数学奥赛--整除
- 格式:doc
- 大小:1.13 MB
- 文档页数:10
利用整除特征解答数学奥赛题将1至9九个数字写在一条纸带上,将它剪成三段,每段上数字联在一起算一个数,把这三个数相加,使和能被77整除,那么中间一段的数是()。
在许多竞赛解答资料上,此题都是用试算的方法来解答的。
虽然可以使用计算器,但是计算量仍然十分巨大。
在竞赛时间十分有限的情况下,这样的试算是很困难的。
而实际上,这道题我们只要运用数的一些整除特征,通过计算余数就能较轻松地解答出来。
因为77能被7和11整除,所以要判断一个数能不能被77整除,可以分两步走,首先判断这个数能不能被11整除,然后再判断这个数能不能被7整除。
我们在课外兴趣小组里都已经学过,一个数被11除所得的余数等于这个数的奇数位上的数字和与偶数位上的数字和的差。
在这里,123456789被剪成三段成为三个数,这些数有如下特征:个位数比十位数大1,十位数比百位数大1……所以我们可以得到,这里的两位数被11除所得的余数一定是1,四位数被11除所得的余数一定是2,六位数被11除所得的余数一定是3;一位数被11除所得的余数就是这个一位数,三位数被11除所得的余数是1加上这个数的首位数字,五位数被11除所得的余数是2加上这个数的首位数字,七位数被11除所得的余数是3加上这个数的首位数字。
把上述这个九位数剪成三段得到了三个数。
这三个数的位数可能同时都是奇数,也可能是两个偶数和一个奇数。
下面我们就分别进行讨论,看一看哪些算式的结果能被11整除。
1.三个数的位数都是奇数。
这三个数的位数可能是一、一、七,一、三、五和三、三、三。
这三个数被11除所得的余数之和一定是3+(x+y+z),这里的x、y、z分别是这三个数的首位数字,规定x<y <z。
显然,6=1+2+3<x+y+z<1+8+9=18<19。
所以要使这三个数的和能被11整除,3+(x+y+z)一定只能等于11,即x+y+z=8,x一定等于1,则y+z=7,解得y=2, z=5或者y=3, z=4。
A4 整除A4-001 证明:当且仅当指数n不能被4整除时,1n+2n+3n+4n能被5整除.【题说】1901年匈牙利数学奥林匹克题1.【证】容易验证14≡24≡34≡44 (mod 5)假设n=4k+r,k是整数,r=0,1,2,3.则S n=1n+2n+3n+4n≡1r+2r+3r+4r(mod 5)由此推出,当r=0时,S n≡4,而当r=1,2,3时,S n≡0(mod 5).因此,当且仅当n不能被4整除时,S n能被5整除.A4-002 证明:从n个给定的自然数中,总可以挑选出若干个数(至少一个,也可能是全体),它们的和能被n整除.【题说】1948年匈牙利数学奥林匹克题3.【证】设a1,a2,…,a n是给定的n个数.考察和序列:a1,a1+a2,a1+a2+a3,…,a1+a2+…+a n.如果所有的和数被n除时余数都不相同,那么必有一个和数被n除时余数为0.此时本题的断言成立.如果在n个和数中,有两个余数相同(被n除时),那么从被加项较多的和数中减去被加项较少的和数,所得的差能被n整除.此时本题的断言也成立.A4-003 1.设n为正整数,证明132n-1是168的倍数.2.问:具有那种性质的自然数n,能使1+2+3+…+n整除1·2·3…·n.【题说】1956年上海市赛高三复赛题1.【解】1.132n-1=(132)n-1,能被132-1,即168整除.2.问题即何时为整数.(1)若n+1为奇质数,则(n+1)2(n-1)!(2)若n+1=2,则(n+1)|2(n-1)!(3)若n+1为合数,则n+1=ab其中a≥b>1.在b=2时,a=n+1-a≤n-1,所以a|(n-1)!,(n+1)|2(n-1)!在b>2时,2a≤n+1-a<n-1,所以2ab|(n-1)!更有(n+1)|2(n-1)!综上所述,当n≠p-1(p为奇质数)时,1+2+…+n整除1·2…·n.A4-004 证明:如果三个连续自然数的中间一个是自然数的立方,那么它们的乘积能被504整除.【题说】 1957年~1958年波兰数学奥林匹克三试题1.【证】设三个连续自然数的乘积为n=(a3-1)a3(a3+1).(1)a≡1,2,-3(mod 7)时,7|a3-1.a≡-1,-2,3(mod 7)时,7|a3+1.a≡0(mod 7)时,7|a3.因此7|n.(2)当a为偶数时,a3被8整除;而当a为奇数时,a3-1与a3+1是两个相邻偶数,其中一个被4整除,因此积被8整除.(3)a≡1,-2,4(mod 9)时,9|a3-1.a≡-1,2,-4(mod 9)时,9|a3+1.a≡0,±3(mod 9)时,9|a3.因此9|n.由于7、8、9互素,所以n被504=7×8×9整除.A4-005 设x、y、z是任意两两不等的整数,证明(x-y)5+(y-z)5+(z-x)5能被5(y -z)(z-x)(x-y)整除.【题说】1962年全俄数学奥林匹克十年级题3.【证】令x-y=u,y-z=v,则z-x=-(u+v).(x-y)5+(y-z)5+(z-x)5=u5+v5-(u+v)5=5uv(n+v)(u2+uv+v2)而 5(y-z)(z-x)(x-y)=-5uv(u+v).因此,结论成立,而且除后所得商式为u2+uv+v2=x2+y2+z2-2xy-2yz-2xz.【别证】也可利用因式定理,分别考虑原式含有因式(x-y),(y-z),(z-x)以及5.A4-006 已知自然数a与b互质,证明:a+b与a2+b2的最大公约数为1或2.【题说】1963年全俄数学奥林匹克八年级题4.【证】设(a+b,a2+b2)=d,则d可以整除(a+b)2-(a2+b2)=2ab但由于a、b互质,a的质因数不整除a+b,所以d与a互质,同理d与b互质.因此d=1或2.A4-007 (a)求出所有正整数n使2n-1能被7整除.(b)证明:没有正整数n能使2n+1被7整除.【题说】第六届(1964年)国际数学奥林匹克题1.本题由捷克斯洛伐克提供.解的关键是找出2n被7除所得的余数的规律.【证】(a)设m是正整数,则23m=(23)m=(7+1)m=7k+1(k是正整数)从而 23m+1=2·23m=2(7k+1)=7k1+223m+2=4·23m=4(7k+1)=7k2+4所以当n=3m时,2n-17k;当n=3m+1时,2n-1=7k1+1;当n=3m+2时,2n-1=7k2+3.因此,当且仅当n是3的倍数时,2n-1能被7整除.(b)由(a)可知,2n+1被7除,余数只可能是2、3、5.因此,2n+1总不能被7整除.A4-008 设k、m和n为正整数,m+k+1是比n+1大的一个质数,记C s=s(s+1).证明:乘积(C m+1-C k)(C m+2-C k)…(C m+n-C k)能被乘积C1·C2·…·C n整除.【题说】第九届(1967年)国际数学奥林匹克题3.本题由英国提供.【证】C p-C q=p(p+1)-q(q+1)=p2-q2+p-q=(p-q)(p+q+1)所以(C m+1-C k)(C m+2-C k)…(C m+n-C k)=(m-k+1)(m-k+2)…(m-k+n)·(m+k+2)(m+k+3)·…·(m+k+n+1)C1C2…C n=n!(n+1)!因此只需证=A·B是整数.由于n个连续整数之积能被n!整除,故A是整数.是整数.因为m+k+1是大于n+1的质数,所以m+k+1与(n+1)!互素,从而(m+k+2)(m+k+3)…(m+k+n+1)能被(n+1)!整除,于是B也是整数,命题得证.A4-009 设a、b、m、n是自然数且a与b互素,又a>1,证明:如果a m+b m能被a n+b n整除,那么m能被n整除.【题说】第六届(1972年)全苏数学奥林匹克十年级题1.【证】由于a k+b k=a k-n(a n+b n)-b n(a k-n-b k-n)a l-b l=a l-n(a n+b n)-b n(a l-n+b l-n)所以(i)如果a k+b k能被a n+b n整除,那么a k-n-b k-n也能被a n+b n整除.(ii)如果a l-b l能被a n+b n整除,那么a l-n+b l-n也能被a n+b n整除.