第16章 蛋白质的生物合成
- 格式:ppt
- 大小:2.10 MB
- 文档页数:74
分子生物学原理教案—蛋白质的生物合成教学要求:1.掌握遗传信息、遗传密码与mRNA的关系,遗传密码的特征。
2.掌握蛋白质生物合成体系中主要RNA、三种酶和多种蛋白质因子的功能和作用特点,生物合成过程及能量变化。
3.了解翻译后蛋白质的加工方式。
4.了解蛋白质合成的干扰和抑制。
课时安排:总学时 4.0第一节蛋白质生物合成体系1.0第二节氨基酸的活化1.0第三节蛋白质的生物合成过程1.0第四节蛋白质翻译后修饰和靶向运输0.6第五节蛋白质生物合成的干扰和抑制0.4重点:1.遗传密码与mRNA的关系及其特征2.蛋白质生物合成体系3.氨基酸的活化难点:蛋白质的生物合成过程教学内容:一、蛋白质生物合成体系1.mRNA是蛋白质生物合成的直接模板遗传密码的方向性、连续性、简并性、通用性和摆动性。
2.核糖体是蛋白质生物合成的场所。
3.tRNA是氨基酸的运载工具及蛋白质生物合成的适配器氨基酸臂、反密码子4.蛋白质生物合成需要酶类、蛋白质因子等二、氨基酸的活化1.氨基酰tRNA 氨基酰tRNA合成酶2.真核生物起始氨基酰tRNA是Met- tRNAi Met三、蛋白质的生物合成过程1.原核生物的肽链合成过程起始:起始因子;延长:延长因子,注册、成肽、转位,核糖体循环;终止:终止密码子。
2.真核生物的肽链合成过程四、蛋白质翻译后修饰和靶向运输1.多肽链折叠为天然构象的蛋白质分子伴侣、蛋白质二硫键异构酶、肽-脯氨酸顺反异构酶。
2.蛋白质一级结构修饰主要是肽键水解和化学修饰3.蛋白质空间结构修饰包括亚基聚合和辅基连接4.合成后蛋白质可被靶向输送至细胞特定部位五、蛋白质生物合成的干扰和抑制1.抗生素对翻译的抑制作用2.其他干扰蛋白质生物合成的物质中、英文专业词汇:translation翻译codon密码子initiation codon起始密码termination codon终止密码code密码ribozyme cycle核糖体循环adaptor转换器post-translational processing翻译后加工interferon干扰素antibiotics抗生素anticodon反密码子releasing factor释放因子wobble pairing摇摆配对degeneracy简并性signal peptide信号肽secretory protein分泌性蛋白质elongation factor延长因子streptomycin链霉素tetracycline四环素chloromycetin氯霉素puromycin嘌呤霉素cycloheximide防线菌酮思考题:1.试简述蛋白质生物合成体系及3种RNA在蛋白质生物合成中的作用。
第十五章蛋白质生物合成一、填空题:1.三联体密码子共有64 个,其中终止密码子共有 3 个,分别为UAA 、UAG 、UGA ; 2.密码子的基本特点有四个分别为从5′→3′无间断性、简并性、变偶性、通用性; 3.次黄嘌呤具有广泛的配对能力,它可与U 、 C 、 A 三个碱基配对,因此当它出现在反密码子中时,会使反密码子具有最大限度的阅读能力;4.原核生物核糖体为70 S,其中大亚基为50 S,小亚基为30 S;而真核生物核糖体为80 S,大亚基为60 S,小亚基为40 S;5.原核起始tRNA,可表示为tRNA f甲硫,而起始氨酰tRNA表示为f Met-tRNA f甲硫;真核生物起始tRNA可表示为tRNA I甲硫,-tRNA表示为Met-tRNA f甲硫;6.肽链延伸过程需要进位、转肽、移位三步循环往复,每循环一次肽链延长 1 个氨基酸残基,原核生物中循环的第一步需要EF-Tu 和EF-Ts 延伸因子;第三步需要EF-G 延伸因子;7.