新集成运放实验 6 桂电模电实
- 格式:ppt
- 大小:1.14 MB
- 文档页数:15
实验–集成运算放大器的基本应用模拟运算电路引言集成运算放大器(Integrated Operational Amplifier,简称OPAMP)是一种重要的电子元件,它在模拟电路设计和实验中被广泛应用。
本文将介绍集成运算放大器的基本应用,并通过实验来验证其在模拟运算电路中的功能和性能。
集成运算放大器的基本原理集成运算放大器是一种高增益、差分输入和单端输出的电子放大器。
它具有很高的输入阻抗、低的输出阻抗和大的开环增益。
通过反馈电路,集成运算放大器可以实现各种电路功能,如放大器、比较器、滤波器等。
实验目的本实验旨在通过实际操作,掌握集成运算放大器的基本应用,包括放大器、比较器和无源滤波器。
实验器材•集成运算放大器IC•双电源电源•电阻•电容•示波器•多用电表实验步骤步骤1:放大器的基本应用1.按照电路图连接集成运算放大器,并接入双电源电源。
2.接入电阻、电容等元件,按照电路图搭建一个基本放大器电路。
3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。
4.调节输入信号的幅值和频率,观察输出信号的变化。
步骤2:比较器的应用1.断开反馈电路,使集成运算放大器工作在开环状态。
2.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。
3.调节输入信号的幅值,观察输出信号的变化。
步骤3:无源滤波器的应用1.按照电路图连接集成运算放大器,并接入双电源电源。
2.接入电阻、电容等元件,按照电路图搭建一个无源滤波器电路。
3.将输入信号接入集成运算放大器的非反馈输入端,通过示波器观察输出信号。
4.调节输入信号的频率,观察输出信号的变化。
实验结果与分析在实际操作中,我们成功搭建了集成运算放大器的放大器、比较器和无源滤波器电路,并通过示波器观察到了相应的输入输出波形。
在放大器电路中,我们调节了输入信号的幅值和频率,观察到了输出信号的线性放大效果。
在比较器电路中,我们调节了输入信号的幅值,观察到了输出信号的高低电平变化。
集成运算放大器的线性应用实验佘新平编写一、 实验目的1.了解运算放大器的特性和基本运算电路的组成; 2. 掌握运算电路的参数计算和性能测试方法。
二、 实验仪器及器件 1.双踪示波器; 2.直流稳压电源; 3.函数信号发生器;4.数字电路实验箱或实验电路板; 5.数字万用表;6.集成电路芯片uA741 2块、电容0.01uF2个、电阻10k 10个、20k 5个、30k 2个、50k 2个、100k2个、5.1k 1个、3.3k 1个、680k 1个,10k 电位器3个。
三、 预习要求1.熟悉集成电路芯片uA741的引脚图及功能; 2.掌握集成运放的工作特点;3.掌握构各种运算电路的形式及工作原理。
四、实验原理(1)集成运放简介集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电路。
集成运放uA741的电路符号及引脚图如图1所示。
图1 uA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。
(a )电源端:通常由正、负双电源供电,典型电源电压为±15V 、 ±12V 等。
如:uA741的7脚和4脚。
(b )输出端:只有一个输出端。
在输出端和地(正、负电源公共端)之间获得输出电压。
如:uA741的6脚。
最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V ;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。
这表明集成运放的输出电阻很小,带负载能力较强。
(c )输入端:分别为同相输入端和反相输入端。
如:uA741的3脚和2脚。
输入端有两个参数需要注意:最大差模输入电压V id max 和最大共模输入电压V ic max。
调零V -V +-V cc调零 +V cc NCV O两输入端电位差称为“差模输入电压”V id :id V V V +-=- 。
姓名 班级 学号实验日期 节次 教师签字 成绩实验名称:集成运放参数测试1.实验目的1.通过对集成运算放大器uA741参数的测试,了解集成运算放大器的主要参数及意义 2.掌握运算放大器主要参数的简易测试方法。
2.总体设计方案或技术路线1.输入失调电压:理想运算放大器,当输入信号为零时其输出也为零。
但在真实的集成电路器件中,由于输入级的差动放大电路总会存在一些不对称的现象,使得输入为零时,输出不为零。
这种输入为零而输出不为零的现象称为失调,为讨论方便,人们将由于器件内部的不对称所造成的失调现象,看成是由于外部存在一个误差电压而造成,这个外部的误差电压叫做输入失调电压,记作U IO 。
输入失调电压在数值上等于输入为零时的输出电压除以运算放大器的开环电压放大倍数:udOOIO A U U =式中:U IO — 输入失调电压 U oo — 输入为零时的输出电压值A ud — 运算放大器的开环电压放大倍数本次实验采用的失调电压测试电路如图1所示。