设m=qn+r,0≤r<n,由(i)、(ii)知a r+(-1)q b r能被a n+b n整除,但0≤|a r+(-1)q b r|<a n+b n,故r=0(同时q是奇数).亦即n|m.A4-010 设m,n为任意的非负整数,证明:是整数(约定0!=1).【题说】第十四届(1972年)国际数学奥林匹克题3.本题由英国提供.易证 f(m+1,n)=4f(m,n)-f(m,n+1)(1)n)为整数,则由(1),f(m+1,n)是整数.因此,对一切非负整数m、n,f(m,n)是整数.A4-011 证明对任意的自然数n,和数不能被5整除.【题说】第十六届(1974年)国际数学奥林匹克题3.本题由罗马尼亚提供.又两式相乘得因为72n+1=7×49n≡2×(-1)n(mod 5)A4-012 设p和q均为自然数,使得证明:数p可被1979整除.【题说】第二十一届(1979年)国际数学奥林匹克题1.本题由原联邦德国提供.将等式两边同乘以1319!,得其中N是自然数.由此可见1979整除1319!×p.因为1979是素数,显然不能整除1319!,所以1979整除p.A4-013 一个六位数能被37整除,它的六个数字各个相同且都不是0.证明:重新排列这个数的六个数字,至少可得到23个不同的能被37整除的六位数.【题说】第十四届(1980年)全苏数学奥林匹克十年级题1.(c+f)被37整除.由于上述括号中的数字是对称出现的,且各数字不为0,故交换对又因为100a+10b+c=-999c+10(100c+10a+b),所以各再得7个被37整除的数,这样共得23个六位数.A4-014 (a)对于什么样的整数n>2,有n个连续正整数,其中最大的数是其余n-1个数的最小公倍数的约数?(b)对于什么样的n>2,恰有一组正整数具有上述性质?【题说】第二十二届(1981年)国际数学奥林匹克题4.【解】设n个连续正整数中最大的为m.当n=3时,如果m是m-1,m-2的最小公倍数的约数,那么m整除(m-1)(m-2),由m|(m -1)(m-2)得m|2,与m-2>0矛盾.设n=4.由于m|(m-1)(m-2)(m-3)所以m|6,而m>4,故这时只有一组正整数3,4,5,6具有所述性质.设n>4.由于m|(m-1)(m-2)…(m-n+1),所以m|(n-1)!取m=(n-1)(n-2),则(n -1)|(m-(n-1)),(n-2)|(m-(n-2)).由于n-1与n-2互质,m-(n-1)与m-(n-2)互质,所以m=(n-1)(n-2)整除m-(n-1)与m-(n-2)的最小公倍数,因而m 具有题述性质.类似地,取m=(n-2)(n-3),则m整除m-(n-2)与m-(n-3)的最小公倍数,因而m具有题述性质.所以,当n≥4时,总能找到具有题述性质的一组正整数.当且仅当n=4时,恰有唯一的一组正整数.A4-015 求一对正整数a和b,使得:(1)ab(a+b)不被7整除;(2)(a+b)7-a7-b7被77整除.证明你的论断.【题说】第二十五届(1984年)国际数学奥林匹克题2.【解】(a+b)7-a7-b7=7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6=7ab[(a5+b5)+3ab(a3+b3)+5a2b2(a+b)]=7ab(a+b)[a4+2a3b+3a2b2+2ab3+b4]=7ab(a+b)(a2+ab+b2)2取a=18,b=1,则a2+ab+b2=a(a+b)+b2=343=73.所以(a+b)7-a7-b7被77整除,ab(a +b)不被7整除.A4-016 1.是否存在14个连续正整数,其中每一个数均至少可被一个不小于2、不大于11的素数整除?2.是否存在21个连续正整数,其中每一个数均至少可被一个不小于2、不大于13的素数整除?【题说】第十五届(1986年)美国数学奥林匹克题1.【解】1.14个连续正整数中,有7个奇数n,n+2,n+4,n+6,n+8,n+10,n+12不能被2整除.这7个奇数中,至多1个被11整除,一个被7整除,2个被5整除,3个被3整除.如果被3整除的数少于3个或被5整除的数少于2个,那么这7个奇数中被3,5,7,11整除的数不足7个.如果恰有3个数被3整除,2个数被5整除,那么,被3整除的数必须是n,n+6,n+12,被5整除的2个数必须为n与n+10或n+2与n+12.此时必有一个数n或n+12同时被3,5整除.即这7个奇数中被3,5,7,11整除的数仍不足7个.不管怎样,这14个连续正整数中必有1个不被2,3,5,7,11任一个整除.故答案为不存在.2.存在.以下21个连续整数-10,-9,…,-1,0,1,2,3,…,10除去±1,其余整数被2,3,5,7之一整除.由中国剩余定理,满足N≡0(mod 210)N≡1(mod 11)N≡-1(mod 13)的整数N存在,于是N-10,N-9,…,N,N+1,…,N+10这21个连续整数满足所有要求.A4-018 试求出所有的正整数a、b、c,其中1<a<b<c,使得(a-1)(b-1)(c-1)是abc -1的约数.【题说】第三十三届(1992年)国际数学奥林匹克题1.本题由新西兰提供.【解】设x=a-1,y=b-1,z=c-1,则1≤x<y<z并且xyz是(x+1)(y+1)(z+1)-1=xyz+x+y+z+xy+yz+zx的约数,从而xyz是x+y+z+xy+yz +zx的约数.由于x+y+z+xy+yz+zx<3yz,所以x=1或2.若x=1,则yz是奇数1+2y+2z的约数.由于1+2y+2z<4z,所以y=3.并且3z是7+2z的约数.于是z=7.若x=2,则2yz是2+3y+3z+yz的约数,从而y,z均为偶数,设y=2y1,z=2z1,则4y1z1≤1+3y1+3z1+2y1z1<6z1+2y1z1,所以y1<3.因为y>x,所以y1=2,y=4.再由8z1是7+7z1的约数得z1=7,z=14.因此,所求解为(3,5,15)与(2,4,8).019 x与y是两个互素的正整数,且xy≠1,n为正偶数.证明:x+y不整除x n+y n.【题说】1992年日本数学奥林匹克题1.【证】由(x,y)=1知(x+y,y)=1,(x+y,xy)=1.当n=2时,x2+y2=(x+y)2-2xy.由于x+y>2,所以(x+y)2xy.故(x+y)(x2+y2).假设当n=2k(k∈N+)时,(x+y)(x2k+y2k).则当n=2(k+1)时,由于x2(k+1)+y2(k+1)=(x+y)(x2k+1+y2k+1)-xy(x2k+y2k)所以(x+y)(x2(k+1)+y2(k+1)).故对一切正偶数n,x+y不整除x n+y n.A4-020 证明当且仅当n+1不是奇素数时,前n个自然数的积被前n个自然数的和整除.【题说】第二十四届(1992年)加拿大数学奥林匹克题1.若n+1为奇合数,设n+1=qr,q、r为奇数且3≤q≤r,则nA4-021 找出4个不同的正整数,它们的积能被它们中的任意两个数的和整除.你能找出一组5个或更多个数具有同样的性质吗?【题说】1992年英国数学奥林匹克题3.【解】显然,2、6、10、14满足要求.任取n个不同的正整数。
数学竞赛专项训练-整除、质数、合数、倍数、约数数学竞赛专项训练第一讲 数的整除一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.一些数的整除特征除 数能被整除的数的特征2或5末位数能被2或5整除 4或25末两位数能被4或25整除8或125末三位数能被8或125整除3或9各位上的数字和被3或9整除(如771,54324)11奇数位上的数字和与偶数位上的数和相减,其差能被11整除(如143,1859,1287,908270等)7,11,13末三位与末三位以前的数相减,其差能被7或11或13整除.(如1001,22743,17567,21281等)能被7整除的数的特征: ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。