原核生物mRNA分子中在距起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤碱基的序列称为Shine-Dalgrano序列,它可与16S-rRNA 3′-端核苷酸序列互补;8.氨酰-tRNA的结构通式可表示为:OtRNA-O-C-CH-RNH2,与氨基酸键联的核苷酸是A腺嘌呤核苷酸;9.氨酰-tRNA合成酶对氨基酸和相应tRNA都具有较高专一性,此酶促反应过程中由ATP 水解提供能量;10.肽链合成的终止阶段, RF1因子和RF2因子能识别终止密码子,以终止肽链延伸,而RF3因子虽不能识别任何终止密码子,但能协助肽链释放;11.蛋白质合成后加工常见的方式有磷酸化、糖基化、脱甲基化、信号肽切除; 12.真核生物细胞合成多肽的起始氨基酸为甲硫氨酸,起始tRNA为tRNA I甲硫,此tRNA 分子中不含T C 序列;这是tRNA家庭中十分特殊的;二、选择题只有一个最佳答案:1.下列有关mRAN的论述,正确的一项是 CA、mRNA是基因表达的最终产物B、mRNA遗传密码的阅读方向是3′→5′C、mRNA遗传密码的阅读方向是5′→3′D、mRNA密码子与tRNA反密码子通过A-T,G-C配对结合E、每分子mRNA有3个终止密码子2.下列反密码子中能与密码子UAC配对的是 DA、AUGB、AUIC、ACUD、GUA3.下列密码子中,终止密码子是 BA、UUAB、UGAC、UGUD、UAU4.下列密码子中,属于起始密码子的是 AA、AUGB、AUUC、AUCD、GAG5.下列有关密码子的叙述,错误的一项是 CA 、密码子阅读是有特定起始位点的B 、密码子阅读无间断性C 、密码子都具有简并性D 、密码子对生物界具有通用性6.密码子变偶性叙述中,不恰当的一项是 AA 、密码子中的第三位碱基专一性较小,所以密码子的专一性完全由前两位决定B 、第三位碱基如果发生了突变如A G 、C U,由于密码子的简并性与变偶性特点,使之仍能翻译出正确的氨基酸来,从而使蛋白质的生物学功能不变C 、次黄嘌呤经常出现在反密码子的第三位,使之具有更广泛的阅读能力,I-U 、I-C 、I-A 从而可减少由于点突变引起的误差D 、几乎有密码子可用U C XY 或U C XY 表示,其意义为密码子专一性主要由头两个碱基决定7.关于核糖体叙述不恰当的一项是 BA 、核糖体是由多种酶缔合而成的能够协调活动共同完成翻译工作的多酶复合体B 、核糖体中的各种酶单独存在解聚体时,同样具有相应的功能C 、在核糖体的大亚基上存在着肽酰基P 位点和氨酰基A 位点D 、在核糖体大亚基上含有肽酰转移酶及能与各种起始因子,延伸因子,释放因子和各种酶相结合的位点8.tRNA 的叙述中,哪一项不恰当 DA 、tRNA 在蛋白质合成中转运活化了的氨基酸B 、起始tRNA 在真核原核生物中仅用于蛋白质合成的起始作用C 、除起始tRNA 外,其余tRNA 是蛋白质合成延伸中起作用,统称为延伸tRNAD 、原核与真核生物中的起始tRNA 均为fMet-tRNA9.tRNA 结构与功能紧密相关,下列叙述哪一项不恰当 DA 、tRNA 的二级结构均为“三叶草形”B 、tRNA3′-末端为受体臂的功能部位,均有CCA 的结构末端C 、T C 环的序列比较保守,它对识别核糖体并与核糖体结合有关D 、D 环也具有保守性,它在被氨酰-tRNA 合成酶识别时,是与酶接触的区域之一10.蛋白质生物合成中多肽的氨基酸排列顺序取决于 CA 、相应tRNA 的专一性B 、相应氨酰tRNA 合成酶的专一性C 、相应mRNA 中核苷酸排列顺序D 、相应tRNA 上的反密码子11.