,画出函数图象,结合图象与不等式即可判断b a最小值.【考点】函数图象的应用,基本不等式 二、填空题 9.【答案】32【解析】曲线1112x t C y t=+⎧⎨=-⎩:,直角坐标方程为32y x =-,与x 轴交点为3,02⎛⎫ ⎪⎝⎭;曲线2sin 3cos x a C y θθ=⎧⎨=⎩:,直角坐标方程为22219x y a +=,其与x 轴交点为(,0)a -,(,0)a , 由0a >,曲线1C 与曲线2C有一个公共点在x 轴上,知32a =. 【提示】根据给出的两条直线的参数方程与极坐标方程,分别转化成直角坐标方程,根据题意设交点求解.【考点】参数方程与普通方程的转化,极坐标方程与普通方程的转化10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()|21|2|1|f x x x =+--,则由13,()21()41,(1)23,(1)x f x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩,得()0f x >的解集为14x x ⎧⎫>⎨⎬⎩⎭.【提示】设函数表达式,求其等价的分段函数,再分段求其大于零时的解集即可. 【考点】绝对值不等式 11.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为r ,由割线定理知PA PB PC PD =, 即1(12)(3)(3)r r ⨯+=-+,r ∴=.【提示】根据给出的线段长,由切割线定理PA PB PC PD =,即可求出圆的半径. 【考点】切割线定理 12.【答案】10【解析】22(3i)96i i 86i z =+=++=+,||10z ==. 【提示】根据给出的复数表达式,进行四则运算,即可求出其模. 【考点】复数代数形式的四则运算 13.【答案】160-【解析】6⎛ ⎝的展开式项公式是6631662(1)rr r r r r rr T C C x ---+⎛==- ⎝, 由题意知30r -=,3r =,所以二项展开式中的常数项为333462(1)160T C =-=-. 【提示】根据给出的二项式,即可求出其展开式的常数项.【考点】二项式定理 14.【答案】4-【解析】输入1x =-,3n =,执行过程如下:2i =,6233S =-++=-;1i =,3(1)115S =--++=;0i =,5(1)014S =-++=-,所以输出的是4-.【提示】根据程序框图的逻辑关系,并根据程序框图即可求出S 的值. 【考点】循环结构的程序框图 15.【答案】3π4【解析】①()cos()y f x x ωωϕ'==+,当π6ϕ=,点P的坐标为⎛ ⎝⎭时,πcos 6ω= 3ω∴=;②由图知2ππ22T AC ωω===,1π22ABC S AC ω==△, 设A ,B 的横坐标分别为a ,b ,设曲线段弧ABC 与x 轴所围成的区域的面积为S , 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为π2π24ABC S P S ===△. 【提示】根据给出的函数导数的图象判断ω的大小,由定积分求面积,并结合概率求解即可.【考点】函数图象的应用,定积分的几何意义,几何概型 16.【答案】643211n -⨯+【解析】①当16N =时,0123456P x x x x x x x =…,可设为(1,2,3,4,5,6,…,113571524616P x x x x x x x x x =……,即为(1,3,5……,2159133711152616P x x x x x x x x x x x =…,即(1,5,9,13,3,7,11,15,2,6,,16)…,7x 位于2P 中的第6个位置;②方法同①,归纳推理知173x 位于4P 中的第43211n -⨯+个位置.【提示】根据题意归纳推理求解即可. 【考点】归纳推理 三、解答题17.【答案】(Ⅰ)由已知,得251055y ++=,35x y +=,所以15x =,20y =,该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率,得:153(1)10020P X ===, 303( 1.5)10010P X ===,251(2)1004P X ===,X 的数学期望为()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=;(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且,由于顾客的结算相互独立,且1X ,2X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X PX P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【提示】根据给出的数据求分布列与期望,判断事件之间互斥关系,从而求得对立事件的概率即可.【考点】用样本数字特征估计总体数字特征,对立事件的概率18.【答案】(Ⅰ)如图,连接AC ,由4AB =,3BC =,90ABC ∠=,得5AC =, 又5AD =,E 是CD 的中点,所以CD AE ⊥,PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,而PA ,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE ;(Ⅱ)过点B 作BG CD ∥,分别与AE ,AD 相交于F ,G 连结PF , 由(Ⅰ)CD ⊥平面PAE 知,BG ⊥平面PAE ,于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥,由PA ⊥平面ABCD 知,PBA ∠为直线PB 与平面ABCD 所成的角,4AB =,2AG =,BG AF ⊥由题意,知PBA BPF ∠=∠,因为sin PA PBA PB ∠=,sin BFBPF PB∠=,所以PA BF =,由90DAB ABC ∠=∠=, 知,AD BC ∥,又BG CD ∥,所以四边形BCDG 是平行四边形,故3GD BC ==,于是2AG =,在Rt BAG △中,4AB =,2AG =,BG AF ⊥,所以BG =,2AB BF BG ===于是PA BF ==, 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=【解析二】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA h =,则相关的各点坐标为:(0,0,0)A ,(4,0,0)B ,(4,3,0)C ,(0,5,0)D ,(2,4,0)E ,(0,0,)P h ;(Ⅰ)易知(4,2,0)CD =-,(2,4,0)AE =,(0,0,)AP h =,8800CD AE =-++=,0CD AP =,所以CD AE ⊥,CD AP ⊥,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE ;(Ⅱ)由题设和(Ⅰ)知,CD ,AP 分别是平面PAE ,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以cos ,cos ,CD PB PA PB <>=<>,即||||||||C D P BP A P BC D P B P A P B =,由(Ⅰ)知,(4,2,0)CD =-,(0,0,)AP h=-由(4,0,)PB h =-,故2216516h hh++,解得5h =,又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1112851633V S PA =⨯⨯=⨯=【提示】根据定理判定线面垂直;找出四棱锥的高求其体积. 【考点】直线与平面垂直的判定,四棱锥的体积19.