如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除)能被11整除的数的特征: ①抹去个位数 ②减去原个位数 ③其差能被11整除如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1已知两个三位数328和的和仍是三位数且能被9整除。
92x 75y 求x,y解:x,y 都是0到9的整数,∵能被9整除,∴y=6.75y ∵328+=567,∴x=392x 例2已知五位数能被12整除,求x 1234x解:∵五位数能被12整除,必然同时能被3和4整除, 当1+2+3+4+能被3整除时,x=2,5,8x 当末两位能被4整除时,=0,4,84x x ∴=8x 例3求能被11整除且各位字都不相同的最小五位数解:五位数字都不相同的最小五位数是10234, 但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行 调整末两位数为30,41,52,63,均可,数学竞赛专项训练-整除、质数、合数、倍数、约数∴五位数字都不相同的最小五位数是10263。
初中数学竞赛题典数的整除题l 所有四位数中,有()个数能同时被入3,5,7和11整除?(A)l(B)2(C)3(D)4题2 设n是100到200之间的自然数,则满足7n+2是5的倍数的。
共有()个.a b能被12整除,这样的六位数共有多少个.题3一个六位数1991(A)4 (B)(C)8(D)12题4 已知724-1可被40至50之间的两个整数整除,这两个整数是(),题6 n是一个两位数,它的数码之和为a.当n分别乘以3,5,79以后得到4个乘积.如果其每一个积的数码之和仍为a,那么,这样的两位数n有().题8设某个n位正整数的n个数宇是1,2,…,n的一个排列,如果它的前k个数字所组成的整数能被k整除,其中k=1,2,…,n,那么就这个n位数为一个“好数”.例如,321就是一个三位“好数”,因为1整除3,2整除32,3整除321.那么六位“好数”的个数为().题9能被11整除的最小的九位数是题12在自然数1,2,3,…,1990,1991中.不能披7整除的数有()个.题13将自然数N接写在任意一个自然数的右面(例如,将2接写在35的右面得352),如果得到的新数都能被N整除,那么N称为魔术数,在小于l30的自然数中,魔术数的个数为().题14在所有的五位数中,各位数字之和等于43且能被11整除的数是()。
题15定义:如果n个不同的正整数,对其中的任意两个数,这两数的积能被这两数的和整除.那么,叫这组数为n个数的祖冲之数组。
例如:60,120,180这三个数就构成一个三个数的祖冲之数组,(因(60×120)÷(60+120),(60×180)÷(60+180),(120×180)÷(120+180)都是整数).请你写出一组四个数的祖冲之数组.题16 设a、b、c为整数,且a+b和ab均可被c整除,求怔:a3+b3可被c2整除.题17 设a、b、c为正整数,求证:a3(b-c)+b3(c-a)+c3(a-b)可被a+b+c整除.题19 一个魔方是由自然数组成的正方形网格。
初中数学竞赛专题选讲数的整除(二)一、内容提要在初一部分的我们介绍了能被2,3,4,5,7,8,9,11,13,25整除的自然数的特征,本讲将介绍用因式分解方法解答数的整除问题.几个常用的定理,公式,法则:⑴ n 个连续正整数的积能被n !整除.(n 的阶乘:n !=1×2×3×…×n ).例如:a 为整数时,2a(a+1), 6a(a+1)(a+2), 24a(a+1)(a+2)(a+3),…… ⑵ 若a b 且a c, 则 a (b c).⑶ 若a, b 互质,且a c, b c , 则ab c .反过来也成立:a, b 互质, ab c , 则a c, b c.例如:8和15互质,8|a, 15|a , 则120|a.反过来也成立: 若120|a. 则 8|a, 15|a.⑷由乘法公式(n 为正整数)推得:由(a -b)(a n-1+a n-2b+……+ab n-2+b n-1)=a n -b n . 得 (a -b)|(a n -b n ).(a+b)(a 2n -a 2n -1b+……ab 2n -1+b 2n )=a 2n+1+b 2n+1 . (a+b)|(a 2n+1+b 2n+1).(a+b)(a 2n -1-a 2n -2b+……+ab 2n -2-b 2n -1)=a 2n -b 2n . (a+b)|(a 2n -b 2n ).概括起来:齐偶数次幂的差式a 2n -b 2n 含有因式a +b 和a -b.齐奇数次幂的和或差式a 2n+1+b 2n+1或a 2n+1-b 2n+1只分别含有因式a +b 或a -b. 例如(a+b )| (a 6-b 6), (a -b)| (a 8-b 8);(a+b)|(a 5+b 5), (a -b)|(a 5-b 5).二、例题例1. 已知:整数n>2. 求证:n 5-5n 3+4n 能被120整除..证明:n 5-5n 3+4n =n(n 4-5n 2+4)=n(n -1)(n+1)(n+2)(n -2).∵(n -2) (n -1)n(n+1) (n +2)是五个连续整数,能被n!整除,∴ 120|n 5-5n 3+4n.例2. 已知:n 为正整数. 求证:n 3+23n 2+21n 是3的倍数.证明:n 3+23n 2+21n =21n (2n 2+3n+1) =21n(n+1)(2n+1)=21n(n+1)(n+2+n -1) = 21n(n+1)(n+2)+ 21n(n+1)(n -1).∵ 3!|n(n+1)(n+2), 且3!|n(n+1)(n -1)..∴ 3|21n(n+1)(n+2)+ 21n(n+1)(n -1). 即n 3+23n 2+21n 是3的倍数. (上两例关鍵在于创造连续整数)例3. 求证:⑴ 33|255+1; ⑵ 1989|(19901990-19881988).证明:⑴ 255+1=25×11+111=3211+111.∵(32+1)|(3211+111 ) , 即33|255+1.⑵ 19901990-19881988=19901990-19881990+19881990-19881988.(添两项)∵(1990+1988)|(19901990-19881990).即1989×2|(19901990-19881990).∵ 19881990-19881988=19881988(19882-1)=19881988(1988+1)(1988-1).即 19901990-19881988=1989×2N +1989×19881988×1987. (N 是整数)∴ 1989|19901990-19881988.例4 设n 是正整数, 求证:7|(32n+1+2n+2).证明:32n+1+2n+2=3×32n +4×2n =3×9 n +4×2 n +3×2 n -3×2 n (添两项)=(4×2 n +3×2 n )+(3×9 n -3×2 n )=(4+3)+3(9 n -2 n )=7×2 n +3(9-2)N . (N 是整数)∴7|(32n+1+2n+2)(例3,4是设法利用乘法公式)例5. 已知8719xy 能被33整除,求x, y 的值.解:∵33=3×11,∴1+9+x+y+8+7其和是3的倍数, 即x+y=3K -25 (k 为整数).又(1+x+8)-(9+y+7)其差是11的倍数,即x -y=11h+7(h 是整数).∵0≤x ≤9, 0≤y ≤9,∴0≤x +y ≤18,9≤x -y ≤9,x+y>x -y, 且 x+y 和x -y 同是奇数或偶数.符合条件的有⎩⎨⎧-==⎩⎨⎧-==⎩⎨⎧==48414711y x y x y x 或或 . 解得⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==629529y x y x y x 或或 . 例6.设N =782x ,且17|N, 求 x..解:N =2078+100x=17×122+4+17×6x -2x=17×(122+6x )+4-2x.∵ 17|N ,∴17|4-2x ,当 4-2x=0.∴ x=2.三、练习1.