下列有关氨酰- tRNA 合成酶叙述中,哪一项有误 CA 、氨酰-tRNA 合成酶促反应中由ATP 提供能量,推动合成正向进行B 、每种氨基酸活化均需要专一的氨基酰- tRNA 合成酶催化C 、氨酰-tRNA 合成酶活性中心对氨基酸及tRNA 都具有绝对专一性OD 、该类酶促反应终产物中氨基酸的活化形式为R -CH -C -O -ACC -tRNANH 212.原核生物中肽链合的起始过程叙述中,不恰当的一项是 DA 、mRNA 起始密码多数为AUG,少数情况也为GUGB 、起始密码子往往在5′-端第25个核苷酸以后,而不是从mRNA5′-端的第一个苷酸开始的C 、在距起始密码子上游约10个核苷酸的地方往往有一段富含嘌呤的序列,它能与16SrRNA3′-端碱基形成互补D、70S起始复合物的形成过程,是50S大亚基及30S小亚基与mRNA自动组装的13.有关大肠杆菌肽链延伸叙述中,不恰当的一项是 CA、进位是氨酰-tRNA进入大亚基空差的A位点B、进位过程需要延伸因子EFTu及EFTs协助完成C、甲酰甲硫氨酰-tRNA f进入70S核糖体A位同样需要EFTu-EFTs延伸因子作用D、进位过程中消耗能量由GTP水解释放自由能提供14.移位的叙述中哪一项不恰当 CA、移位是指核糖体沿mRNA5′→3′作相对移动,每次移动的距离为一个密码子B、移位反应需要一种蛋白质因子EFG参加,该因子也称移位酶C、EFG是核糖体组成因子D、移位过程需要消耗的能量形式是GTP水解释放的自由能15.蛋白质生物合成的方向是: BA、从C端到N端B、从N端到C端C、定点双向进行D、从C端、N端同时进行16.在蛋白质合成过程中,下列哪些说法是正确的 CA、氨基酸随机地连接到tRNA上去B、新生多肽链的合成都是从C-端向N-端方向延伸的C、通过核糖核蛋白体的收缩,mRNA不断移动D、肽键形成是由肽酰转移酶作用下完成的,此种酶不属于核糖体的组成成分17.70S起始复合物的形成过程的叙述,哪项是正确的 DA、mRNA与30S亚基结合过程需要超始因子IF1B、mRNA与30S亚基结合过程需要超始因子IF2C、mRNA与30S亚基结合过程需要超始因子IF3D、mRNA与30S亚基结合过程需要超始因子IF1、IF2和IF318.mRNA与30S亚基复合物与甲酰甲硫氨酰-tRNA f结合过程中起始因子为 AA、IF1及IF2B、IF2及IF3C、IF1及IF3D、IF1、IF2及IF319.原核细胞中氨基酸掺入多肽链的第一步反应是: DA、甲酰蛋氨酸-tRNA与核蛋白体结合B、核蛋白体30S亚基与50S亚基结合C、mRNA与核蛋白体30S亚基结合D、氨酰tRNA合成酶催化氨基酸活化20.假设翻译时可从任一核苷酸起始读码,人工合成的AACnn为任意整数多聚核苷酸,能够翻译出几种多聚氨基酸 CA、一种B、二种C、三种D、四种21.绝大多数真核生物mRNA5’端有 AA、帽子结构B、PolyAC、起始密码D、终止密码22.能与密码子ACU相识别的反密码子是DA、UGAB、IGAC、AGID、AGU23.原核细胞中新生肽链的N-末端氨基酸是CA、甲硫氨酸B、蛋氨酸C、甲酰甲硫氨酸D、任何氨基酸24.tRNA的作用是 DA、把一个氨基酸连到另一个氨基酸上B、将mRNA连到rRNA上C、增加氨基酸的有效浓度D、把氨基酸带到mRNA的特定位置上25.细胞内编码20种氨基酸的密码子总数为: DA、16B、64C、20D、6126.下列关于遗传密码的描述哪一项是错误的CA、密码阅读有方向性,5'-端开始,3'-端终止B、密码第3位即3′-端碱基与反密码子的第1位即5′-端碱基配对具有一定自由度,有时会出现多对一的情况C、一种氨基酸只能有一种密码子D、一种密码子只代表一种氨基酸27.蛋白质合成所需的能量来自CA、ATPB、GTPC、ATP和GTPD、CTP28.