【答案】(Ⅰ)对任意n *∈N ,三个数()A n ,()B n ,()C n 是等差数列,所以()()()()B n A n C n B n -=-,即1122n n a a a a ++-=-,亦即21214n n a a a a +--=-=,故数列{}n a 是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-; (Ⅱ)①必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=, 由0n a >知,()A n ,()B n ,()C n 均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==, 所以三个数()A n ,()B n ,()C n 组成公比为q 的等比数列;②充分性:若对于任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列, 则()()B n qA n =,()()C n qB n =,于是()()[()()]C n B n q B n A n -=-, 得2211()n n a a q a a ++-=-,即2121n n a qa a a ++-=-, 由1n =有(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=, 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列.【提示】根据给出的三个关系式,根据三者之间的关系结合等差、等比性质求解即可. 【考点】等差数列的通项公式,等比数列的性质20.【答案】(Ⅰ)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为1()T x ,2()T x ,3()T x 由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+,其中x ,kx ,200(1)k x -+均为1到200之间的正整数;(Ⅱ)完成订单任务的时间为{}123()max (),(),()f x T x T x T x =,其定义域为2000,1x x x k *⎧⎫<<∈⎨⎬+⎩⎭N , 易知,1()T x ,2()T x 为减函数,3()T x 为增函数,注意到212()()T x T x k=,于是:①当2k =时,12()()T x T x =,此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数1()T x ,3()T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得4009x =,由于40044459<<,而1250(44)(44)11f T ==,3300(45)(45)13f T ==,(44)(45)f f <, 故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =;②当2k >时,12()()T x T x >,由于k 为正整数,故3k ≥,此时375()50T x x=-,{}1()max (),()x T x T x ϕ=易知()T x 为增函数,则{}{}1311000375()max (),()max (),()()max ,50f x T x T x T x T x x x x ϕ⎧⎫=≥==⎨⎬-⎩⎭,由函数1()T x ,()T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =,由于400363711<<而1250250(36)(36)911T ϕ==>,375250(37)(37)1311T ϕ==>,此时完成订单任务的最短时间大于25011;③当2k <时,12()()T x T x <,由于k 为正整数,故1k =,此时{}232000750()max (),()max ,100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数2()T x ,3()T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =, 类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A ,B ,C 三种部件的人数分别为44,88,68.【提示】根据题意建立模型,判断单调性求最值即可.【考点】分段函数模型,函数单调性的判断,利用函数单调性求最值21.【答案】(Ⅰ)解法一:设M 的坐标为(,)x y,由已知得|2|3x +,易知圆2C 上的点位于直线2x =-的右侧,于是20x +>,5x =+,化简得曲线1C 的方程为220y x =;解法二:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =;(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4)y y k x -=+,即040kx y y k -++=,于是3=,整理得2200721890k y k y ++-=①,设过P 所作的两条切线PA ,PC 的斜率分别为1k ,2k ,则1y ,2y 是方程①的两个实根,故001218724y y k k +=-=-②,由10124020k x y y k y x -++=⎧⎨=⎩,得21012020(4)0k y y y k -++=③,设四点A ,B ,C ,D 的纵坐标分别为1y ,2y ,3y ,4y ,则1k ,2k 是方程③的两个实根,所以0112120(4)y k y y k +=④,同理可得0234220(4)y k y y k +=⑤,于是由②,④,⑤三式,得0102123412400(4)(4)y k y k y y y y k k ++= 2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦==.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【提示】根据给出的圆的方程及两曲线之间的关系,联立方程由韦达定理即可求解. 【考点】曲线与方程,直线与曲线的位置关系 22.【答案】(Ⅰ){1}(Ⅱ)0x 的取值范围为212211e e ln,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦【解析】(Ⅰ)若0a <,则对一切0x >,()f x e 1ax x =-<,这与题设矛盾,又0a ≠,故0a >,而()e 1ax f x a '=-,令()0f x '=,得11lnx aa =,当11ln x a a<时,()0f x '<,()f x 单调递减;当11ln x a a >时,()0f x '>,()f x 单调递增.故当11ln x a a=时,()f x 取最小值11111ln ln f a a a a a⎛⎫=- ⎪⎝⎭,于是对一切x ∈R ,()1f x ≥恒成立,当且仅当111ln 1a a a-≥,令()ln g t t t t =-,则()ln g t t '=-,当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 单调递减.故当1t =时,()g t 取最大值(1)1g =,因此,当且仅当11a=即1a =时,a 的取值集合为{1}; (Ⅱ)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---,令2121e e ()()e ax ax axx f x k a x x ϕ-'=-=--,则121()12121e ()[e ()1]ax a x x x a x x x x ϕ-=-----,212()21221e ()[e ()1]ax a x x x a x x x x ϕ-=----, 令()e 1tF t t =--,则()e 1tF t '=-.当0t <时,()0F t '<,()F t 单调递减;当0t >时,()0F t '>,()F t 单调递增. 故当0t =,()(0)0F t F >=,即e 10t t -->, 从而21()21e()10a x x a x x ---->,12()12e()10a x x a x x ---->,又121e 0ax x x >-,221e 0ax x x >-, 所以1()0x ϕ<,2()0x ϕ>,因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0x ϕ=,2()e 0axx a ϕ'=>,()x ϕ单调递增,故这样的c 是唯一的,且21211e e ln ()ax ax c a a x x -=-,故当且仅当212211e e ln ,()ax ax x x a a x x ⎡⎤-∈⎢⎥-⎣⎦时,0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立,且0x 的取值范围为212211e e ln ,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦. 【提示】给出函数解析式,利用导数判断函数单调性求参数的取值范围;利用导数判断段单调性并求不等式.【考点】利用导数判断或求函数的单调区间,利用导数解决不等式问题。