要使2n+1能被3整除,整数n应取___,若6|(5 n-1), 则整数n应取___.2.求证:①4!|(n4+2n3-n2-2n);②24|n(n2-1)(3n+2);③6|(n3+11n);④30|(n 5-n).3.求证:①100|9910-1);②57|(23333+72222);③995|(996996-994994);④1992|(997997+995995).4.设n是正整数,求证3 n+3n+2+62n能被33整除.5.求证:六位数abcabc能被7,11,13,整除.3xy能被77整除,求x,y的值.6.已知:五位数987.已知:a,b,c都是正整数,且6|(a+b+c).求证:6|(a3+b3+c3).练习题参考答案1.正奇数;正偶数2.①,②分解为4个连续整数③n(n-1)(n+1)+12n ④n(n-1)(n+1)(n2-4+5)3.②81111+491111③添项-1,1④添项995997-9959974.化为3n(1+32)+36n=11×3n+36 n-3n=……5.7×11×13=1001六位数105a+104b+103c+102a+10b+c=……6.仿例57.由6|(a+b+c)可知a,b,c中至少有一个是偶数,且a3+b3+c3-3abc含有因式a+b+c [文章来源:教学视频网/转载请保留出处。
第二讲整除问题进阶上次课我们学习了一些比较常用的整除判断方法,如利用末位数字判断、利用数字和判断等.现在我们再来学习一些新的判断方法.一、截断作和【分析】能同时被9和11整除,说明这个六位数能被99整除.想一想,99的整除特性是什么?四位数能同时被9和11整除,这个四位数是多少?【分析】这个九位数是99的倍数,说明两位截断以后,各段之和是99的倍数.这个99的倍数可能是多少呢?已知八位数能被99整除,这个八位数是多少?二、截断作差能被7、11、13整除的数的特征:从个位开始,每三位一截,奇数段之和与偶数段之和的差能被7或11或13整除.123678 已知九位数1234789能被99整除,这个九位数是多少?23六位数2008能同时被9和11整除.这个六位数是多少?【分析】根据能被7整除的数的特征:末三位组成的数与末三位以前的数组成的数之差能被7整除,我们可以由此将问题简化.四位数572能被7整除,那么这个四位数可能是多少?接下来我们处理一些较复杂的问题.【分析】在本题中,255259555999□个个能被13整除.这个数的位数太多,我们可以想办法使它变得简短一些.因为1001是13的倍数,而555555、999999分别是555、999与1001的乘积,说明它们都是13的倍数.那我们是不是可以去掉这个51位数上的一些5和9,并仍然保证它能被13整除?已知多位数2010120103111333个个能被13整除,那么中间方格内的数字是多少?已知51位数255259555999个个能被13整除,中间方格内的数字是多少?阿呆写了一个两位数59,阿瓜写了一个两位数89,他们让小高写一个一位数放在59与89之间拼成一个五位数5989,使得这个五位数能被7整除.请问:小高写的数是多少?用数字6,7,8各两个,要组成能同时被6,7,8整除的六位数.请写出一个满足要求的六位数.【分析】能被6,7,8整除的数有什么特点呢?最难把握的在于这个六位数能被7整除,我们应该怎样安排数字才能使得它的前三位与后三位的差能被7整除呢?题目只要求我们写出一个满足要求的六位数,所以只需要找出一种特殊情况即可.一个五位数,它的末三位为999.如果这个数能被23整除,那么这个五位数最小是多少?【分析】我们没有学过能被23整除的数的特征,而且23也不能拆分成两个特殊数的乘积,因此不可能根据整除特征来考虑.我们尝试从整除的定义来入手,这个五位数能被23整除,就是说它能写成23与另一个数的乘积.接下来,大家想到该怎么办了吗?课堂内外自古成功在尝试枚举法和尝试法在解决数论问题时经常使用.当看到一个问题很难下手时,不妨先从简单情形出发试一试,也许能找出规律和思路.胡适(学者,诗人,1946~1948年任北京大学校长),在他的作品《尝试集》的序言中写到:“尝试成功自古无,放翁这话未必是.我今为下一转语,自古成功在尝试”.这首诗中第一句为陆游所说,但他所说的尝试只是简单的浅尝辄止,当然不能成功.而最后一句则是胡适对第一句的改编:如果尝试是大胆的,深入的,那么一定能够成功.我们在解决某些数学问题时,需要的正是胡适所说的这种尝试.作业1. 在7315,58674,325702,96723,360360中,7的倍数有哪些?13的倍数有哪些?2. 四位数33能同时被9和11整除,这个四位数是多少?3. 四位数278能被7整除,那么这个四位数是多少?4. 已知多位数201225881258258258□个(2012个258)能同时被7和13整除,方格内的数字是多少?5. 已知多位数2011120113111333个个能被7整除,那么中间方格内的数字是多少?第二讲 整除问题进阶例题1. 答案:120087详解:能被9和11整除可以看作是能被99整除,可以两位截断求数段和,那么有208++是99的倍数,只能是99.两个空中先后要填1和7.例题2. 答案:123483789详解:设这个九位数为1234789ab ,两位截断求和1234789160a b ba ++++=+是99的倍数,只能是198.所以a =8,b =3.例题3. 答案:6详解:利用7的整除特性,895930-=能被7整除,只能填6.例题4. 答案:5详解:555555、999999能被13整除,前面依次去掉555555,后面一次去掉999999后仍然是13的倍数.所以只需要满足13|59就可以了.空格中要填5.例题5. 答案:768768详解:形如abcabc 一定能被7整除,可以考虑由两个相同的三位数来组成这个六位数,三位数由6、7、8组成.又可知这个六位数一定能被3整除,所以只要保证后三位能被8整除就可以了.答案不唯一.例题6.答案:20999详解:利用数字谜,从后往前逐位确定.练习1.答案:6237简答:两位截断后的和是99.练习2.答案:12327678简答:两位截断后的和是198.练习3.答案:5712或5782简答:利用7的整除特性,72与5的差是7的倍数,空格中可以填1或8.练习4.答案:0简答:前面依次去掉111111,后面依次去掉333333,最后剩下.它是13的倍数,那么空格中只能填0.作业1.答案:7的倍数有7315,58674,360360;13的倍数有325702,360360 简答:牢记7和13的判断方法.作业2.答案:6336简答:这个四位数是99的倍数,两位截断后求和即可.作业3.答案:2758简答:应用三位截断法,可知能被7整除,框中填5满足条件.76作业4. 答案:9简答:应用三位截断,可知能被7和13整除,即是91的倍数,框中填9满足条件.作业5. 答案:3简答:应用三位截断,可知能被7整除,框中填3满足条件.13 81 81。
2019年小学奥数数论专题——整除1.整除1.173□是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,1l,6整除.”问:数学老师先后填入的3个数字的和是多少?2.如果六位数1992□□能被105整除,那么它的最后两位数是多少?3.某个七位数1993□□□能够同时被2,3,4,5,6,7,8,9整除,那么它的最后三位数字依次是多少?4.从0,1,2,3,4,5,6,7,8,9这10个数字中选出5个不同的数字组成一个五位数,使它能被3,5,7,13整除,这个数最大是多少?5.修改31743的某一个数字,可以得到823的倍数.问修改后的这个数是多少?6.在六位数11□□11中的两个方框内各填入一个数字,使此数能被17和19整除,那么方框中的两位数是多少?7.已知四十一位数55…5□99…9(其中5和9各有20个)能被7整除,那么中间方格内的数字是多少?8.用数字6,7,8各两个,组成一个六位数,使它能被168整除.这个六位数是多少? 9.将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?10.1~9九个数字按下图所示的次序排成一个圆圈,请在某两个数之间剪开,分别按顺时针和逆时针次序形成两个九位数.