测量此时的输出电压U O1即为输出失调电压,则输入失调电压1O F11IO U R R R U +=实际测出的U O1可能为正,也可能为负,高质量的运算放大器U IO 一般在1mV 以下。
测试中应注意: ① 将运放调零端开路;② 要求电阻R 1和R 2,R 3和R F 的阻值精确配对。
2.输入失调电流I IO当输入信号为的零时,运放两个输入端的输入偏置电流之差称为输入失调电流,记为I IO 。
21B B IO I I I -=式中:I B1,I B2分别是运算放大器两个输入端的输入偏置电流。
输入失调电流的大小反映了运放内部差动输入级的两个晶体管的失配度,由于I B1,I B2本身的数值已很小(uA 或nA 级),因此它们的差值通常不是直接测量的,测试电路如图2所示。
在图1基础上将输入电阻R B 接入两个输入端的输入电路中,由于R B 阻值较大,流经它们的输入电流的差异,将变成输入电压的差异,因此,也会影响输出电压的大小,因此,测出两个电阻R B 接入时的输出电压U O2,从中扣除输入失调电压U IO 的影响(即U O1),则输入失调电流I IO 为:BF 112O 1O 2B 1B IO R 1R R R U U I I I ⋅+⋅-=-=一般,I IO 在100nA 以下。
目录1实验目的2 2实验原理23实验设计33.1实验I基础型实验 (3)3.1.11、电压跟随器——检测运放是否正常 (3)3.1.2反相比例运算放大器电压放大特性 (3)3.2实验II设计型实验 (4)3.2.1减法器的设计 (4)4实验预习仿真44.1电压跟随器——检测运放是否正常 (4)4.2反相比例运算放大器电压放大特性 (5)4.3减法器设计 (6)5数据处理7 6实验总结9 7思考题9 8实验讨论91实验目的•深刻理解集成放大器工作在线性工作区时,遵循的两条基本原则——虚短、虚断•熟悉集成运算放大器的线性应用。
•掌握比例运算等电路、训练设计运放电路的能力。
2实验原理集成运算放大器是一种高电压放大倍数的多级直耦放大电路,在深度负反馈条件下,集成运放工作在线性工作区,它遵循两条基本原则:1.虚短:U i=U−−U+≈02.虚断:I N≈I p≈0(非线性区也成立)用途:广泛应用于各种信号的运算处理、测量以及信号的产生、变换等电路中。
图1:运算放大器符号3实验设计3.1实验I基础型实验3.1.11、电压跟随器——检测运放是否正常3.1.2反相比例运算放大器电压放大特性3.2实验II设计型实验3.2.1减法器的设计1.自行设计运放电路,要求实现u0=2u i2−u i12.将u i分别设置为以下两组信号,验证电路是否满足要求4实验预习仿真4.1电压跟随器——检测运放是否正常图2:Multisim接线图3:Multisim结果4.2反相比例运算放大器电压放大特性图4:Multisim 接线图5:Multisim 结果U i (V )理论值(V )实测值(V )U N U P U O U O U iU N U P U O U O U i-0.300310455.314µV 564.134µV 3.012V 10.040.3-310563.904µV489.999µV-2.987V9.964.3减法器设计设计如图所示:表3:验证结果波形频率u i u0直流0u i1=1V,u i2=2V3.04V正弦波500Hz u i1=1V,u i2=2V2.98V5数据处理表1U i(V)理论值(V)实测值(V)U N U P U O U OU iU N U P U O U OU i-0.3003100.1mV0.2mV 3.66V12.20.300-310-0.1mV0-3.65V12.16表2波形频率u i u0直流0u i1=1V,u i2=2V 3.00V正弦波500Hz u i1=1V,u i2=2V 3.24V1.完成表1,并绘制基础型实验的运放的电压传输特性;2.列出基础型实验中U i和U o理论关系式,并和仿真数据、实际数据比较;•电压跟随器u i=u o仿真数据中u i=u o,实验数据u i=1.00V,u o=1.04V,在误差允许范围内,所以等式也成立。
实验六 集成运算放大器的基本应用——模拟运算电路一、 实验目的1、 研究有集成运算放大器组成的比例、加法和减法等基本运算电路的功能2、 了解运算放大器在实际应用时应考虑的有些问题 二、 实验仪器1、 双踪示波器;2、数字万用表;3、信号发生器 三、 实验原理在线性应用方面,可组成比例、加法、减法的模拟运算电路。
1) 反相比例运算电路电路如图6-1所示。
对于理想运放,该电路的输出电压与输入电压之间的关系为为减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻//。
图6-1 反相比例运算电路 2) 反相加法电路电路如图6-2所示,输出电压与输入电压之间的关系为:////图6-2 反相加法运算电路Ui1 Ui23) 同相比例运算电路图6-3(a )是同相比例运算电路。
(a )同乡比例运算 (b )电压跟随器 图6-3 同相比例运算电路 它的输出电压与输入电压之间关系为://当即得到如图6-3所示的电压跟随器。
图中,用以减小漂移和起保护作用。