()22110403020207.860506050K ⨯⨯-⨯=≈⨯⨯⨯()()()()()22n ad bc K a b c d a c b d -=++++衡阳市八中2012届高三第一次月考试卷数 学(理科)时量:120分钟 总分:150分(考试内容:选修2-3、集合与逻辑用语、函数、导数)命题人:王美蓉 审题人:颜军一、选择题(本大题共8小题,每小题5分) 1、设集合{}22,A x x x R =-≤∈,{}2|,12B y y x x ==--≤≤,则()RC A B 等于( )A .RB .{},0x x R x ∈≠ C .{}0 D .∅2、设232555322555a b c ===(),((,则a , b ,c 的大小关系是( )A 、a >c >bB 、a >b >cC 、c >a >bD 、b >c >a3、已知函数31(),3(),(2log 2)3(1),3xx f x f f x x ⎧≥⎪=+⎨⎪+<⎩则的值为 ( )A .227-B .154C .227 D .54-4男 女 总计爱好 40 20 60 不爱好 20 30 50 总计6050110由算得:2()P K k ≥0.050 0.010 0.001 k3.8416.63510.828参照附表,得到的正确结论是 ( )A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关”.5、函数()()()⎩⎨⎧≥<+-=1log 13822x x x ax x x f a 在R x ∈内单调递减,则a 的取值范围是( )A .⎥⎦⎤ ⎝⎛21,0B. )1,21[C .⎥⎦⎤⎢⎣⎡85,21D .⎪⎭⎫⎢⎣⎡1,856、设12322()log (1)2x ex f x x x -⎧<⎪=⎨-≥⎪⎩,则不等式()2f x >的解集为 ( )A .(1,2)(3,)⋃+∞B .(10,)+∞C .(1,2)(10,)⋃+∞D .(1,2)7、设函数1()ln (0),()3f x x x x y f x =->=则( )A .在区间1(,1),(1,)e e 内均有零点;B .在区间1(,1),(1,)e e 内均无零点;C .在区间1(,1)e 内有零点,在区间(1,)e 内无零点D .在区间1(,1)e内无零点,在区间(1,)e 内有零点.8、已知函数)(x f y =,R x ∈,有下列4个命题:①若)21()21(x f x f -=+,则)(x f 的图象关于直线1=x 对称; ②)2(-x f 与)2(x f -的图象关于直线2=x 对称;③若)(x f 为偶函数,且)()2(x f x f -=+,则)(x f 的图象关于直线2=x 对称; ④若)(x f 为奇函数,且)2()(--=x f x f ,则)(x f 的图象关于直线1=x 对称. 其中正确命题的个数为 ( ). A. 1个 B. 2个 C. 3个 D. 4个 二、填空题(本大题共7小题,每小题5分.) 9、函数0.5log (43)y x =-的定义域为 。
2012年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}考点:交集及其运算.专题:计算题.分析:求出集合N,然后直接求解M∩N即可.解答:解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.点评:本题考查集合的基本运算,考查计算能力,送分题.2.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.3.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题4.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.5.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.6.(5分)(2012•湖南)函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2]B.[﹣,]C.[﹣1,1]D.[﹣,]考点:三角函数中的恒等变换应用;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.解答:解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.点评:本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.7.(5分)(2012•湖南)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.考点:解三角形;向量在几何中的应用.专题:计算题;压轴题.分析:设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.解答:解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.8.(5分)(2012•湖南)已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在X轴上的投影长度分别为a,b,当m变化时,的最小值为()A.16B.8C.8D.4考点:基本不等式在最值问题中的应用;对数函数图象与性质的综合应用;平行投影及平行投影作图法.专题:计算题;综合题;压轴题.分析:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,依题意可求得为x A,x B,x C,x D的值,a=|x A﹣x C|,b=|x B﹣x D|,利用基本不等式可求得当m变化时,的最小值.解答:解:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,则﹣log2x A=m,log2x B=m;﹣log2x C=,log2x D=;∴x A=2﹣m,x B=2m,x C=,x D=.∴a=|x A﹣x C|,b=|x B﹣x D|,∴==||=2m•=.又m>0,∴m+=(2m+1)+﹣≥2﹣=(当且仅当m=时取“=”)∴≥=8.故选B.点评:本题考查对数函数图象与性质的综合应用,理解平行投影的概念,得到=是关键,考查转化与数形结合的思想,考查分析与运算能力,属于难题.二、填空题(共8小题,考生作答7小题,每小题0分,满分35分,9,10,11三题任选两题作答;12~16必做题)9.(2012•湖南)在直角坐标系xoy 中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0 )有一个公共点在X轴上,则a等于.考点:椭圆的参数方程;直线的参数方程.专题:计算题.分析:化参数方程为普通方程,利用两曲线有一个公共点在x轴上,可得方程,即可求得结论.解答:解:曲线C1:(t为参数)化为普通方程:2x+y﹣3=0,令y=0,可得x=曲线C2:(θ为参数,a>0 )化为普通方程:∵两曲线有一个公共点在x轴上,∴∴a=故答案为:点评:本题考查参数方程化为普通方程,考查曲线的交点,属于基础题.10.(5分)(2012•湖南)不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:由不等式|2x+1|﹣2|x﹣1|>0⇔不等式|2x+1|>2|x﹣1|⇔(2x+1)2>4(x﹣1)2即可求得答案.解答:解:∵|2x+1|﹣2|x﹣1|>0,∴|2x+1|>2|x﹣1|≥0,∴(2x+1)2>4(x﹣1)2,∴x>.∴不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.故答案为:{x|x>}.点评:本题考查绝对值不等式的解法,将不等式|2x+1|﹣2|x﹣1|>0转化为(2x+1)2>4(x ﹣1)2是关键,着重考查转化思想与运算能力,属于中档题.11.(5分)(2012•湖南)如图,过点P的直线与圆⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于.考点:与圆有关的比例线段.