如果要求剪开后所得到的两个九位数的差能被396整除,那么应在何处剪开?11.1至9这9个数字,按图所示的次序排成一个圆圈.请你在某两个数字之间剪开,分别按顺时针和逆时针次序形成两个九位数(例如,在l和7之间剪开,得到两个数是193426857和758624391).如果要求剪开后所得到的两个九位数的差能被396整除,那么剪开处左右两个数字的乘积是多少?12.有15位同学,每位同学都有编号,他们是1号到15号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是五位数,请求出这个数.13.有20位同学,每位同学都有编号,他们是1号到20号.1号同学写了一个自然数,2号说:“这个数能被2整除”,3号说:“这个数能被3整除”,……,依次下去,每位同学都说,这个数能被他的编号数整除.1号作了一一验证:只有编号连续的两位同学说得不对,其余同学都对.问:(1)说得不对的两位同学,他们的编号是哪两个连续自然数?(2)如果告诉你,1号写的数是七位数,请求出这个数.14.找出4个不同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除.如果要求这4个数中最大的数与最小的数的和尽可能的小,那么这4个数里中间两个数的和是多少?15.试求6个不同的正整数,使得它们中任意两数之积可被这两个数之和整除.16.把若干个自然数l,2,3,…乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?17.975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?18.如图,依次排列的5个数是13,12,15,25,20.它们每相邻的两个数相乘得4个数.这4个数每相邻的两个数相乘得3个数.这3个数每相邻的两个数相乘得2个数.这2个数相乘得1个数.请问:最后这个数从个位起向左数,可以连续地数出几个零?第 1 页19.已知道六位数20□279是13的倍数,求□中的数字是几?20.六位数2008能被99整除,是多少?21.六位数20□□08能被49整除,□□中的数是多少?22.在方框中填上两个数字,可以相同也可以不同,使4□32□是9的倍数. ⑴请随便填出一种,并检查自己填的是否正确;⑵一共有多少种满足条件的填法?23.已知九位数2007122□□既是9的倍数,又是11的倍数;那么,这个九位数是多少?24.一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□67.9□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.25.由1,3,4,5,7,8这六个数字所组成的六位数中,能被11整除的最大的数是多少?26.各位数码是0、1或2,且能被225 整除的最小自然数是多少?27.张老师带领同学们去种树,学生的人数恰好等分成三组.已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵.问:一共有多少学生?每人种了几棵树?28.某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果老师与学生每人种树一样多,共种了1073棵,那么平均每人种了棵树?29.在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能的小。
七年级竞赛数学培优辅导——整式的整除内容提要1. 定义:如果一个整式除以另一个整式所得的商式也是一个整式,并且余式是零,则称这个整式被另一个整式整除。
2. 根据被除式=除式×商式+余式,设f(x),p(x),q(x)都是含x 的整式,那么 式的整除的意义可以表示为:若f(x)=p(x)×q(x), 则称f(x)能被 p(x)和q(x)整除例如∵x 2-3x -4=(x -4)(x +1),∴x 2-3x -4能被(x -4)和(x +1)整除。
显然当 x=4或x=-1时x 2-3x -4=0,3. 一般地,若整式f(x)含有x –a 的因式,则f(a)=0反过来也成立,若f(a)=0,则x -a 能整除f(x)。
4. 在二次三项式中若x 2+px+q=(x+a)(x+b)=x 2+(a+b)x+ab 则p=a+b,q=ab在恒等式中,左右两边同类项的系数相等。
这可以推广到任意多项式。
例题例1己知 x 2-5x+m 能被x -2整除,求m 的值。
x -3解法一:列竖式做除法 (如右) x -2 x 2-5x+m由 余式m -6=0 得m=6 x 2-2x解法二:∵ x 2-5x+m 含有x -2 的因式 -3x+m∴ 以x=2代入 x 2-5x+m 得 -3x+622-5×2 +m=0 得m=6 m -6 解法三:设x 2-5x+m 除以x -2 的商是x+a (a 为待定系数)那么 x 2-5x+m =(x+a)(x -2)= x 2+(a-2)x -2a根据左右两边同类项的系数相等,得⎩⎨⎧=--=-m a a 252 解得⎩⎨⎧=-=63m a (本题解法叫待定系数法) 例2 己知:x 4-5x 3+11x 2+mx+n 能被x 2-2x+1整除求:m 、n 的值及商式解:∵被除式=除式×商式 (整除时余式为0)∴商式可设为x 2+ax+b得x 4-5x 3+11x 2+mx+n =(x 2-2x+1)(x 2+ax+b )=x 4+(a-2)x 3+(b+1-2a)x 2+(a-2b)x+b根据恒等式中,左右两边同类项的系数相等,得⎪⎪⎩⎪⎪⎨⎧==-=-+-=-n b m b a a b a 12112152 解得⎪⎪⎩⎪⎪⎨⎧=-==-=4113n m n b a ∴m=-11, n=4, 商式是x 2-3x+4例3 m 取什么值时,x 3+y 3+z 3+mxyz (xyz ≠0)能被x+y+z 整除?解:当 x 3+y 3+z 3+mxyz 能被x+y+z 整除时,它含有x+y+z 因式令x+y+z=0,得x=-(y+z),代入原式其值必为0即[-(y+z)]3+y3+z3-myz(y+z)=0把左边因式分解,得-yz(y+z)(m+3)=0,∵yz≠0, ∴当y+z=0或m+3=0时等式成立∴当x,y(或y,z或x,z)互为相反数时,m可取任何值,当m=-3时,x,y,z不论取什么值,原式都能被x+y+z整除。
5-2-2.数的整除之四大判断法综合运用(二)教学目标1.了解整除的性质;2.运用整除的性质解题;3.整除性质的综合运用.知识点拨一、常见数字的整除判定方法1. 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;2. 一个位数数字和能被3整除,这个数就能被3整除;一个数各位数数字和能被9整除,这个数就能被9整除;3. 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.4. 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.5.如果一个数能被99整除,这个数从后两位开始两位一截所得的所有数(如果有偶数位则拆出的数都有两个数字,如果是奇数位则拆出的数中若干个有两个数字还有一个是一位数)的和是99的倍数,这个数一定是99的倍数。