一般取10K Ω,太小起不到保护作用,太大则影响跟随性。
4) 差动放大电路(减法器)对于图6-4所示的减法运算电路,当UoUo图6-4 减法运算电路5) 积分运算电路图6-5 积分运算电路反相积分电路如图6-5所示,在理想化条件下,输出电压等于式中是t=0时刻电容C 两端的电压值,即初始值。
如果E 的阶跃电压,并设=0,则UoUi2Ui1UoUi此时显然RC 的数值越大,达到给定的值所需的时间就越长,改变R 或C 的值积分波形也不同。
一般方波变换为三角波,正弦波移相。
6) 微分运算电路微分电路的输出电压正比与输入电压对时间的微分,一般表达式为:利用为自焚电路可实现对波形的变换,矩形波变换为尖脉冲。
图6-6 微分运算电路四、 实验内容及实验数据实验时切忌将输出端短路,否则将会损坏集成块。
输入信号时先按实验所给的值调好信号源再加入运放输入端,另外做实验前先对运放调零,若失调电压对输出影响不大,可以不用调零,以后不再说明调零情况。
一、实训背景随着信息技术的飞速发展,集成电路设计作为电子工程领域的关键技术之一,其重要性日益凸显。
为了提升学生在模拟电子技术(模电)领域的实践能力和设计水平,我们参加了为期两周的模电集成电路设计实训。
本次实训旨在通过实际操作和理论学习,使学生掌握模拟集成电路的基本设计方法、电路分析方法以及设计工具的使用。
二、实训目的1. 熟悉模拟集成电路的基本设计流程和步骤。
2. 掌握常用的模拟集成电路设计方法,如运算放大器、滤波器、稳压器等。
3. 学会使用电路仿真软件,如Multisim、LTspice等,进行电路仿真和分析。
4. 培养学生的动手能力和团队合作精神。
三、实训内容1. 模拟集成电路设计基础首先,我们对模拟集成电路设计的基本原理进行了深入学习。
包括模拟信号的基本概念、半导体器件的工作原理、电路分析方法等。
通过学习,我们了解了模拟集成电路设计的基本流程和步骤。
2. 运算放大器设计运算放大器是模拟集成电路设计中最为常见的电路之一。
在实训中,我们学习了运算放大器的电路结构、工作原理以及设计方法。
通过实际操作,我们设计并制作了一个简单的运算放大器电路,并使用Multisim软件进行了仿真验证。
3. 滤波器设计滤波器在信号处理领域有着广泛的应用。
我们学习了滤波器的基本原理和设计方法,包括低通、高通、带通和带阻滤波器。
在实训中,我们设计并制作了一个低通滤波器电路,并对其进行了仿真和分析。
4. 稳压器设计稳压器是模拟集成电路设计中用于提供稳定电压的电路。
我们学习了不同类型的稳压器,如线性稳压器、开关稳压器等。
在实训中,我们设计并制作了一个线性稳压器电路,并对其性能进行了测试。
5. 电路仿真与分析为了验证我们的设计,我们使用了Multisim软件对电路进行了仿真和分析。
通过仿真,我们能够直观地观察电路的性能,并根据仿真结果对电路进行调整和优化。
四、实训成果1. 设计并制作了多个模拟集成电路电路,包括运算放大器、滤波器、稳压器等。
电子技术基础实验与课程设计------运算放大器基本放大电路实验目的1.通过实验,进一步理解集成运算放大器线性应用电路的特点。
2.掌握集成运算放大器基本线性应用电路的设计方法。
3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。
集成运算放大器放大电路概述集成电路是一种将“管”和“路”紧密结合的器件,它以半导体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、二极管、电阻和电容等元件及它们之间的连线所组成的完整电路制作在一起,使之具有特定的功能。
集成放大电路最初多用于各种模拟信号的运算(如比例、求和、求差、积分、微分……)上,故被称为运算放大电路,简称集成运放。
集成运放广泛用于模拟信号的处理和产生电路之中,因其高性价能地价位,在大多数情况下,已经取代了分立元件放大电路。
1.1反相比例放大电路输入输出关系: 输入电阻: Ri=R1 输出电阻: Ro=01.1.1设计要求1.1.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
反相比例放大电路仿真电路图i oV R R V 12-=i R o V R R V R R V 1212)1(-+=输入与输出电压所以输出放大倍数 =12电压输入输出波形图i oV R R V 12-=1.2同相比例放大电路输入输出关系: 输入电阻: Ri=∞ 输出电阻: Ro=0 1.2.1设计要求1.2.2选择器件与多数计算通过查找资料选用TL082集成运放设计放大12倍。
i o V RRV )1(12+=R o V R RV R R V 12i 12)1(-+=同相比例放大电路仿真电路图输入与输出电压所以输出放大倍数: =12 电压输入输出波形图i o V RRV )1(12+=1.3微分电路R fU iR 2U oC 1foi R U dt dU C -=1dtdU C R U if o 1-=max 1)(dtdU U C R i oM f ≤实用微分电路RC1=RfC电路的输出电压为o u 为:21io du u R C dt =- 式中,21R C 为微分电路的时间常数。