专题:计算题.分析:设出圆的半径,根据切割线定理推出PA•PB=PC•PD,代入求出半径即可.解答:解:设圆的半径为r,且PO与圆交于C,D两点∵PAB、PCD是圆O的割线,∴PA•PB=PC•PD,∵PA=1,PB=PA+AB=3;PC=3﹣r,PD=3+r,∴1×3=(3﹣r)×(3+r),r2=6∴r=,故答案为:.点评:本题主要考查切割线定理等知识点,熟练地运用性质进行计算是解此题的关键.12.(5分)(2012•湖南)已知复数z=(3+i)2(i为虚数单位),则|z|=10.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.13.(5分)(2012•湖南)()6的二项展开式中的常数项为﹣160(用数字作答).考点:二项式定理.专题:计算题.分析:根据题意,利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.解答:解:()6展开式的通项为T r+1=C6r•(2)6﹣r•(﹣)r=(﹣1)r•C6r•26﹣r•x3﹣r,令3﹣r=0,可得r=3,其常数项为T4=(﹣1)r•C6r•26﹣r=﹣160;故答案为﹣160.点评:本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=﹣1,n=3,则输出的数S=﹣4.考点:循环结构.专题:计算题.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:判断前x=﹣1,n=3,i=2,第1次判断后循环,S=﹣6+2+1=﹣3,i=1,第2次判断后S=5,i=0,第3次判断后S=﹣4,i=﹣1,第4次判断后﹣1≥0,不满足判断框的条件,结束循环,输出结果:﹣4.故答案为:﹣4.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.15.(5分)(2012•湖南)函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若φ=,点P的坐标为(0,),则ω=3;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为.考点:导数的运算;几何概型;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;压轴题.分析:(1)先利用导数的运算性质,求函数f(x)的导函数f′(x),再将φ=,f′(0)=代入导函数解析式,即可解得ω的值;(2)先利用定积分的几何意义,求曲线段与x轴所围成的区域面积,再求三角形ABC的面积,最后利用几何概型概率计算公式求面积之比即可得所求概率.解答:解:(1)∵函数f(x)=sin (ωx+φ)的导函数y=f′(x)=ωcos(ωx+φ),其中φ=,过点P(0,),∴ωcos=∴ω=3.故答案为:3.(2)∵f′(x)=ωcos(ωx+φ),∴曲线段与x轴所围成的区域面积为[﹣f′(x)]dx=﹣f(x)=﹣sin﹣(﹣sin)=2,三角形ABC的面积为=,∴在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为P==.故答案为:.点评:本题主要考查了f(x)=Asin (ωx+φ)型函数的图象和性质,导数运算及导函数与原函数的关系,定积分的几何意义,几何概型概率的计算方法,属基础题.16.(5分)(2012•湖南)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,x N依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…x N.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…x N﹣1x2x4…x N,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2,当2≤i≤n ﹣2时,将P i分成2i段,每段个数,并对每段作C变换,得到P i+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第6个位置;(2)当N=2n(n≥8)时,x173位于P4中的第3×2n﹣4+11个位置.考点:演绎推理的基本方法;进行简单的演绎推理.专题:压轴题.分析:(1)由题意,可按照C变换的定义把N=16时P2列举出,从中查出x7的位置即可;(2)根据C变换的定义及归纳(1)中的规律可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16,再173=16×10+13,即可确定出x173位于P4中的位置.解答:解:(1)当N=16时,P0=x1x2…x16.由C变换的定义可得P1=x1x3…x15x2x4…x16,又将P1分成两段,每段个数,并对每段作C变换,得到P2,故P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,由此知x7位于P2中的第6个位置;(2)考察C变换的定义及(1)计算可发现,第一次C变换后,所有的数分为两段,每段的序号组成公差为2的等差数列,且第一段序号以1为首项,第二段序号以2为首项;第二次C变换后,所有的数据分为四段,每段的数字序号组成以4公差的等差数列,且第一段的序号以1为首项,第二段序号以3为首项,第三段序号以2为首项,第四段序号以4为首项,依此类推可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,9,5,13,…,由于173=16×10+13,故x173位于以13为首项的那一段的第11个数,由于N=2n(n≥8)故每段的数字有2n﹣4个,以13为首项的是第四段,故x173位于第3×2n﹣4+11=3×2n﹣4+11个位置.故答案为3×2n﹣4+11点评:本题考查演绎推理及归纳推理,解题的关键是理解新定义,找出其规律,本题是探究型题,运算量大,极易出错,解题进要严谨认真,避免马虎出错三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次性购物量1至4件 5 至8件9至12件13至16件17件及以上顾客数(人)x 30 25 y 10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:应用题.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,故可得结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;将频率视为概率可得P(X=1)==0.15;P(X=1.5)==0.3;P(X=2)==0.25;P(X=2.5)==0.2;P(X=3)==0.1X的分布列X 1 1.5 2 2.5 3P 0.15 0.3 0.25 0.2 0.1X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,所以P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.点评:本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;证明题.分析:解法一:(Ⅰ)先根据条件得到CD⊥AE;再结合PA⊥平面ABCD即可得到结论的证明;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA=BF,进而得到四边形BCDG是平行四边形,在下底面内求出BF的长以及下底面的面积,最后代入体积计算公式即可.法二:(Ⅰ)先建立空间直角坐标系,求出各点的坐标,进而得到=0以及•=0.即可证明结论;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA 的长,再求出下底面面积,最后代入体积计算公式即可.解答:解法一:(Ⅰ)连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,又AD=5,E是CD得中点,所以CD⊥AE,PA⊥平面ABCD,CD⊂平面ABCD.所以PA⊥CD,而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,由CD⊥平面PAE知,BG⊥平面PAE,于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.