【备注】(以上规律仅在十进制数中成立.)二、整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am(m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么ac也能被bd整除.如果b|a,且d|c,那么bd|ac;模块一、11系列【例 1】 以多位数142857为例,说明被11整除的另一规律就是看奇数位数字之和与偶数位数字之和的差能否被11整除.【考点】整除之11系列 【难度】2星 【题型】解答 【解析】 略【答案】142857110000041000021000810051071=⨯+⨯+⨯+⨯+⨯+⨯110000114199992100118199511171=⨯-+⨯++⨯-+⨯++⨯-+⨯()()()()() 11000014999921001899511418275=⨯+⨯+⨯+⨯+⨯+-+-+-()()因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被11整除,再根据整除性质1,要判断142857能否被11整除,只需判断418275487125-+-+-=++-++()()能否被11整除,因此结论得到说明.【例 2】 试说明一个4位数,原序数与反序数的和一定是11的倍数(如:1236为原序数,那么它对应的反序数为6321,它们的和7557是11的倍数.【考点】整除之11系列 【难度】2星 【题型】解答 【解析】 略【答案】设原序数为abcd ,则反序数为dcba ,则abcd +dcba 100010010100010010a b c d d c b a =+++++++()() 10011101101001a b c d =+++1191101091a b c d =+++(),因为等式的右边能被11整除,所以abcd + dcba 能被11整除【例 3】 一个4位数,把它的千位数字移到右端构成一个新的4位数.已知这两个4位数的和是以下5个数的一个:①9865;②9866;③9867;④9868;⑤9869.这两个4位数的和到底是多少?【考点】整除之11系列 【难度】2星 【题型】解答【解析】 设这个4位数是abcd ,则新的4位数是bcda .两个数的和为1001110011011abcd bcda a b c d +=+++,是11的倍数.在所给的5个数中只有9867是11的倍数,故正确的答案为9867.【答案】9867模块二、7、11、13系列【例 4】 以多位数142857314275为例,说明被7、11、13整除的规律. 【考点】整除之7、11、13系列 【难度】3星 【题型】解答 【解析】 略【答案】142857314275142100000000085710000003141000275=⨯+⨯+⨯+142(10000000011)857(9999991)314(10011)275=⨯-+⨯++⨯-+ 14210000000011428579999998573141001314275=⨯-+⨯++⨯-+ (14210000000018579999993141001)(857142275314)=⨯+⨯+⨯+-+-因为根据整除性质1和铺垫知,等式右边第一个括号内的数能被7、11、13整除,再根据整除性质1,要判断142857314275能否被7、11、13整除,只需判断857142275314-+-能否被7、11、13整除,因此结论得到说明.【例 5】 已知道六位数20279□是13的倍数,求□中的数字是几? 【考点】整除之7、11、13系列 【难度】2星 【题型】填空 【解析】 根据一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除的特点知道:27920=7-□□,7□是13的倍数,□是8的时候是13倍数,所以知道方格中填1。
数学奥赛辅导讲义------数论(1) 整除知识、方法、技能整除是整数的一个重要内容,这里仅介绍其中的几个方面:整数的整除性、最大公约数、最小公倍数、方幂问题.Ⅰ. 整数的整除性初等数论的基本研究对象是自然数集合及整数集合. 我们知道,整数集合中可以作加、减、乘法运算,并且这些运算满足一些规律(即加法和乘法的结合律和交换律,加法与乘法的分配律),但一般不能做除法,即,如b a ,是整除,0≠b ,则ba不一定是整数. 由此引出初等数论中第一个基本概念:整数的整除性.定义一:(带余除法)对于任一整数a 和任一整数b ,必有惟一的一对整数q ,r 使得r bq a +=,b r <≤0,并且整数q 和r 由上述条件惟一确定,则q 称为b 除a 的不完全商,r 称为b 除a 的余数.若0=r ,则称b 整除a ,或a 被b 整除,或称b a 是的倍数,或称a b 是的约数(又叫因子),记为a b |.否则,b | a .任何a 的非1,±±a 的约数,叫做a 的真约数. 0是任何整数的倍数,1是任何整数的约数.任一非零的整数是其本身的约数,也是其本身的倍数. 由整除的定义,不难得出整除的如下性质: (1)若.|,|,|c a c b b a 则(2)若.,,2,1,,|,|1n i Z cb c a b a ini i i i =∈∑=其中则(3)若c a |,则.|cb ab 反之,亦成立.(4)若||||,|b a b a ≤则.因此,若b a a b b a ±=则又,|,|. (5)a 、b 互质,若.|,|,|c ab c b c a 则(6)p 为质数,若,|21n a a a p ⋅⋅⋅ 则p 必能整除n a a a ,,,21 中的某一个. 特别地,若p 为质数,.|,|a p a p n则(7)如在等式∑∑===mk kn i i ba 11中除开某一项外,其余各项都是c 的倍数,则这一项也是c 的倍数.(8)n 个连续整数中有且只有一个是n 的倍数. (9)任何n 个连续整数之积一定是n 的倍数.本讲开始在整除的定义同时给出了约数的概念,又由上一讲的算术基本定理,我们就可以讨论整数的约数的个数了.定理一:设大于1的整数a 的标准分解式为nn p p p p p p a n <<<⋅= 211(21ααα为质数,i α均为非负整数),则a 的约数的个数为∏=+=ni ia d 1)1)(α(.所有的约数和为:∏=+--=ni i i p p a i 1111)(ασ.事实上,由算术基本定理的推论知∏=+=ni ia d 1)1()(α,而各约数的和就是∏=+++ni i ii pa p1)1( 展开后的各项之和,所以∏∏==--=+++=ni ni ii i p p p p a ii11111)1()(αασ 例如,25200=24·32·52·7,所以90)11)(12)(12)(14()25200(=++++=d , 999441717151513131212)25200(2335=--⨯--⨯--⨯--=σ.Ⅱ. 最大公约数和最小公倍数定义二:设a 、b 是两个不全为0的整数.若整数c 满足:b c a c |,|,则称b a c ,为的公约数,b a 与的所有公约数中的最大者称为b a 与的最大公约数,记为),(b a .如果),(b a =1,则称b a 与互质或互素.定义三:如果a d 是、b 的倍数,则称a d 是、b 的公倍数. b a 与的公倍数中最小的正数称为b a 与的最小公倍数,记为],[b a .最大公约数和最小公倍数的概念可以推广到有限多个整数的情形,并用),,,(21n a a a 表示n a a a ,,,21 的最大公约数,],,,[21n a a a 表示n a a a ,,,21 的最小公倍数.若1),,,(21=n a a a ,则称n a a a a ,,,,321 互质,若n a a a ,,,21 中任何两个都互质,则称它们是两两互质的.注意,n 个整数互质与n 个整数两两互质是不同的概念,前者成立时后者不一定成立(例如,3,15,8互质,但不两两互质);显然后者成立时,前者必成立.因为任何正数都不是0的倍数,所以在讨论最小公倍数时,一般都假定这些整数不为0.同时,由于|||,|,b a b a 与有相同的公约数,且|)||,(|),(b a b a =(有限多个亦成立),因此,我们总限于在自然数集合内来讨论数的最大公约数和最小公倍数.显然,若b a ,的标准分解式为i ni i ni i p p b p a ii(,11∏∏====βα为质数,i i a β,为非负整数),则∏==ni i i i p b a 1),min(),(βα ①∏==ni man i i i p b a 1),(],[βα ②例如 3960=23·32·5·11,756=22·33·7,则 (3960,756)=22·32=36,[3960,756]=23·33·5·7·11=83160.