下列关于氨基酸密码的描述哪一项是错误的 AA、密码有种属特异性,所以不同生物合成不同的蛋白质B、密码阅读有方向性,5′-端起始,3′-端终止C、一种氨基酸可有一组以上的密码D、一组密码只代表一种氨基酸29.mRNA的5′-ACG-3′密码子相应的反密码子是 CA、5′-UGC-3′B、5′-TGC-3′C、5′-CGU-3′D、5′-CGT-3′30.下列哪一个不是终止密码 BA、UAAB、UACC、UAGD、UGA三、是非题在题后括号内打√或×:1、蛋白质生物合成所需的能量都由ATP直接供给; ×2、反密码子GAA只能辨认密码子UUC; ×3、生物遗传信息的流向,只能由DNA—→RNA而不能由RNA—→DNA; ×4、原核细胞新生肽链N端第一个残基为fMet,真核细胞新生肽链肽链N端第一个氨基酸残基为Met; √5、DNA复制与转录的共同点在于都是以双链DNA为模板,以半保留方式进行,最后形成链状产物; ×6、依赖DNA的RNA聚合酶叫转录酶,依赖于RNA的DNA聚合酶即反转录酶; √7、密码子从5’-端至3’-端读码,而反密码子则从3’-端至5’-端读码; ×8、一般讲,从DNA的三联体密码子中可以推定氨基酸的顺序,相反从氨基酸的顺序也可毫无疑问地推定DNA顺序; ×9、DNA半不连续复制是指复制时一条链的合成方向是5′→3′而另一条链方向是3′→5′; ×10、真核生物蛋白质合成起始氨基酸是N-甲酰甲硫氨酸; ×11、原核细胞的DNA聚合酶一般都不具有核酸外切酶的活性; ×12、在具备转录的条件下,DNA分子中的两条链在体内都可能被转录成RNA; ×13、核糖体是细胞内进行蛋白质生物合成的部位; √14、mRNA与携带有氨基酸的tRNA是通过核糖体结合的; √15、核酸是遗传信息的携带者和传递者; √16、RNA的合成和DNA的合成一样,在起始合成前亦需要有RNA引物参加; ×17、真核生物mRNA多数为多顺反子,而原核生物mRNA多数为单顺反子; ×18、合成RNA时,DNA两条链同时都具有转录作用; ×19、在蛋白质生物过程中mRNA是由3’-端向5’-端进行翻译的; ×20、蛋白质分子中天冬酰胺,谷氨酰胺和羟脯氨酸都是生物合成时直接从模板中译读而来的; ×21、逆转录病毒RNA并不需要插入寄主细胞的染色体也可完成其生命循环; ×四、问答题:1.氨酰-tRNA合成酶在多肽合成中的作用特点和意义;答:氨基酰-tRNA合成酶具有高度的专一性:一是对氨基酸有极高的专一性,每种氨基酸都有一种专一的酶,它仅作用于L-氨基酸,不作用于D-氨基酸,有的氨基酸-tRNA合成酶对氨基酸的专一性虽然不很高,但对tRNA仍具有极高专一性;这种高度专一性会大大减少多肽合成中的差错;2.原核细胞与真核细胞蛋白质合成起始氨基酸起始氨基酰—tRNA及起始复合物的异同点有那些答:为了便于比较列表如下3.原核生物与真核生物mRNA的信息量及起始信号区结构上有何主要差异;答:为了便于比较列表如下:4.简述三种RNA在蛋白质生物合成中的作用;答:1 mRNA:DNA的遗传信息通过转录作用传递给mRNA,mRNA作为蛋白质合成模板,传递遗传信息,指导蛋白质合成;2 tRNA:蛋白质合成中氨基酸运载工具,tRNA的反密码子与mRNA上的密码子相互作用,使分子中的遗传信息转换成蛋白质的氨基酸顺序是遗传信息的转换器;3 rRNA:核糖体的组分,在形成核糖体的结构和功能上起重要作用,它与核糖体中蛋白质以及其它辅助因子一起提供了翻译过程所需的全部酶活性;五、名词解释:1.遗传密码与密码子多肽链中氨基酸的排列次序mRNA分子编码区核苷酸的排列次序对应方式称为遗传密码;而mRNA分子编码区中每三个相邻的核苷酸构成一个密码子;由四种核苷酸构成的密码子共64个,其中有三个不代表任何氨基酸,而是蛋白质合成中的终止密码子;2.