由题意∠PBA=∠BPF,因为sin∠PBA=,sin∠BPF=,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD.所以四边形BCDG是平行四边形,故GD=BC=3,于是AG=2.在RT△BAG中,AB=4,AG=2,BG⊥AF,所以BG==2,BF===.于是PA=BF=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.解法二:以A为坐标原点,AB,AD,AP所在直线分别为X轴,Y轴,Z轴建立空间直角坐标系,设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).(Ⅰ)=(﹣4,2,0),=(2,4,0),=(0,0,h).因为=﹣8+8+0=0,•=0.所以CD⊥AE,CD⊥AP,而AP,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)由题设和第一问知,,分别是平面PAE,平面ABCD的法向量,而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以:|cos<,>|=|cos<,>|,即||=||.由第一问知=(﹣4,2,0),=((0,0,﹣h),又=(4,0,﹣h).故||=||.解得h=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.点评:本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.(12分)(2012•湖南)已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式.(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.考点:等差数列的性质;充要条件;等比关系的确定.专题:计算题;证明题.分析:(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,整理即可得数列{a n}是首项为1,公差为4的等差数列,从而可得a n.(2)必要性:由数列{a n}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0,即充分性成立,于是结论得证.解答:解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,∴B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,亦即a n+2﹣a n+1=a2﹣a1=4.故数列{a n}是首项为1,公差为4的等差数列,于是a n=1+(n﹣1)×4=4n﹣3.(2)证明:(必要性):若数列{a n}是公比为q的等比数列,对任意n∈N*,有a n+1=a n q.由a n>0知,A(n),B(n),C(n)均大于0,于是===q,===q,即==q,∴三个数A(n),B(n),C(n)组成公比为q的等比数列;(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则B(n)=qA(n),C(n)=qB(n),于是C(n)﹣B(n)=q[B(n)﹣A(n)],即a n+2﹣a2=q(a n+1﹣a1),亦即a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0.∵a n>0,∴==q.故数列{a n}是首项为a1,公比为q的等比数列.综上所述,数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.点评:本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.20.(13分)(2012•湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.考点:函数模型的选择与应用.专题:综合题.分析:(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,;(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解.解答:解:(1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x)∴,,其中x,kx,200﹣(1+k)x均为1到200之间的正整数(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x)①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{}∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x=∵,,,f(44)<f(45)∴x=44时,完成订单任务的时间最短,时间最短为②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{}∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x=∵,,∴完成订单任务的时间大于③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{}∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x=类似①的讨论,此时完成订单任务的时间为,大于综上所述,当k=2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68. 点评:本题考查函数模型的构建,考查函数的单调性,考查分类讨论的数学思想,解题的关键是确定分类标准,有难度. 21.(13分)(2012•湖南)在直角坐标系xoy 中,曲线C 1上的点均在C 2:(x ﹣5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程 (Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别于曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.考点:直线与圆锥曲线的综合问题;轨迹方程. 专题:综合题;压轴题. 分析:(Ⅰ)设M 的坐标为(x ,y ),根据对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值,可得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧,从而可得曲线C 1的方程;(Ⅱ)当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),设切线方程为kx ﹣y+y 0+4k=0,利用直线与圆相切可得,从而可得过P 所作的两条切线PA ,PC 的斜率k 1,k 2是方程的两个实根,设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,从而可得;同理可得,由此可得当P 在直线x=﹣4上运动时,四点A ,B ,C ,D的纵坐标之积为定值为6400.解答:(Ⅰ)解:设M 的坐标为(x ,y ),由已知得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C 1的方程为y 2=20x(Ⅱ)证明:当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),∵y 0≠±3,∴过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y ﹣y 0=k (x+4),即kx ﹣y+y 0+4k=0, ∴,整理得①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根 ∴②由,消元可得③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4, ∴y 1,y 2是方程③的两个实根 ∴④同理可得⑤由①②④⑤可得==6400∴当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值为6400. 