求最大公约数也可以用辗转相除法,其理论依据是:定理二:设a 、b 、c 是三个不全为0的整数,且有整数t 使得c bt a +=,则a 、b 与b 、c 有相同的公约数,因而),(),(c b b a =,即).,(),(bt a b b a -=因为,若a d 是、b 的任一公约数,则由b d c d c bt a b d a d 是即知和,||,|+=、c 的公约数;反之,若b d 是、c 的任一公约数,a d 也是、b 的公约数.辗转相除法:设a 、b a N b >∈*且,, 由带余除法有⎪⎪⎪⎭⎪⎪⎪⎬⎫=+=<<+=<<+=<<+=+++----.0,,0,,0,,0,111111212221111n n n n n n n n n n n r r q r r r r r q r r r r r q r b b r r bq a ③ 因为每进行一次带余除法,余数至少减1,即11+>>>>n n r r r b ,而b 为有限数,因此,必有一个最多不超过b 的正整数n 存在,使得0≠n r ,而01=+n r ,故由定理二得:).,(),,(),(),(11211b a b r r r r r r r r n n n n n ======-+()例如,(3960,756)=(756,180)=(180,36)=36.具体算式如下:5(q 1) 3960(a ) 756(b ) 4(q 2) 3780 720180(r 1) 36(r 2) 5(q 3) 1800(r 3)由定义和上述求法不难得出最大公约数和最小公倍数的如下性质: (1)),(),(,b a m bm am N m =∈则. (2)设b a c ,为的公约数,则.),(),(c b a c b c a =特别地,若1),(),,(==cbc a b a c 则. (3)设n a a a ,,,21 是任意n 个正整数,如果n n n c a c c a c c a a ===-),(,,),(,),(1332221 , 则n n c a a a =),,,(21 .因21121111|,|,|,|,|,|--------n n n n n n n n n n n n c c a c c c a c c c a c 故而,如此类推得出n c 能整除n n n c a a a 于是,,,,11 -是它们的一个公约数.又设n a a a c ,,,21 为的任一公约数,则21|,|a c a c ,因而2|c c ,同理可推出3|c c ,如此类推最后可得n c c |. 于是n c c c ≤≤||,故n c 是最大公约数.(4)若c b a =),(,则一定有整数y x 和,使得c by ax =+. 特别地,⇔=1),(b a 存在1,=+by ax y x 使得. 这可由辗转相除法的③式逆推而得by ax r c n +==. (5)若),(),(,1),(b c b ac b a ==则. (6)*∈N b a , ①)(],[],[*∈=N k b a k bk ak ;②b a m ,为的任一公倍数,则m b a |],[;③ab b a b a =],)[,(,特别地,若ab b a b a ==],[,1),(则.①可由③直接得到,②可由最小公倍数定义得,③根据①、②式知,=],)[,(b a b a ∏∏==+==n i ni i i i i ab p p i i 11),min(βαβα.(7)设n a a a ,,,21 是任意n 个正整数.若===-],[,,],[,],[1332221n n a m m a m m a a m n ,则n n m a a a =],,,[21 .这是一个求多个整数的最小公倍数的方法.它可用证明③类似的方法来证明. Ⅲ.方幂问题 一个正整数n 能否表成m 个整数的k 次方和的问题称为方幂和问题.特别地,当1=m 时称为k 次方问题,当2=k 时,称为平方和问题. 能表为某整数的平方的数称为完全平方数.简称平方数,关于平方数,明显有如下一些简单的性质和结论: (1)平方数的个位数字只可能是0,1,4,5,6,9. (2)偶数的平方数是4的倍数,奇数的平方数被8除余1,即任何平方数被4除的余数只能是0或1. (3)奇数平方的十位数字是偶数. (4)十位数字是奇数的平方数的个位数一定是6. (5)不能被3整除的数的平方被3除余1,能被3整除的数的平方能被3整除.因而,平方数被9除的余数为0,1,4,7,且此平方数的各位数字的和被9除的余数也只能为0,1,4,7. (6)平方数的约数的个数为奇数. (7)任何四个连续整数的乘积加1,必定是一个平方数. 进一步研究可得到有关平方和的几个结论: 定理三:奇素数p 能表示成两个正整数的平方和的充要条件是.14+=m p定理四:设正整数p m n 2=,其中p 不再含平方因数,n 能表示成两个整数的平方的充要条件是p 没有形如34+q 的质因数.定理五:每个正整数都能表示成四个整数的平方和. 这几个定理的证明略.这里重点是介绍有关k 方幂的解法技巧.k 方幂中许多问题实质上是不定方程的整数解问题,比如著名的勾股数问题.赛题精讲例1:证明:对于任何自然数n 和k ,数1042),(3++=k kn n k n f 都不能分解成若干个连续的正整数之积.(1981年全国高中联赛试题)【证明】由性质9知,只需证明数),(k n f 不能被一个很小的自然数n 整除.因,1)1)(1()3(31033),(333++--++=++-+=k k k k k k k k k n n n n n n n n n k n f),1)(1(|3),3(3|33+-++k k k k k n n n n n 3 1,故3 ),(k n f ,因而),(k n f 不能分解成三个或三个以上的连续自然数的积.再证),(k n f 不能分解成两个连续正整数的积.由上知,)(13),(N q q k n f ∈+=,因而只需证方程:)1(13+=+x x q 无正整数解.而这一点可分别具体验算234,134,3++=r x 时,)1(+x x 均不是13+q 形的数来说明.故),(k n f 对任何正整数n 、k 都不能分解成若干个连续正整数之积.例2: 设p 和q 均为自然数,使得.131911318131211+--+-= q p 证明:p 可被1979整除. (第21届IMO 试题)【证明】)131814121(2)1319131211(+++-+++= q p =)6591211()1319131211(+++-++++=)99019891()131816611()131916601(++++++ =1979×)99098911318661113196601(⨯++⨯+⨯两端同乘以1319!得1319!*).(1979N m m qp∈⨯=⨯此式说明1979|1319!×.p 由于1979为质数,且1979 1319!,故1979|.p 【评述】把1979换成形如23+k 的质数,1319换成*)(12N k k ∈+,命题仍成立.牛顿二项式定理和n b a b a b a b a nnnn(|)(,|)(-+--为偶数), nb a b a nn(|)(-+为奇数)在整除问题中经常用到. 例3 :对于整数n 与k ,定义,),(112∑=-=nr k rk n F 求证:)1,(n F 可整除).,(k n F(1996加拿大数学竞赛试题)【证明】当m n 2=时,,)12()1,2(21∑=+==mr m m r m F∑∑+=-=-+=mm r k mr k rrk m F 2112112),2(],)12([)12(12112112112-=-=-=--++=-++=∑∑∑k mr k mr k mr k r m r r m r由于[…]能被12)12(+=-++m r m r 整除,所以),2(k m F 能被12+m 整除,另一方面,=),2(k m F ,)2(])2([1212121112----=-++-+∑k k k m r k m m r m r上式中[…]能被m r m r 2)2(=-+整除,所以),2(k m F 也能被m 整除.因m 与2m +1互质,所以),2(k m F 能被m (2m +1)(即)1,(m F )整除.