起始密码子与终止密码子蛋白质合成中决定起始氨基酸的密码子称为起始密码子,真核与原核生物中的起始密码子为代表甲硫氨酸的密码子AUG和代表缬氨酸的密码子GUG;3.密码的简并性和变偶性一种氨基酸可以具有好几组密码子,其中第三位碱基比前两位碱基具有较小的专一性,即密码子的专一性主要由前两位碱基决定的特性称为变偶性;4.核糖体与多核糖体生物系统中合成蛋白质的部侠,称为核糖体;多聚核糖体:一条mRNA模板链可附着10-100个核糖体,这些核糖体依次结合起始密码子,沿5-3方向读码移动,同时进行肽链合成,这种mRNA与多个核糖体形成的聚合物称为多聚核糖体;5.同功tRNA、起始tRNA、延伸tRNA用于携带或运送同一种氨基酸的不同tRNA称同功tRNA,能特异识别mRNA上起始密码子的tRNA,称为起始tRNA;在肽链延伸过程中,用于转运氨基酸的tRNA称为延伸tRNA;6.EFTu-EFTs循环,移位,转肽肽键形成EF-Tu与EF-T S称为延伸因子,参与氨基酰-tRNA进位,每完成一次进位需要EF-Ts-EF-Tu循环一周,其过程如下:移位:就是核糖体沿着mRNA从5′向3′-端移动一个密码子的距离:转肽则是位于核糖体大亚基P 位点的肽酰基在转肽酶的作用下,被转移到A位点,氨在酰-tRNA的氨基上形成肽键的过程;7.信号肽几乎所有跨膜运送的蛋白质结构中,多数存在于N-末端的肽片段称为信号肽,其长度一般为15—35个氨基酸残基;它在蛋白质跨膜运送中起重要作用;少数信号肽位于多肽中间某个部位,称为“内含信号肽;”8.移码突变在mRNA分子编码区内插入一个或删除一个碱基,就会使这点以后的读码发生错误,这称为移码;由于移码引起的突变称为移码突变;。
第16章蛋白质的合成单元自测题(一)、名词解释1、无细胞翻译系统2、密码子(codon)3、摆动配对(wobblepairing)4、核糖体循环(ribosomecycle)5、多核糖体(polyribosome)6、操纵子(operon)7、顺式作用元件(cis element)8、反式作用因子(trans factor)9、锌指(zincfinger)10、亮氨酸拉链(1eudnezipper)11、螺旋—环—螺旋(helix-loop-helix)12、跳跃翻译(jump translation)13、蛋白质内含子(二)填空题1、在64个密码子中,终止密码子是、、,编码Met兼作翻译起始信号的密码子是,编码Trp 的密码子是。
2、反密码子第位碱基和密码子第碱基的配对允许有一定的摆动,称为变偶3、在原核细胞翻译起始时,小亚基16SrRNA的3’端与mRNA5’端的之间互补配对,确定读码框架,fMet-tRNA f 占据核糖体的位置,4、在肽链延伸时,由核糖体大亚基的酶催化核糖体P位置的与A位置的形成肽键。
5、每一次延伸循环掺入一个氨基酸的同时,消耗分子的GTP,核糖体沿的方向解读mRNA的编码序列,肽链从延伸,直到A位置出现终止密码子时,结合到核糖体上,新生的肽链被释放。
6、在真核细胞中,已合成的蛋白质通过内质网膜运输时有、、和等参与了识别和运送作用。
7、内质网膜表面附着的大量核糖体是的场所,内质网膜腔内是的场所。
高尔基体的重要功能是和。
8、蛋白质磷酸化是可逆的。
蛋白质磷酸化时,需要酶,而蛋白质去磷酸化需要酶。
9、在蛋白质的生物合成中,需要起始tRNA,在原核中为,在真核中为,最后合成的蛋白质N端不含有甲硫氨酸,因为。
10、肽基转移酶在蛋白质生物合成中的作用是。
11、氨酰tRNA合成酶在ATP和Mg2+存在下选择正确的氨基酸加到tRNA的3'末端,使之氨酰化的过程,取决于。
12、蛋白质生物合成过程中,核糖体内需能步骤都与水解为和无机磷有关。