点评: 本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题. 22.(13分)(2012•湖南)已知函数f (x )=e ax ﹣x ,其中a ≠0. (1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合.(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2)(x 1<x 2),记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.考点: 导数在最大值、最小值问题中的应用;函数恒成立问题. 专题: 压轴题. 分析:(1)先确定a >0,再求导函数,确定函数的单调性,可得时,f (x )取最小值故对一切x ∈R ,f (x )≥1恒成立,则,构建新函数g (t )=t ﹣tlnt ,则g ′(t )=﹣lnt ,确定函数的单调性,求出函数的最大值,由此即可求得a 的取值集合;(2)由题意知,,构建新函数φ(x)=f′(x)﹣k=,则,,构建函数F(t)=e t﹣t﹣1,从而可证明φ(x1)<0,φ(x2)>0,由此即可得到存在x0∈(x1,x2),使f′(x0)>k成立.解答:解:(1)若a<0,则对一切x>0,函数f(x)=e ax﹣x<1,这与题设矛盾,∵a≠0,∴a>0∵f′(x)=ae ax﹣1,令f′(x)=0,可得令f′(x)<0,可得,函数单调减;令f′(x)>0,可得,函数单调增,∴时,f(x)取最小值∴对一切x∈R,f(x)≥1恒成立,则①令g(t)=t﹣tlnt,则g′(t)=﹣lnt当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减∴t=1时,g(t)取最大值g(1)=1∴当且仅当=1,即a=1时,①成立综上所述,a的取值集合为{1};(2)由题意知,令φ(x)=f′(x)﹣k=,则令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;∴t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0∴,∵>0,∴φ(x1)<0,φ(x2)>0∴存在c∈(x1,x2),φ(c)=0∵φ(x)单调递增,故这样的c是唯一的,且当且仅当x∈(,x2)时,f′(x)>k综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为(,x2)点评:本题考查导数知识的运用,考查函数的单调性与极值,考查构建新函数确定函数值的符号,从而使问题得解.。
衡阳八中2018届高三年级实验班第一次模拟考试试卷理科数学(试题卷)注意事项:1.本卷为衡阳八中高三年级实验班第一次模拟考试试卷,分两卷。
其中共23题,满分150分,考试时间为120分钟。
2.考生领取到试卷后,应检查试卷是否有缺页漏页,重影模糊等妨碍答题现象,如有请立即向监考老师通报。
开考15分钟后,考生禁止入场,监考老师处理余卷。
3.请考生将答案填写在答题卡上,选择题部分请用2B 铅笔填涂,非选择题部分请用黑色0.5mm 签字笔书写。
考试结束后,试题卷与答题卡一并交回。
★预祝考生考试顺利★第I 卷 选择题(每题5分,共60分)本卷共12题,每题5分,共60分,在每题后面所给的四个选项中,只有一个是正确的。
1.)A2.已知i 是虚数单位,(1+2i )z 1=﹣1+3i z 1、z 2在复平面上对应的点分别为A 、B ,则|AB|=()A .31B .33 CD3.值是4.已知定义在[0,+∞)上的函数f (x )满足f (x )=3f (x+2),当x ∈[0,2)时,f (x )=﹣x 2+2x .设f (x )在[2n ﹣2,2n )上的最大值为a n (n ∈N *),且{a n }的前n 项和为S n ,则S n的取值范围是()A.[1B.[1C.2) D.2]5.()A6.已知等差数列{a n}的前n项和为S n,且S10a5+a6=()A B.12C.6 D7.如图是某四棱锥的三视图,则该几何体的表面积等于()A.B.C.D.8.若函数y=f(x)(x∈R)满足f(x+1)=﹣f(x),且当x∈[﹣1,0则函数y=f(x)的图象与函数y=log3|x|的图象的交点的个数是()A.2 B.3 C.4 D.59.执行右边的程序框图,若p=0.8,则输出的n=()A.3 B.4 C.5 D.610.已知函数f(x)f(x)=a有四个不同的解x1,x2,x3,x4,且x1<x2<x3<x4,则x3(x1+x2))A.(﹣1,+∞)B.(﹣1,1] C.(﹣∞,1)D.[﹣1,1)11.已知F1、F2(a>b>0)的左、右焦点,过F2且垂直于x轴的直线与椭圆交于A、B两点,若△ABF1是锐角三角形,则该椭圆离心率e的取值范围是()A.e 1 B.0<e 1 C1<e<1 D1<e12.x1,x2∈[0,1],都有|f(x1)﹣f(x2)|≤1恒成立,则a的取值范围是()A BC D第II 卷 非选择题(共90分)二.填空题(每题5分,共20分)______. 14.平面直角坐标系xOy 中,双曲线C 1:(a >0,b >0)的渐近线与抛物线C 2:x 2=2py(p >0)交于点O ,A ,B ,若△OAB 的垂心为C 2的焦点,则C 1的离心率为 .15.我国南宋著名数学家秦九韶发现了从三角形三边求三角形面积的“三斜公式”,设△ABC 三个内角A 、B、C 所对的边分别为a 、b 、c ,面积为S ,则“三斜求积”公式为a 2sinC=4sinA ,(a+c )2=12+b 2,则用“三斜求积”公式求得△ABC 的面积为 .16.A ﹣BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且R :BC=2:3,E为线段BD 上一点,且DE=2EB ,过点E 作球O 的截面,则所得截面圆面积的取值范围是 .三.解答题(共8题,共70分)17.(本题满分12分)△ABC的内角为A,B,C的对边分别为a,b,c(1(2ABC的面积最大时,△ABC的周长;18.(本题满分12分)交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了80辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:以这80辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:(1某同学家里有一辆该品牌车且车龄刚满三年,记X为该品牌车在第四年续保时的费用,列与数学期望值;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损4000元,一辆非事故车盈利8000元:①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.19.(本题满分12分)2的正三角形.(1)证明:(220.(本题满分12分)如图,过抛物线(1)求椭圆1C和抛物线2C的方程;(2.21.(本题满分12分).(Ⅰ)当a=0时,求f(x)的极值;使得m的取值范围.选做题:考生从22、23题中任选一题作答,共10分。
2016年普通高等学校全国统一招生考试-衡阳八中(第一模拟)理科数学(试题卷)注意事项:1.本卷共24题,满分150分,考试时间为120分钟。
2.考生领取到试卷后,应查看试卷是否完整,是否有缺页漏页,重影模糊等有碍答题的现象,如有请先监考老师通报。
考生禁止提前交卷。
第I卷选择题(共60分)一.选择题(共12题,每题5分,共60分。
每题后面所给的四个选项中,只有一个是正确的。