类似可证当12+=m n 时,F (2m +1,k )能被F (2m +1,1)整除. 故),(k n F 能被)1,(n F 整除.例4 :求一对整数b a ,,满足:(1))(b a ab +不能被7整除;(2)777)(b a b a --+能被77整除. (第25届IMO 试题)【解】777)(b a b a --+=)](5)(3)[(7223355b a b a b a ab b a ab +++++=.))((7222ab b a b a ab +++ 根据题设要求(1)(2)知,|,)(|72226ab b a ++即.|7223ab b a ++令,7322=++ab b a 即,343)(2=-+ab b a 即19=+b a ,则.343192-=ab 故可令1,18==b a 即合要求.【评述】数学归纳法在整除问题中也有广泛应用.例5:是否存在1000000个连续整数,使得每一个都含有重复的素因子,即都能被某个素数的平方所整除?(第15届美国普特南数学竞赛试题)【解】存在.用数学归纳法证明它的加强命题:对任何正整数,m 存在m 个连续的整数,使得每一个都含有重复的素因子. 当m =1时,显然成立.这只需取一个素数的平方.假设当m =k 时命题成立,即有k 个连续整数k n n n +++,,2,1 ,它们分别含有重复的素因子k p p p ,,,21 ,任取一个与k p p p ,,,21 都不同的素数1+k p (显然存在),当21,2,1+=k p t 时,)1(22221+++k n p p tp k 这21+k p 个数中任两个数的差是形如)11(2122221-≤≤+k k p a p p ap 的数,不能被21+k p 整除,故这21+k p 个数除以21+k p 后,余数两两不同.但除以21+k p 后的余数只有0,1,…,21+k p -1这21+k p 个,从而恰有一个数)1(2100+≤≤k p t t ,使)1(222210+++k n p p p t k 能被21+k p 整除.这时,()1+k 个连续整数:,1222210++n p p p t k ++n p p p t k 222210 2,…,++n p p p t k 222210 k ,++n p p p t k 222210 (k +1)分别能被2122221,,+k k p p p p 整除,即1+=k m 时命题成立.故题对一切正整数m 均成立.例6:求证:.),)(,)(,(),,(],][,][,[],,[22a c c b b a c b a a c c b b a c b a = (第1届美国数学奥林匹克竞赛试题)【证明】设,,,111∏∏∏======ni i n i i ni ii p c i p b i pa γβα其中i p 为质数,i i i γβα,,为非负整数,则∏==ni ii i i pc b a 1),,max(,],,[γβα∏==ni i i i p b a 1),max(,],[ βα∏=∏=ni ii i i pc b a 1),,m i n (,),,(γβα∏==ni i i i p b a 1),min(,),( βα 因此只需证明2max(),m ax (),m ax (),m ax (),,i i i i i i i i i αγγββαγβα---=2min(),m in(),m in(),m in(),,i i i i i i i i i αγγββαγβα---上式关于i i i γβα,,对称,则不妨设i i i γβα≥≥,于是上式变为:.22i i i i i i i i γγβγαβαα---=---此式显然成立,故得证.例7:设a 和b 是两个正整数,p b a ,1),(=为大于或等于3的质数,ba b a b a c pp +++=,(),试证:(1)1),(=a c ;(2)1=c 或.p c =(1985新加坡数学竞赛试题)【证明】由已知得),(,N s t cs b a b a ct b a pp ∈=++=+,两式相乘得,)(1112ct pa t pac t c a ct a b a st c p p p p p p p p p ---++-=-+=+= 于是,12211-----++-=p p p p p pa t pac t c cs 故.|1-p pa c(1)现用反证法来证明1),(=a c .若,1),(>=k a c 令q 是k 的一个质因子,则有.|,|a q c q 因b a c +|,则b a q +|,从而.|b q 于是q 是a 、b 的一个公约数,这与),(b a =1矛盾,故1),(=a c .(2)因为,1),(,|1=-a c pa c p 所以.|p c 而p 为质数且3≥p ,故1=c 或.p c =例8:设∑=+=nk n k kS 175)(,求最大公约数).,(3n n S S d =(第26届IMO 预选题)【解】能过具体计算可猜想.)2)1((2)21(244+=+++=n n n S n 此式不难用数学归纳法获证. 为求),(3n n S S d =,对n 分奇偶来讨论. (1)当k n 2=时,).)16(812,)12(2()]2)16(6[2,]2)12(2[2(444444+⨯+=++=k k k k k k k k d 由于12+k和16+k 互质,所以).81,)12((244+=k k d 而当13+=t k 时13,)12(81)12(44+≠+=+t k t k 时,4)12(+k 与81互质.故此时有⎪⎪⎩⎪⎪⎨⎧≥++==+==⨯⨯=⨯=.)0(4666,812;26,8812812812444444t t t n n k t n n n k d 时或当时当(2)当当12+=k n 时).)23)(12(3[2,)]1)(12[(2(44++++=k k k k d1,1223+++k k k 与因与质,所以).3,)1(()12(2444++=k k k 而当23+=t k 时,23),1(31+≠+=+k k t k 时,1+k 与34互质.故此时有⎪⎩⎪⎨⎧++==++==⨯=⨯+=.)36162)12(2;56,162323)12(2444444时或当时当t t n n k t n n n k d 例9:m 盒子中各若干个球,每一次在其中)(m n n <个盒中加一球.求证:不论开始的分布情况如何,总可按上述方法进行有限次加球后使各盒中球数相等的充要条件是.1),(=n m (第26届IMO 预选题)【证明】设1),(=n m ,则有Z v u ∈,使得)1()1(1++-=+=v m v vm un ,此式说明:对盒子连续加球u 次,可使1-m 个盒子各增加了v 个,一个增加)1(+v 个.这样可将多增加了一个球的盒子选择为原来球数最少的那个,于是经过u 次加球之后,原来球数最多的盒子中的球与球数最少的盒子中的球数之差减少1,因此,经过有限次加球后,各盒球数差为0,达到各盒中的球数相等.用反证法证明必要性.若1),(>=d n m ,则只要在m 个盒中放1+m 个球,则不管加球多少次,例如,加球k 次,则这时m 个盒中共有球kn m ++1(个),因为,1,|,|>d n d m d 所以kn m ++1不可能是d 的倍数,更不是m 的倍数,各盒中的球决不能一样多,因此,必须1),(=n m .例10:求所有这样的自然数n ,使得n 222118++是一个自然数的平方.(1980年第6届全俄数学竞赛试题)【证明】(1)当8≤n 时,)122(222118118++⋅++=--n nnN ,因(…)为奇数,所以要使N 为平方数,n 必为偶数.逐一验证8,6,4,2=n 知,N 都不是平方数. (2)当9=n 时,11222289118⨯=++=N 不是平方数.(3)当10≥n 时,)29(288-+=n N ,要N 为平方数,829-+n 应为奇数的平方,不妨假设829-+n =2)12(+k ,则).2()1(210+⨯-=-k k n 由于1-k 和2+k 是一奇一偶,左边为2的幂,因而只能1-k =1,于是得2=k ,由21022=-n 知12=n 为所求.。