)1.数列1,﹣3,5,﹣7,9,…的一个通项公式为()A.a n=2n﹣1 B .C .D .2.阅读如图所示的程序框图,则输出的S=()A.45 B.35 C.21 D.153.设集合S={1,2,…,2016},若X是S的子集,把X中所有元素之和称为X 的“容量”,(规定空集容量为0),若X的容量为奇(偶)数,则称X为S的奇(偶)子集,记S的奇子集个数为m,偶子集个数为n,则m,n之间的关系为()A.m=n B.m>n C.m<n D.无法确定4.已知四个数1,x1,x2,2成等差数列,四个数1,y1,y2,2成等比数列,则点P1(x1,y2),P2(x2,y2)与直线y=x的位置关系是()A.P1(x1,y1),P2(x2,y2)在直线y=x的下方B.P1(x1,y1)在直线y=x的下方,P2(x2,y2)在直线y=x的上方C.P1(x1,y1)在直线y=x的上方,P2(x2,y2)在直线y=x的下方D.P1(x1,y1),P2(x2,y2)都在直线y=x的上方5.设F1和F2为双曲线的两个焦点,点P在双曲线上且满足∠F1PF2=90°,则△F1PF2的面积是()A.1 B . C.2 D .6.在三棱柱ABC﹣A1B1C1中,底面为棱长为1的正三角形,侧棱AA1⊥底面ABC,点D在棱BB1上,且BD=1,若AD与平面AA1C1C所成的角为α,则sinα的值是()A . B . C . D .7.下列4个不等式:(1)故dx <;(2)sinxdx <cosxdx;(3)e﹣x dx <e dx;(4)sinxdx <xdx.能够成立的个数是()A.1个 B.2个C.3个D.4个8.复数z为纯虚数,若(3﹣i)z=a+i(i为虚数单位),则实数a的值为()A.﹣3 B.3 C .﹣ D .9.3名医生和6名护士被分配到3所学校为学生体检,每校分配1名医生和2名护士.不同的分配方法共有()A.90种 B.180种C.270种 D.540种10.如图,在△OAB中,点P在边AB上,且AP:PB=3:2.则=()A .B .C .D .11.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于()A.10cm3 B.20cm3 C.30cm3 D.40cm312.定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的函数F(x)=f(x)﹣a(0<a<1)的所有零点之和为()A.1﹣2a B.2a﹣1 C.1﹣2﹣a D.2﹣a﹣1第II卷非选择题(共90分)二.填空题(每题5分,共20分。
衡阳市八中2012届高考模拟考试试卷理科综合本试卷分第I卷(选择题)和第II卷(非选择题)两部分。
其中第II卷33—40题为选考题,其他题为必考题.可能用到的相对原子质量:H—1 O-16 Na—23 S-32 Ca—40 Fe—56 Cu—64第I卷(选择题,共21小题,每小题6分,共126分)一、选择题:本题共13小题,每小题6分,共78分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、下列有关细胞结构和功能的叙述中,不正确的是()A.蛋白质、糖类都是由相应单体连接成的多聚体B.细胞膜、核膜、原生质层都具有选择透过性C.合成性激素的分泌细胞中,内质网一般较发达D.在平静和剧烈运动时,细胞内ATP的含量保持稳态2。
植物叶片的光和强度可通过通气法来测定,如图1所示(装置中通入气体的CO2浓度是可以调节的)。
将适量叶片置于同化箱中,在一定的光照强度和温度条件下,让空气沿箭头方向缓慢流动,并用CO2分析仪测定A、B两处气体CO2浓度的变化,根据实验,下列说法错误的是:( )A.欲使A、B两处气体CO2浓度相同,可通过控制光照强度来实现B.如果B处气体CO2浓度低于A处,说明叶片光合作用强度低于呼吸作用强度C.当通入气体的CO2浓度增加到一定值以后,继续增加,A、B两处CO2浓度的差值不再继续增大,则限制叶片更多利用CO2的内部因素可能是叶绿体数量D.如果将该同化箱放在黑暗条件下,测定同化箱通入气体和通出气体的体积变化,则体积差值表示的含义是植物呼吸吸收氧气和产生二氧化碳的差值3、右图为神经——肌肉连接图。
C1、C2表示免疫细胞,黑点(·)表示神经元胞体,①—⑦表示神经纤维.该肌肉受到刺激后发生了不自主的收缩.下列相关叙述错误的是( )A.在大脑感觉到肌肉受到刺激的过程中,其神经冲动在神经纤维上出现的顺序是④→⑤→⑦B.在肌肉收缩的反射过程中,其神经冲动在神经纤维上出现的顺序是④→⑤→⑥C.重症肌无力患者是因自身产生的抗体把自身肌肉细胞膜上的神经递质受体当作抗原攻击所至(如图所示),所以重症肌无力属自身免疫病D.C2是效应B细胞,无特异性识别抗原的能力,但可产生抗体与抗原特异性结合4。
衡阳市八中2012届高考模拟考试试卷文科数学参考公式:样本数据nx x x ,,,21的标准差;x x x x x x x ns n 其中],)()()[(122221-+-+-=为样本平均数; 柱体体积公式:为底面面积其中S Sh V ,=、h 为高; 锥体体积公式:h S Sh V ,,31为底面面积其中=为高;球的表面积、体积公式:,34,432R V RS ππ==其中R 为球的半径。
一、选择题:本大题共9小题,每小题5分,共45分。
在每小题给出的四个选项中,只有一项符合题目要求的。
1. 已知集合{}1,2,3M =,{}2,3,4N =,则( ) A .M N ⊆ B .N M ⊆ C .{}2,3M N = D .{}1,4MN =2.已知命题p :对,sin 1,x R x ∀∈≤有则( )A .00:,sin 1p x R x ⌝∃∈≥使 B .0:,sin 1p xR x ⌝∀∈≥使 C .00:,sin 1p xR x ⌝∃∈>使D .0:,sin 1p xR x ⌝∀∈>使3、若2)a i i b i -=-(,其中a 、b∈R,i 是虚数单位,则a 2+b 2=( ) A 、0 B 、 2 C 、52 D 、54。
函数()2xf x ex =+-的零点所在的一个区间是( )A .(2,1)--B .(1,0)-C .(0,1)D .(1,2) 5.以抛物线y 2=4x 的焦点为圆心,且过坐标原点的圆的方程为( )A. 22(1)1x y -+=B. 22(1)1x y ++=C.22(1)1x y +-=D 。
22(1)1x y ++=6.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=1,则异面直线A 1C 1和AB 1所成角的余弦值为( ) A .105B .36C .22D .127.在△ABC 中,若A=30°,b=2,且0AB -BC BA 22=⋅,则△ABC 的面积为( ) A .23B .3C .1D .2 8.若不等式组,,240,y x y x x y ≤⎧⎪≥-⎨⎪--≤⎩表示的平面区域为M ,221xy +≤所表示的平面区域为N ,现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为( )A .64π B .32π C .364πD .332π9。
衡阳市八中2012届高考模拟考试试卷理科数学本卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分。
一.选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.在复平面内,复数(12i)i -⋅对应的点位于( )A .第一象限B .第二象限C .第三象限D . 第四象限2.设集合{}{}|2,|,P x R x M x R x a a R =∈>=∈>∈,则“1=a ”是“P M ⊆”的( )A .必要不充分条件B .充要条件C .既不充分也不必要条件D .充分不必要条件3.己知一个几何体是由上、下两部分构成的组合体,其三视图如右图示, 若图中圆的半径为1)A .43π B .2π C .38π D .103π4.某校对高三理科1400名学生进行了一次调研抽测,经统计发现5科总分(0750)ξξ<<大致服从正态分布2(450,130)N ,若ξ在(0,280)内取值的概率为0.107,则该校1400名考生中总分为620分以上的学生大约有( )人(结果四舍五入) A .100人 B .125人 C .150人 D .200人5. 一个算法的程序框图如图所示,若该程序输出的结果是631,则判断框 内应填入的条件是( )A.4i <B.4i >C.5i <D.5i >6. 与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x7.如图所示为函数()()2sin f x x ωϕ=+(0,2πωϕπ>≤≤)的部分图象,其中,A B 两点之间的距离为5,那么()1f -=( )A..2 D .2-8.已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是( )A .(),1-∞B .(],1-∞C .()0,1D .[0,+∞y二.填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。
(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题记分)9.在平面直角坐标系下,曲线122:x t C y t=-+⎧⎨=-⎩(t 为参数),曲线⎩⎨⎧+==θθsin 22cos 2:2y x C (θ为参数),则曲线1C 、2C 的公共点的个数为 .10.已知231x y z ++=,则222x y z ++的最小值为 .11.如图,AB 是⊙O 的直径,直线DE 切⊙O 于点D ,且与AB 的 延长线交于点C ,若CD=1CB =,则ACE ∠= .(二)必做题(12~16题)12.在5(3)x -的展开式中, 含3x 的项的系数等于 . 13.计算:1lglg 254-=__ __.14.如图,在直角梯形ABCD 中,已知//BC AD ,AB AD ⊥,4AB =,2BC =,4AD =,若P 为CD 的中点,则PA PB ⋅的值为 .15.已知不等式组2y xy x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域为M ,直线y x =与曲线221x y =所围成的平面区域为N ,(1)区域N 的面积为 ;(2)现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________.16.设1a ,2a ,…,n a 是各项不为零的n (4≥n )项等差数列,且公差0≠d .将此数列删去某一项后,得到的数列(按原来顺序)是等比数列,(1)若4=n ,则d a 1= ;(2)所有数对⎪⎭⎫⎝⎛d a n 1,所组成的集合为_____________.三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。
17.(12分)一个房间有4扇同样的窗子,其中只有一扇窗子是打开的。
房间里一只燕子只能从开着的窗子飞出去,燕子在房子里一次又一次地向着窗户飞去,试图飞出房间. 假定燕子飞向各扇窗子是等可能的.(1)假定燕子是没有记忆的,求它恰好在第2次试飞时出了房间的概率; (2)假定这只燕子是有记忆的,它飞向任一窗子的尝试不多于一次,若这只燕子恰好在第η次试飞时飞出了房间,求试飞次数η的分布列及其数学期望. 18.(12分)等差数列{}n a 满足5835a a =,n S 是数列{}n a 的前n 项和. (1)若11a =,当n S 取得最大值时,求n 的值; (2)若146a =-,记n nn S a b n-=,求n b 的最小值. 19.(12分)如图所示的多面体中,正方形11BB C C 所在平面垂直平面ABC ,ABC ∆是斜边AB =的等腰直角三角形,11//B A BA ,1112B A BA =. (1)求证:11C A ⊥平面11ABB A ;(2)求直线1BC 与平面11AAC 所成的角的正弦值.20.(13分)如图,摄影爱好者S 在某公园A 处,发现正前方B 处有一立柱,测得立柱顶端O 的仰角和立柱底部B 的俯角均为30︒,已知S (将眼睛距地面的距离SA .(1)求摄影者到立柱的水平距离AB 和立柱的高度OB ; (2)立柱的顶端有一长为2米的彩杆MN ,且MN 绕其中点O 在S 与立柱所在的平面内旋转。
在彩杆转动的任意时刻,摄影者观察彩杆MN 的视角MSN ∠(设为θ)是否存在最大值?若存在,请求出MSN ∠取最大值时cos θ的值;若不存在,请说明理由.21.(13分)已知直线:1l x my =+过椭圆2222:1x y C a b+=的右焦点F ,抛物线2x =的焦点为椭圆C 的上顶点,且直线l 交椭圆C 于,A B 两点,点,,A F B 在直线4x =上的射影依次为点,,D K E .(1)求椭圆C 的方程;(2)若直线l 交y 轴于点M ,且12,MA AF MB BF λλ==,当m 变化时,证明:1283λλ+=-;(3)连接,AE BD ,试探索当m 变化时,直线AE 与BD 是否相交于定点?若是,求出定点的坐标,并给出证明;否则,请说明理由。
22.(13分)已知函数32,1()ln ,1x x bx c x f x a x x ⎧-+++<=⎨≥⎩的图象过坐标原点O ,且在点))1(,1(--f 处的切线的斜率是5-.(1)求实数,b c 的值;(2)求)(x f 在区间[]2,1-上的最大值;(3)对任意给定的正实数a ,曲线)(x f y =上是否存在两点,P Q ,使得POQ ∆是以O 为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?请给出你的结论并说明理由.2012届衡阳市八中高考模拟考试试卷理科数学本卷包括选择题、填空题和解答题三部分,时量120分钟,满分150分。
一.选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.在复平面内,复数(12i)i -⋅对应的点位于( A )A .第一象限B .第二象限C .第三象限D . 第四象限2.设集合{}{}|2,|,P x R x M x R x a a R =∈>=∈>∈,则“1=a ”是“P M ⊆”的( D )A .必要不充分条件B .充要条件C .既不充分也不必要条件D .充分不必要条件3.己知一个几何体是由上、下两部分构成的组合体,其三视图如右图示, 若图中圆的半径为1A )A .43π B .2π C .38π D .103π4.某校对高三理科1400名学生进行了一次调研抽测,经统计发现5科总分(0750)ξξ<<大致服从正态分布2(450,130)N ,若ξ在(0,280)内取值的概率为0.107,则该校1400名考生中总分为620分以上的学生大约有(结果四舍五入)( C )A .100人B .125人C .150人D .200人5. 一个算法的程序框图如图所示,若该程序输出的结果是631,则判断框 内应填入的条件是( C )A.4i <B.4i >C.5i <D.5i >6. 与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( A ) A .1222=-y x B .1422=-y x C .13322=-y x D .1222=-y x7.如图所示为函数()()2sin f x x ωϕ=+(0,2πωϕπ>≤≤)的部分图象,其中,A B 两点之间的距离为5,那么()1f -=( C )A..2 D .2-8.已知函数21,0,()(1),0.x x f x f x x -⎧-≤=⎨->⎩若方程()f x x a =+有且只有两个不相等的实数根,则实数a 的取值范围是( A )A .(),1-∞B .(],1-∞C .()0,1D .[)0,+∞二.填空题:本大题共8小题,考生作答7小题,每小题5分,共35分,把答案填在答题卡中对应题号的横线上。
(一)选做题(请考生在第9、10、11三题中任选两题作答,如果全做,则按前两题记分)9.在平面直角坐标系下,曲线122:x t C y t =-+⎧⎨=-⎩(t 为参数),曲线⎩⎨⎧+==θθsin 22cos 2:2y x C (θ为参数),则曲线1C 、2C 的公共点的个数为 . 答案:010.已知231x y z ++=,则222x y z ++的最小值为 . 答案:11411.如图,AB 是⊙O 的直径,直线DE 切⊙O 于点D ,且与AB 的延长 线交于点C ,若CD=1CB =,则A C E ∠= .答案: 30︒(二)必做题(12~16题)12.在5(3)x -的展开式中, 含3x 的项的系数等于 90 . 13.计算:1lglg 254-= 2- _.14.如图,在直角梯形ABCD 中,已知//BC AD ,AB AD ⊥,4AB =,2BC =,4AD =,若P 为CD 的中点,则PA PB ⋅的值为 5 .15.已知不等式组2y xy x x ≤⎧⎪≥-⎨⎪≤⎩表示的平面区域为M ,直线y x =与曲线221x y =所围成的平面区域为N ,(1)区域N 的面积为 ;(2)现随机向区域M 内抛一粒豆子,则豆子落在区域N 内的概率为________. [答案](1),32 (2)1616.设1a ,2a ,…,n a 是各项不为零的n (4≥n )项等差数列,且公差0≠d .将此数列删去某一项后,得到的数列(按原来顺序)是等比数列, (1)若4=n,则da 1= ;(2)所有数对⎪⎭⎫⎝⎛d a n 1,所组成的集合为_____________. [答案](1)-4,1; (2))}1,4(,)4,4{(-三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤。